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Abstract

The study of seismic body waves is an integral aspect in global, explo-
ration and engineering scale seismology, where the forward modeling of
waves is an essential component in seismic interpretation. Forward mod-
eling represents the kernel of both migration and inversion algorithms as
the Green’s function for wavefield propagation, and is also an important
diagnostic tool that provides insight into the physics of wave propagation
and a means of testing hypotheses inferred from observational data. This
paper introduces the one–way wave equation method for modeling seis-
mic wave phenomena and specifically focuses on the so–called operator–
root one–way wave equations. To provide some motivation for this ap-
proach, this review first summarizes the various approaches in deriving
one–way approximations and subsequently discusses several alternative
matrix narrow–angle and wide–angle formulations. To demonstrate the
key strengths of the one–way approach, results from waveform simulation
for global scale shear–wave splitting modeling, reservoir–scale frequency
dependent shear–wave splitting modeling, and acoustic waveform model-
ing in random heterogeneous media are shown. These results highlight
the main feature of the one–way wave equation approach in terms of its
ability to model gradual vector (for the elastic case) and scalar (for the
acoustic case) waveform evolution along the underlying wavefront. Al-
though not strictly an exact solution, the one–way wave equation shows
significant advantages (e.g., computational efficiency) for a range of trans-
mitted wave three–dimensional global, exploration and engineering scale
applications.

1 Introduction

The analysis of seismic waves is a key component in global Earth studies, hy-
drocarbon exploration and, more recently, mineral exploration and engineer-
ing scale applications. Seismic waves provide a means of remotely sensing the
Earth’s subsurface with resolvable scales on the order of hundreds of kilometres
to less than a meter. Interpretation of recorded seismic waves, whether they be

1



from earthquakes or controlled–sources, frequently involves producing a ‘seismic
image’. Most often this image takes the form of some parameter distribution
(e.g., velocity and density) or some geometric representation (e.g., structural
and stratigraphic interfaces).

The seismic image is obtained through migration or inversion of seismic
data. Forward modeling of waves is an essential component in both migra-
tion and inversion algorithms which require either the reverse propagation (i.e.,
downward continuation) of the observed seismic data or the forward propaga-
tion of synthetic seismic data. Forward modeling is also an important diagnostic
tool that provides insight into the physics of wave propagation and a means of
testing hypotheses inferred from observational data. Since there is no general
analytic solution to the elastic wave equation for anisotropic, inhomogeneous
media, various approximate methods are used and these are often based on
physically–motivated arguments specific to the problem under study [see 1, for
a review].

In [1] the authors classify and summarize forward modeling into three gen-
eral categories: full–wave equation methods, integral–equation methods and
ray–based methods. However, it is often difficult to draw a clear distinction,
as many of the various approaches overlap in subtle ways. For most problems,
there is generally no one ‘correct’ approach, but rather a range of acceptable
approaches that can be used to evaluate the solution. For instance, if direct
arrivals are of interest, where the first–order effects of material averaging (or
wavelength smoothing) can be modeled by a gradually varying medium and the
wave path lengths are not too great, then basic ray methods or more advanced
ray–coupling approaches should be applicable. On the other hand, if strong
multiple scattering and/or wide–angle diffraction is important, a numerical so-
lution of the full anisotropic elastic wave equation is necessary. Thus, selecting
an appropriate method involves weighing the advantages and disadvantages of
all acceptable approaches in terms of accuracy requirements and computational
limitations.

