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A commentary on

Shared strategies for behavioral switching: 
understanding how locomotor patterns are 
turned on and off
by Mesce, K. A., and Pierce-Shimomura, J. 
T. (2010). Front. Behav. Neurosci. 4:49. doi: 
10.3389/fnbeh.2010.00049

In their perspectives article, Mesce and 
Pierce-Shimomura (2010) make a case for 
the existence of two locomotion gaits in C. 
elegans, and for the ability of this nematode 
worm to choose between them. Here, we 
offer a counter-perspective, namely, that 
the variety of observed behaviors are more 
appropriately described as a single gait.

In what follows we focus on pure forward 
locomotion, which is generally believed to 
be controlled by a dedicated circuit, distinct 
from the circuits that control backward 
locomotion and head motor behavior. With 
regard to our question of gaits, we are not 
aware of any evidence that links head swings 
with the generation of propulsive (forward/
backward) locomotion, so these will not be 
considered here.

Are swimming And crAwling 
chArActerized by quAlitAtively 
different pAtterns of body 
bending?
In C. elegans, forward locomotion, whether 
“swimming” (in liquids) or “crawling” (in 
or on gels) involves smooth propagation 
of undulations from head to tail. We argue 
that while such propagations can vary in 
kinematic parameters such as frequency, 
wavelength, and amplitude, these variations 
are continuous and there is no evidence for 
more than a single fundamental behavior1. 

If, as Mesce and Pierce-Shimomura (2010) 
argue, “bends propagate at uniform veloc-
ity for crawling, but “whip” to the back of 
the body after characteristic pauses when 
the whole-body of the worm is bent into a 
C-shaped posture during swimming,” then 
these characteristic pauses would be evi-
dent in plots of bending angle over time: 
the longer the pauses in extreme maximally 
bent positions, the squarer the bending wave 
would appear. In fact, in Pierce-Shimomura 
et al.’s own data, bending plots over time 
show proportionately little time spent in 
the extreme positions (Pierce-Shimomura 
et al., 2008; Vidal-Gadea et al., 2009). Our 
own data for worms in liquid buffer solution 
confirm this (Figure 1C). More generally, 
Figure 1D clearly shows the equivalence of 
temporal patterns of dorso-ventral bending 
for “swimming,” “crawling,” and intermedi-
ate behaviors, upon normalization by ampli-
tude and undulation period.

Furthermore, if, as claimed, swimming 
worms “whip” their bodies and propagate 
bends at non-uniform velocity, this would 
be evidenced by non-linear stripes in the 
contour plots for swimming worms (Figure 
1B of Pierce-Shimomura et al., 2008). Our 
own data (Figures 1A,B, reproduced with 
permission from Berri et al., 2009) similarly 
show uniform bend propagation for worms 
exhibiting a range of behaviors (correspond-
ing to a range of physical conditions). 
Whether looking at the spacing between 
the stripes (the period of undulation), the 
inclination of the stripes (the speed of bend 
propagation) or the amount of overlap (the 
wavelength along the body), we find only a 
gradual change between consecutive plots. 
Finally, we note that bending along the body 
directly maps muscle activation. Calcium 
imaging of muscle activity during locomo-
tion of unrestrained worms in water and 
on agar (Pierce-Shimomura et al., 2008) 
indicates a clear one-to-one relationship 
between muscle activity and bending. This 

strong match holds in both environments 
and does not break down for fast undula-
tions (during swimming). Therefore, it is 
reasonable to expect that the same one-to-
one relationship should hold in intermedi-
ate environments (up to a fixed phase lag 
which of course differs in different condi-
tions). Another way of putting it is that body 
curvature is an equally appropriate (and eas-
ier to obtain) metric. In summary, the data 
strongly suggest that the entire transition 
from “swimming” to “crawling” corresponds 
to modulation of a single gait. Indeed, we 
find no evidence of a qualitative distinction 
between the undulation patterns.