Finite–difference/finite–element and basic geometrical–ray methods are es-
sentially end member approaches to wave simulation. Finite–difference [e.g.,
2; 3], finite–element [e.g., 4; 5] or pseudo–spectral methods [e.g., 6; 7] applied to
the full–wave equation will correctly predict all physical signals. However, these
methods can be costly in terms of computing requirements and the complete
synthetic seismograms may not actually be necessary. Basic geometrical–ray
theory [e.g., 8] is more intuitive and computationally less expensive, but ne-
glects often important effects. Between these end members are the so–called
hybrid methods. Extensions to basic ray theory are the Kirchhoff [e.g., 9; 10],
Maslov [e.g., 11; 12], Gaussian beam [e.g., 13] and coherent–state [e.g., 14] meth-
ods, which describe additional diffraction effects to various degrees. Transform
methods involve separating the partial differential wave equation into an ordi-
nary differential wave equation with appropriate boundary conditions [see 11,
for a review] and are suitable for homogeneous [e.g., 15] and weakly hetero-
geneous [e.g., 11] layered media. For finite heterogeneities, the interaction of
wavefield with scatterers often tends to be difficult to evaluate with ray–based
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methods. For these cases the scattered or diffracted wavefield can be considered
as secondary seismic sources, and hence are often modeled using the Born [e.g.,
16; 17; 18; 19] or Rytov [e.g., 20; 21] approximations. The Born and Rytov
approximations are similar in that they both assume weak scattering. How-
ever, the Rytov approximation differs from the Born approximation in that the
phase relation of the incident and scattered wavefield is linear, rather than the
amplitude. Although computationally impractical, the path–integral approach
[e.g., 22; 23] is conceptually attractive because it provides a link between many
of the ray–based methods and the full–wave equation methods. Variations on
the finite–difference approach are the one–way [e.g., 24; 25; 26] and the phase–
screen [e.g., 27; 28; 29; 30] methods. These approaches are intended to reduce
the computational costs while retaining some of the more important wave ef-
fects, but generally neglect backscatter. The following discussion intends to
briefly touch upon the major ideas behind and the motivation for using the
one–way wave equation technique in seismology [for applications in other fields
refer to 20; 31; 32].

The one–way or parabolic wave equation technique was first introduced by
[33] and applied to the problem of atmospheric radio wave propagation [see 32].
It has subsequently been used extensively in many wave propagation studies
spanning several branches of physics (e.g., optics, electro–magnetics, underwa-
ter acoustics and seismology). Interestingly, the field of ocean acoustics has had
a significant influence on the initial seismic research [see 31] and this is perhaps
attributable to the fact that both communities were focusing on practical appli-
cations of the acoustic wave equation. Applications of one–way wave equations
in seismology have been as wavefield propagators in studying reflection problems
[e.g., 24] or as Green’s functions (e.g., in evaluating the wavefield of Gaussian
beams). Parabolic wave equations have also been used for practical purposes
as absorbing boundary conditions in full–wave equation finite–difference (FD)
methods [e.g., 34].

The derivations of the parabolic wave equation can be split into two cat-
egories: methods that factorize the wave solution [e.g., 24] and methods that
factorize the wave equation [e.g., 35]. In both cases, factorization involves choos-
ing a preferred axis or direction of propagation and splitting the solution or
differential operator into two factors, one factor representing forward–travelling
waves and the other factor reverse–travelling waves. This factorization reduces
the second–order wave equation into two first–order equations. This reduction
to first–order with respect to a preferred axis limits one–way wave equations to
transmission problems, since backscatter is neglected, but allows a decrease of
several orders of magnitude in computational effort. Further approximations or
simplifications tend to improve the computational efficiency of these approaches,
but at the expense of accurately representing the ‘true’ one–way wavefield.

This paper introduces the one–way wave equation method for modeling seis-
mic wave phenomena and specifically focuses on the one–way elastic wave equa-
tion derived by [36] and implemented by [37; 38; 39; 40]. I first discuss the 3×3
matrix formulation of [36], starting with the exact operator for homogeneous
media, then approximate operator for inhomogeneous media, and finally the
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narrow–angle approximations. I also review the acoustic wide–angle formula-
tion of [41] and implementation by [42]. I show results of waveform simulation
for global scale shear–wave splitting (SWS) modeling, reservoir–scale frequency
dependent shear–wave splitting modeling, and acoustic waveform modeling in
random heterogeneous media.

2 Brief history of parabolic and one–way wave

equations

The parabolic approximation was first introduced to ocean acoustics to solve
transmission problems by reducing the two–dimensional (2D) acoustic wave
equation [see 25; 31]. This approximation to the acoustic wave equation was
applied to seismological problems by [24] and [43] and subsequently extended
to reduce the 2D elastic wave equation by [44], [34] and [45]. These one–way
wave equations are commonly referred to as 15◦ approximations because they
are judged accurate for propagation angles up to about 15◦ from the preferred
direction of propagation [46]. Since one–way wave equations are in fact expres-
sions for the first spatial derivative of a wavefield (i.e., the first derivative with
respect to the preferred direction) they are also referred to as wave extrapo-
lation equations or wave extrapolators [46]. That is, given an initial wavefield
and its derivative, that wavefield can be extrapolated or propagated using a va-
riety of numerical means. This type of wavefield extrapolation has been found
particularly useful in the migration of seismic data [47].

The above parabolic approximations are commonly referred to as ‘reference
phase’ approaches. This is because they involve extracting a reference phase
from the wave solution in the process of simplifying the wave equation. The
wave solution consists of an oscillatory phase component and a slowly varying
amplitude component. By extracting the reference phase exp [i(ω/c0)x1], where
ω is frequency, x1 is the preferred direction of propagation and c0 is a refer-
ence velocity, the oscillatory component can be reduced, leaving only the slowly
varying amplitude component. Since this amplitude term is slowly varying, var-
ious spatial derivatives can be omitted by making certain assumptions about
the wavefield (e.g., near plane–wave propagation) and the medium (e.g., weak
heterogeneity). Applying the reference phase approach to the 2D acoustic wave
equation yields the so–called 15◦ parabolic wave equation

∂1u
+ =

i

2k

(

∂2
2 + ǫk2

)

u+ (1)

[24, equation 15], where u+(x, ω) is the acoustic wavefield (with the oscillatory
component reduced) propagating in the positive x1 direction, x = (x1, x2) is the
space coordinate, ∂i = ∂/∂xi, k = ω/c, ǫ(x) = (ω2/(k2

0c
2(x)) − 1), k0 = ω/c0 is

the reference phase and c(x) is the spatially variable acoustic velocity. For ho-
mogeneous media k0 is chosen so that ǫ(x) vanishes and for heterogeneous media
k0 is chosen so that the spatial average of ǫ(x) is small. Equation (1) assumes
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Figure 1: Dispersion curves for various one–way wave equations [modified from 49, Figure
9.3].

the medium is weakly heterogeneous and the scale–lengths of the heterogeneities
are large relative to the radiation wavelengths.

These parabolic approximations can also be derived by a plane–wave argu-
ment [48]. The exact dispersion relation is obtained by substituting the plane–
wave solution exp i[ωt + k · x] into the wave equation, where t is time and k is
the wavenumber vector. For homogeneous media and 2D problems, the disper-
sion relation for the full acoustic wave equation takes the form

k2 = k2
1 + k2

2 =
ω2

c2
. (2)

Equation (2) provides a relationship between the frequency and wavenumber
of the plane–wave, and the medium properties (i.e., wave velocity c). Choos-
ing the x1–axis to be the preferred direction of propagation, the corresponding
wavenumber component k1 can be approximated by an expansion in the lateral
component. The parabolic approximation to the wave equation is then obtained
by applying the Fourier derivative rule ki ⇐⇒ −i∂i to the approximate disper-
sion relation. For example, the approximation

k1 ≈
ω

c
−

ck2
2

2ω
(3)

is derived from a rearrangement of equation (2), followed by a binomial (Taylor
series) expansion [see 46]. Applying the Fourier derivative rule to equation (3)
and extracting a reference phase k0 = ω/c0 gives equation (1).

For accurate results with these equations, the propagation path of the wave-
field is limited to an angular aperture centred about the preferred direction of
propagation. The size of the aperture is dependent on the accuracy of the dis-
persion approximation and so only a limited angular range of forward diffraction
can be modeled. For instance, the so–called 45◦ approximation

k1 =
ω

c
−

k2
2

2ω
c −

ck2

2

2ω

(4)
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is accurate for propagation angles up to about ±45◦ from the preferred direction
of propagation and is derived using a continued fraction expansion [see 46, pp.
76–78]. Figure 1 displays various approximations to the dispersion relation
and indicates that higher order expansions are indeed more accurate. However,
these higher order expansions generally involve more complicated one–way wave
equations. For elastic waves, this approach is further restricted to problems
where only one identifiable propagation mode exists and mode coupling due to
inhomogeneities is assumed weak and negligible. Regardless of these restrictions,
the parabolic approximation is technically valid to a greater degree than zeroth–
order geometrical ray theory [45]. This is because these one–way equations allow
lateral variations of the medium on a sub–Fresnel zone level, whereas ray theory
requires that the medium be smooth within this zone. Thus the one–way wave
equation supersedes ray theory, at least in terms of modeling lateral diffractions.

Practical limitations of these one–way wave equations can sometimes be
difficult to evaluate. For example, it was discovered that the standard 15◦

parabolic approximation [i.e., equation (15) in 24] failed to position migrated
images correctly in the presence of lateral variations [50; 51; 52]. This failure
was attributed to the omission of a so–called ‘thin–lens’ term when simplifying
the acoustic wave equation [see 52]. This problem was later corrected by [46]
by estimating the omitted term and this lead to the 45◦ one–way ‘migration’
equation (4). One could argue, however, that the particular 15◦ parabolic ap-
proximation was improperly applied to the specific problem in the first place and
this highlights the importance of thoroughly understanding the limitations of
any given method. Fortunately, various approaches are available to improve the
accuracy as well as to optimize these parabolic approximations. As discussed
earlier, equation (4) is one such improvement, which involves a replacement
of the Taylor series expansion of the dispersion relation by a Padé or ratio-
nal approximation [e.g., 53]. [54] have shown that higher order extensions of
the standard parabolic equation can be implemented effectively and produce
surprisingly accurate results for the acoustic case.