Are swimming And crAwling 
chArActerized by different 
frequencies of undulAtion?
Mesce and Pierce-Shimomura (2010) state 
that C. elegans worms “crawl with a persist-
ent S-shaped posture on a dry substrate with 
∼1 Hz high-amplitude bends, and swim in 
liquid with ∼2 Hz lower amplitude bends.” 
Indeed, the existence of two locomotion 
frequencies might be grounds to define 
two distinct gaits. However, it is impor-
tant to point out the current consensus 
that the worm modulates its frequency of 
undulations as a function of the resistivity 
(viscosity or visco-elasticity) of the physi-
cal environment. This was demonstrated in 
Berri et al. (2009) for gelatin solutions (not 
methylcellulose as described in Mesce and 
Pierce-Shimomura, 2010). Similar results 
were independently reproduced for high 
molecular weight dextran (Fang-Yen et al., 
2010). In fact, while this is not mentioned 
in Mesce and Pierce-Shimomura (2010), 
Pierce-Shimomura et al. similarly report a 
nearly threefold modulation of the bending 
frequency (0.6–1.5 Hz) in what they dub 
“swim-like” behavior (Vidal-Gadea et al., 
2009), while frequencies of 0.2–0.4 Hz 
are dubbed “crawl-like,” despite the fact 
that the peak of the power spectrum for 

1Specifically, these three quantitative metrics capture 
the temporal and spatial properties of the body 
undulation to a good degree of accuracy (although 
additional metrics could always be added to capture 
the complex, non-sinusoidal features of the waveform).
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are these transitions really spontaneous 
and internally selected? Here we pro-
vide an alternative interpretation, moti-
vated in part by our own, possibly related 
observations. One technical difficulty in 
working with many polymer solutions 
(e.g., agar, gelatin, methylcellulose) is 
obtaining homogeneous environments 
with different concentrations of the col-
loidal particles. Indeed, in characterizing 
a transition as a function of the environ-
ment, any observation of a change of 
behavior must be explicitly controlled 
against possible changes in the worm’s 
local, microscopic environment before 
such differences can be attributed to an 
internal decision. We therefore needed an 
objective metric to quantify the local stiff-
ness (or visco- elasticity) of our medium. 
Using image analysis, and treating the 
worm as a deformable body governed by 
Newton’s equations of motion (applied to 
low Reynolds’ numbers), we numerically 
estimated the ratio of drag coefficients for 
each short extract of recorded locomotion. 
Indeed, plotting the data against this phys-
ical metric, the smooth and continuous 
transition in Figures 1D–F of Berri et al. 
(2009) is immediately obtained. In the 
absence of such an objective characteri-
zation of the microscopic physical environ-
ment, it is impossible to have confidence 
in any statement about behavioral transi-
tions being “spontaneous” and driven by 
“decision” rather than by some possible 
response of worms to local changes in 
the physical environment. In Vidal-Gadea 
et al. (2009), we might ask whether, e.g., 
the sudden (small) change in frequency 
observed for worms in 2–3% methylcel-
lulose could be due to the worm moving 
into or out of contact with the more rigid 
agar surface underneath.

does the existence of A swim-
defective mutAnt imply multiple 
gAits?
Mesce and Pierce-Shimomura argue 
that the identification of “swim-defec-
tive” mutants supports the existence of 
a distinct swimming gait, but we note 
that the three examples given by Pierce-
Shimomura et al. (2008) exhibit some 
locomotion defect on agar as well. That 
aside, and even in the extreme case of a 
mutant with a clear phenotype in liq-
uid and none on agar, it is important to 

which “crawling” and “ swimming” (if they 
are indeed distinct behaviors) are char-
acterized by quite similar frequencies. 
Specifically the transitions are quantified 
by a difference of 0.2 Hz or less in the undu-
lation frequency. This frequency difference 
is comparable in value to the variability in 
frequency (1.2–1.5 Hz) for locomotion in 
0.5% methylcellulose (Vidal-Gadea et al., 
2009), all of which is dubbed swimming. 
The small magnitude of the transitions may 
raise questions, not only about the valid-
ity of the classification, but even about the 
selective advantage worms might gain by 
such “decisions.”