A different approach to the parabolic approximation involves an operator
technique proposed by [55], which was used to approximate the Helmholtz equa-
tion for wide–angle light propagation in optical fibers. This approach involves
splitting (or factoring) the wave equation into two parts, followed by an approx-
imation of the ‘operator–root’. In a notation similar to theirs, the Helmholtz
equation for the transverse component E(ω, x1, xα) of the electric field in three–
dimensional (3D) media with laterally variable refractive index n(ω, xα) is writ-
ten

∂2
1E + ∂2

αE +
ω2

c2
n2(ω, xα)E = 0 , (5)

where ∂2
α = ∂2/∂x2

2+∂2/∂x2
3 and xα = (x2, x3) are the lateral space coordinates.

Equation (5) has the formal solution

E(∆x1, xα) = exp

[

±i∆x1

(

∂2
α +

ω2

c2
n2

)1/2
]

E0(xα) (6)
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for a single frequency, where E0(xα) = E(x1 = 0, xα) is the initial wavefield.
The derivation of this solution assumes that the medium is invariant in the
x1 direction. In contrast to the reference–phase approach discussed earlier,
the ‘phase’ (i.e., square–root term) in equation (6) is expressed in terms of
the operators of the wave equation and not the plane–wave dispersion relation.
Assuming small variations in the refractive index of the fiber, the operator–root
in the phase function of equation (6) can be approximated

(

∂2
α +

ω2

c2
n2

)1/2

≈
∂2

α

(∂2
α + k2)

1/2
+ k

+ k + k

(

n

n0
− 1

)

, (7)

where k = n0ω/c and n0 is the reference medium refractive index. This ap-
proximation is valid only for a properly chosen reference medium (i.e., n0 and
c0). Since the only assumption involved is that of weak heterogeneity, this ap-
proximation is accurate for wide angles of propagation and, in fact, is exact for
homogeneous media. It is interesting to note that this approach relates closely
to the phase–screen method [e.g., 27; 28]. [56] applied the above operator tech-
nique along with two other approximations to the operator–root, but for the
acoustic wave equation. These approximations were implemented within the
acoustic split–step computer algorithm of [25] so that the accuracies of all three
operator–root approximations could be compared. Their results indicated that
the wider angle parabolic equation of [55] was least sensitive to the choice of
reference phase and least effected by phase errors.

[57] further improves the above operator approach for wider angles of propa-
gation. This is done by introducing the ‘rational linear square–root’ and involves
applying the Padé approximation

x1/2 ≈
a0 + a1x

1 + b1x
(8)

to the operator–root. The coefficients a0, a1 and b1 are real and chosen to fit op-
timally the square–root function. In [58] the authors demonstrate that the real
coefficients of this rational linear approximation improperly treat the evanescent
waves that can propagate within waveguides. Evanescent waves have complex
wavenumbers and so their amplitudes can either grow or decay exponentially
with propagation distance. Growing evanescent waves are particularly problem-
atic for numerical algorithms, as their amplitudes may overshadow the signals of
interest. To correct this problem [58] modify the ‘bilinear square–root’ approxi-
mation (8) and extend this method to elastic waves. The bilinear approximation
is modified by replacing the real coefficients with complex coefficients. In [58]
the authors show that their bilinear approximation not only propagates the
complex modes within the waveguide more accurately, but also allows for im-
proved numerical stability of ordinary waves. Unfortunately, all of the above
approaches are limited when applied to elastic media. In contrast to acoustic
media, where only one body–wave mode exists, isotropic elastic solids allow two
wave modes. Thus application of these approaches requires choosing one wave
mode and neglecting the other. This is unacceptable because coupling between
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wave modes can be important, especially at interfaces or for long propagation
distances.

[59] and [60] introduce higher order Padé series expansions to the split–
operators which allow even wider angles of propagation. More importantly
though, these higher order expansions allow wave speeds to differ substantially
from the chosen reference speed (or phase). In other words, the restriction that
wave speeds be close to the reference speed does not apply and so these ap-
proximations can model weak coupling between wave modes. Although these
higher order expansions of the split–operator assume the medium is isotropic
and homogeneous (in fact range independent), they can be applied to weak range
dependence if the medium is approximated by a sequence of range independent
regions [61]. However, the range dependent solution may be inaccurate for prob-
lems involving abrupt boundaries, where the assumption of weak heterogeneity
does not apply. This approach was further extended to transversely–isotropic
(TI) media by [62].

The reference phase approach discussed earlier involves a ‘localization’ of
an exact non–local operator and hence propagation is explicitly restricted to
narrow angles as well as weak and slowly varying inhomogeneous media. Unfor-
tunately these restrictions are frequently violated in seismological applications.
The operator technique proposed by [55] is an improvement upon the reference
phase approach because it does not involve a localization of the wave equa-
tion operator. However, this operator approach makes the explicit assumption
of weak heterogeneity to obtain a ‘simple’ expression for the operator–root in
terms of a perturbation series.

A significant step forward was realized by [26] who applied a similar operator–
splitting approach to that of [55], but sought a more detailed and widely ap-
plicable expression for the operator–root. This permits a generalization of the
one–way wave equation technique and introduces a new class of propagation al-
gorithms. In their derivation, the exact factorization of the scalar (or acoustic)
Helmholtz equation is written

[

i

k0
∂1 +

(

K2(xα) +
1

k2
0

∂2
α

)1/2
]

u+(ω,x) = 0 , (9)

where the reference wavenumber is k0 = ω/c0, c0 is the reference velocity,
K(xα) = c0/c(xα) and c(xα) is the laterally varying velocity. This equation is
exact for forward propagation when there is no range dependence, since range
variations (i.e., material inhomogeneities) are necessary to couple the forward
and reverse propagating waves [35]. However, this approach requires a formal
expression for the operator–root in equation (9) and the means of evaluating
this operator–root are not trivial.

More general than the aforementioned methods that factor the wave solution,
the derivation can still be reduced to the conventional narrow–angle parabolic
approximations for media limited to weak inhomogeneities and weak gradients.
More importantly though, the restriction of weak lateral inhomogeneity can
be dropped and wider angles of propagation are also allowed. The factoriza-
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tion (9) involves a ‘pseudo–differential operator’ (i.e., the operator–root) and an
expression for this is sought in the lateral Fourier transform domain (pseudo–
differential operators and their Fourier representation will be discussed in the
subsequent section). Simplification of the resulting operator–root expression
involves introducing an asymptotic solution or ‘high–frequency’ approximation.
In the context of geometrical optics or ray theory, the high–frequency assump-
tion generally implies that the wavefield is localized in space. In this approach,
however, the high–frequency approximation is applied to the Fourier represen-
tation or ‘symbol’ of the pseudo–differential cross–range operator. Since the
asymptotic solution retains some of the global properties of the cross–range op-
erator, some full waveform effects are included, at least for the frequency range
of interest.

3 Theory behind ‘splitting’ the wave equation

The problem of reconstructing the Earth’s subsurface requires the ability to
model the transmission as well as the reflection of waves. From a mathematical
point of view, it amounts to an inverse scattering problem [63], and requires in-
cluding the interaction or coupling between the forward and reverse waves due
to inhomogeneities. [63] introduced a 6× 6 matrix parabolic formulation for or-
thorhombic elastic media that includes the effects of reverse scattering. This 6×6
matrix representation is referred to as a ‘displacement–stress’ formulation and
is convenient when dealing with boundary–value (i.e., reflection/transmission)
problems [e.g., 15; 64]. The formulation of [63] uses an operator–splitting ap-
proach similar to that of [26] and was subsequently reduced to the acoustic wave
equation [65; 66]. In this approach, the forward and reverse wave coupling is
approximated using an iterative process based on a generalization of the Born
method (which they refer to as a Bremmer or Neumann series summation).
In seismology, this iterative approach to coupling was already known to be an
efficient method of numerically solving the scattering problem [e.g., 67]. Appli-
cation of this parabolic approximation to various multiple scattering examples
is presented in [68], where its potential role in migration algorithms is discussed.