That said, it is clear from the bending 
plots in Vidal-Gadea et al. (2009) that 
some small frequency transitions were 
observed by Pierce-Shimomura et al. But 

“crawling” appears to fall at about 0.8 Hz 
(Vidal-Gadea et al., 2009). It is therefore 
clear that C. elegans locomotion cannot be 
characterized by discrete sets of kinematic 
parameters, but rather by a broad and con-
tinuous range of such parameters.

cAn worms switch 
spontAneously between the 
discrete gAits of swimming And 
crAwling?
Transitions between two undulation 
frequencies in a single environment, if 
spontaneous, could support the existence 
of two gaits. However, we note that any 
observed transitions (in the wild type) 
were only reported for certain high con-
centrations (2.25 and 2.75%) of methyl-
cellulose  (Vidal-Gadea et al., 2009), for 

Figure 1 | (A) Frequency–wavelength relation across a range of gelatin concentrations (filled circles) and 
agar surfaces (black triangles). Colors represent gelatin concentrations (%) as indicated. The best linear fit 
to the data is superimposed. Adapted from Figure 1B in Berri et al. (2009). Large black circles indicate 
which contour plots are shown in (B). (B) Seven contour plots of bending angle (represented by color, with 
dark red corresponding to extreme dorsal bending and dark blue to extreme ventral bending) over time 
(horizontal) and along the body (vertical), selected to show the range of observed forward locomotion 
behaviors, from “swimming” in liquid buffer solution (top) to “crawling” in relatively stiff gelatin (bottom; 
see methods in Berri et al., 2009 for additional details). Note the linear propagation along the entire body 
without changes in wave speed. (C) Trace of bending angle versus time for a point near the head of a worm 
in buffer solution [same data as top plot in (B)]. Note that the worm does not dwell in the maximally bent 
positions (peaks and troughs of the curve). (D) Bending angle traces as in (C), taken from the 1st, 3rd, 5th, 
and 7th panels of (B; see color-coded arrow heads) and normalized by undulation period and amplitude. 
Note the similarity of the waveforms.
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ask whether this discrepancy between 
water and agar may be explained by the 
change in the physical environment. If so, 
then such data on its own would by no 
means be inconsistent with the single gait 
hypothesis. Indeed, Fang-Yen et al. (2010) 
have shown that “swimming” and “crawl-
ing” differ greatly in the relative signifi-
cance of internal versus environmental 
forces (i.e., mechanical load). Thus, the 
selective manifestation of these “swim- 
defective” mutations could simply be due 
to the dominance of body forces in liquid, 
with strong external forces masking the 
locomotion defect on agar. Therefore, 
for swim-defective mutant data to sup-
port a two gait hypothesis, either (i) the 
importance of the physics in generating/
masking the phenotype in different envi-
ronments would have to be ruled out (e.g., 
by showing the phenotype is independent 
of the ratio of external to internal forces), 
or (ii) a neural mechanism/circuit under-
lying the selective manifestation of unco-
ordination would need to be identified.

In conclusion, we argue that, in the 
absence of compelling evidence of a qualita-
tive difference in the pattern of undulations 
or wave propagation (or in the underlying 
neural control circuitry), the conclusion 
that C. elegans can choose to switch between 
swimming and crawling, while interesting 
and possibly appealing, remains a conjec-
ture. What is certain is that C. elegans is able 
to modulate its locomotion over an impres-
sively broad range of wavelengths and fre-
quencies. Understanding the mechanism 
behind this modulation is an exciting ques-
tion that promises to shed important light 
on the organization and function of this and 
other nervous systems and their coupling to 
the physics of body and environment.
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