For many applications, however, it is not imperative to consider the complete
transmission and reflection of waves, and it may be only necessary to model the
transmission response [i.e., for full–wave inversion 69]. [36] introduces a hier-
archy of one–way wave equations based on a 3 × 3 matrix factorization of the
elastic wave equation for 3D, generally–anisotropic, heterogeneous media. The
matrix formulation allows parallels to be drawn with conventional ray–based
approaches, and can be reduced to a path–integral representation or to the
standard ray limit via the stationary phase approximation [see 36]. This ap-
proach simulates one–way propagation of elastic (and potentially visco–elastic)
waves in generally anisotropic media which are smoothly variable and neglects
backscatter. Although these wave equations are based on a 3 × 3 displacement
formulation, it is still possible to include the coupling between forward and re-
verse propagating waves [see 41, for the acoustic case]. For the transmission
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problem [40] shows that accurate amplitudes can be calculated in the presence
of strong gradients based on energy–flux considerations. The major strength
of this formulation is that this elastic one–way seismic wavefield extrapolator
is more generally applicable than ray methods, primarily because it can handle
robustly transitions from weak–to–strong or arbitrary anisotropy. For exam-
ple, within the vicinity of a conical–point singularity the polarization vectors of
the qS–waves vary rapidly and are singular at the acoustic axis. However, the
propagator remains smooth around and at the acoustic axis. Thus, singulari-
ties associated with anisotropic material can be accounted for without special
attention.

The indicial form of the anisotropic elastic wave equation for a single fre-
quency ω is written

∂j(cijkl∂kul) + ω2ρui = 0 , (10)

where ui is the i–th component of displacement (i = 1, 2, 3), ρ is density and cijkl

is the 81–component tensor of elastic constants, which reduces to 21 independent
components by the symmetries cijkl = cjikl = cijlk = cklij [70]. It is understood
that Cartesian coordinates xi are being used. The preferred direction of propa-
gation is taken to be along the x1–axis and the lateral– (or cross–, tangential–,
transverse–) coordinates are xα, where α = 2, 3. Throughout, Greek subscripts
will be reserved for the lateral coordinates.

If we considering a single transverse slowness (i.e., single plane–wave) for
two reasons: (i) since the coefficients of the wave equation are constant for
homogeneous media, the exact solution to the one–way operator for more general
wavefields can be found by the method of plane–wave integration over lateral
slowness and (ii) an understanding of the one–way operator for a single plane–
wave will enable a clear presentation of some of the key concepts. This will not
only be helpful when discussing the more complicated factorization of the wave
equation for inhomogeneous media, but will allow parallels to be drawn between
the approximate operator for inhomogeneous media and the exact operator for
homogeneous media. In fact, a geometrical appreciation of the physical action
of the plane–wave operator results by considering homogeneous media.

3.1 Elastic homogeneous case

For homogeneous media equation (10) may be rewritten
[

C11∂
2
1 + (Cα1 + C1α)∂α∂1 + Cαβ∂α∂β + ω2ρ

]

u = 0 , (11)

where (Cjk)il = cijkl . Grouping terms and considering only the single plane–
wave u(x) = ũ(x1) exp [iωpαxα] with lateral slowness pα, equation (11) becomes

[

(∂1 + iωA)2 + ω2B
]

ũ(x1) = 0 , (12)

where

A =
1

2
C−1

11 (Cα1 + C1α)pα (13)
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and

B = A2 − C−1
11 Cαβpαpβ + ρC−1

11 . (14)

Equation (12) is a second order partial differential equation in x1 and de-
scribes exactly both the forward and reverse propagating waves in homogeneous,
anisotropic media.

To help in the interpretation of the matrices A and B as well as aid in the
derivation of an appropriate factorization of the wave equation, it is instructive
to present the ray–theory Christoffel equation. Substituting the plane–wave
ul(xi) = gl exp [iωpixi] into equation (10) and assuming homogeneity yields

(cijklpjpk − ρδil) gl = 0 , (15)

where δil is the Dirac δ–function, pi is the slowness vector normal to the wave-
front τ(xi) and gl is the polarization vector. Equation (15) is referred to as the
ray–theory Christoffel equation [8]. A nontrivial solution for the polarization gl

requires that

det
∣

∣aijklnjnk − v2
nδil

∣

∣ = 0 , (16)

where aijkl is the density–normalized elastic tensor, ni = pivn is the wave normal
and vn is the phase (or normal) velocity. Now, taking the same approach but
substituting the plane–wave ũ(x1) = g exp [iωp1x1] into equation (12) yields

Bg = (p1I + A)
2
g . (17)

It can be seen that equation (17), when compared to equation (15), is analogous
to the ray–theory Christoffel equation. For each choice of the pair pα = (p2, p3)

there is an allowed maximum of six values of p1 = P
(m)
1 (pα) and six correspond-

ing eigen–polarizations g(m), where m = 1 − 6. For a given vertical slowness
there are six possible horizontal slownesses: three positive slownesses corre-
sponding to the forward propagating qP–, qS1 and qS2–waves (i.e., propagating
in the positive direction of the horizontal axis); and three negative slownesses
corresponding to the reverse propagating body–waves. For each horizontal slow-
ness, there is a corresponding polarization or eigen–polarization g. Thus, for
a given allowable slowness (p1, pα), the ‘one–way Christoffel’ equation (17) de-
scribes the propagation characteristics (i.e., polarization and phase velocity) of
the corresponding plane–wave mode.

From equation (17), the following expression may be inferred

B
1

2 = ± (p1I + A) , (18)

which relates the slowness p1 to the matrices A and B. The positive and
negative square roots in equation (18) might be expected to correspond to the
forward and reverse propagating plane–waves with slowness p1, respectively.
Here and in the remaining discussion, forward propagation refers to propagation
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in the positive x1–direction. It is important to note that equation (18) is not
an exact, but rather a suggested expression for the square–root of matrix B.

Moving all terms of the positive root in equation (18) to one side and ap-
plying the Fourier derivative rule p1 ⇐⇒ ∂1/iω implies

(

∂1I + iωA − iωB
1

2

)

= 0 . (19)

Expression (19) is an operator which, when acting upon ũ(x1), describes the
forward propagation (i.e., propagation in the positive x1–direction) of a plane–
wave. Thus, the solution to the differential equation (12) can be given by a linear

combination of terms like ũ(x1) = g(n) exp [iωP
(n)
1 x1] for forward travelling

waves, where n = 1, 3.
Without assuming equation (18), but taking guidance from equation (19),

the full wave equation (12) is factored according to
[(

∂1 + iωA + iωB
1

2

) (

∂1 + iωA − iωB
1

2

)

− ω2[A,B
1

2 ]
]

ũ(x1) = 0 , (20)

which consists of two operators that are first–order in x1 and a commutator
term [A,B1/2] = AB1/2 − B1/2A. For a properly chosen B1/2, the factor

(

∂1 + iωA − iωB
1

2

)

ũ(x1) = 0 (21)

is the exact one–way wave equation for forward travelling waves in homogeneous
media. However, the correct form of the matrix square–root B1/2 in equation
(21) is still unknown and, hence, an expression of this operator–root is now
sought.

A correct expression for the square–root of matrix B can be found by first
introducing the 3× 3 eigenvector matrix G and diagonal eigenvalue matrix P1.
The columns of G are given by the three allowed polarizations (or eigendis-
placements) of the forward propagating waves and the diagonal elements of P1

are the corresponding x1–components of slowness. Since equation (17) is an
expression for an individual plane–wave mode, a more complete expression is
necessary, one that includes the description of all three body–waves. This is
accomplished by considering a system of equations based on equation (17) for
each individual forward propagating body–wave. Thus, introducing G and P1

for g and p1 in equation (17) yields

BG = GP2
1 + A2G + 2AGP1 , (22)

which is an augmented form of the Christoffel equation (17) and describes the
forward propagation of all three body–waves. The polarization vectors or eigen-
vectors for all three body–waves are evaluated using the common lateral slowness
pα and so they are not exactly orthogonal. However, these eigenvectors are not
collinear and so the matrix G is invertible.

Isolating the matrix B, equation (22) may be rewritten

B =
(

GP1G
−1 + A

)2
+

[

A,GP1G
−1

]

. (23)
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Assuming for now that the commutator term on the right is negligible,
[

A,GP1G
−1

]

≈ 0 , (24)

an approximation to the square–root of the matrix B is seen to be given by

B
1

2 ≈ GP1G
−1 + A . (25)

Substituting this approximate root into the forward factor (21) yields
(

∂1 − iωGP1G
−1

)

ũ(x1) = 0 , (26)

which represents the one–way wave equation for a forward travelling plane–wave
in homogeneous, anisotropic media.

The key step in factoring the full wave equation involves neglecting the com-
mutator terms in equations (20) and (23). The primary motivation for neglect-
ing these commutator terms was based on an assumption used in conventional
one–way approximations discussed earlier. Specifically, this assumption is the
narrow–angle approximation and translates to assuming that pα is small. In
equation (20), the commutator term is of order O(pα), whereas the two opera-
tors are of order O(1). In equation (23), the commutator term is also of order
O(pα), whereas the squared term is of order O(p2

1). Thus, for small pα, the com-
mutator terms in both equations can be neglected. Thus, it would appear that
the operator–root approximation (25) and the one–way wave equation (26) are
only accurate when the range of propagation is limited to small pα. However, it
turns out below that equation (26) is, in fact, the exact one–way wave equation
for forward propagating plane–waves for all allowable pα.

The reason that the one–way wave equation (26) is an exact factor of equa-
tion (12) can be seen by substituting the exact form of the matrix B (23) into
equation (12), giving

[

(∂1 + iωA)2 + ω2
(

GP1G
−1 + A

)2
+ ω2

[

A,GP1G
−1

]

]

ũ(x1) = 0

=
(

∂1 + 2iωA + iωGP1G
−1

) (

∂1 − iωGP1G
−1

)

ũ(x1) .(27)

The final expression in equation (27) is obtained by factoring the first two
squared terms and noting that the commutator terms cancel. It is interesting
to note that the right and left factors in equation (27) are ‘asymmetric’, where
the term 2iωA appears in the left but not the right factor. Equation (26)
is the exact one–way wave equation for forward propagating plane–waves and
so, for homogeneous media and properly chosen initial conditions, the right
factor in equation (27) operating on the wavefield ũ(x1) will always equal zero.
However, when the initial conditions are not properly chosen (e.g., when the
wavefield ũ(x1) contains some reverse propagating components), the right factor
operating on ũ(x1) does not equal zero. However, the left factor serves as
a ‘corrector’ term by annihilating this error. Therefore, an exact plane–wave
solution to equation (26) for forward propagating waves is given by ũ(x1) =
G exp [iωP1x1]c, where the three–vector c represents the initial amplitudes of
all three forward propagating body–waves at x1 = 0.
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3.2 Elastic heterogeneous case

Here discussion parallels that of the previous section, but a spectrum of trans-
verse slownesses will be considered. For inhomogeneous media equation (10)
becomes

[

C11∂
2
1 + (Cα1 + C1α)∂α∂1 + ∂i(Ci1∂1 + Ciα∂α) + Cαβ∂α∂β

+ω2ρ
]

u = 0 . (28)

Grouping approximate terms, equation (28) may be re–written

[

(∂1 + M(x, ∂α))2 + N(x, ∂α; ω)
]

u = 0 , (29)

where

M(x, ∂α) =
1

2
C−1

11 (Cα1 + C1α)∂α +
1

2
C−1

11 ∂iCi1 , (30)

N(x, ∂α; ω) = Pαβ∂α∂β + Qα∂α + R + ω2S (31)

and

Pαβ = C−1
11

(

Cαβ −
1

4
(Cα1 + C1α)C−1

11 (Cβ1 + C1β)

)

,

Qα = C−1
11 ∂iCiα −

1

2
∂1

(

C−1
11 (Cα1 + C1α)

)

,

R = −
1

4
(C−1

11 ∂iCi1)
2 −

1

2
∂1(C

−1
11 ∂iCi1) ,

S = ρC−1
11 . (32)

Equation (29) is a second order partial differential equation in x1 and describes
both the forward and reverse propagating waves in inhomogeneous, anisotropic
media.

Suppose that equation (31) can be written in the form

N = Λ2 + ∆ , (33)

where the operators Λ and ∆ are to be explained later, and substituting (33)
into equation (29) yields

[

(∂1 + M)2 + Λ2 + ∆
]

u = 0 . (34)

Taking guidance from the previous section, equation (34) will be factored ac-
cording to

[(∂1 + M + iΛ)(∂1 + M − iΛ) − i[Λ, (∂1 + M)] + ∆]u =

[(∂1 + M + iΛ)(∂1 + M − iΛ) − i[Λ,M] + i[∂1,Λ] + ∆]u =

[(∂1 + M + iΛ)(∂1 + M − iΛ) − i[Λ,M] + i(∂1Λ) + ∆]u = 0 , (35)
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where

[∂1,Λ]u = ∂1 (Λu) − Λ∂1u = (∂1Λ)u + Λ(∂1u) − Λ(∂1u) = (∂1Λ)u . (36)

The term (∂1Λ) can be ignored in equation (35) because it depends on material
gradients in the x1 direction, is lower order in ω and vanishes in the homogeneous
limit. Furthermore, if ∆ = i[Λ,M], equation (33) can be rewritten

N = Λ2 + i[Λ,M] (37)

and the terms −i[Λ,M] and ∆ in equation (35) cancel one another. Thus,
equation (35) can be rewritten

[(∂1 + M + iΛ)(∂1 + M − iΛ)]u = 0 (38)

and consists of two operators that are first–order in x1. For properly chosen Λ,
the factor

(∂1 + M − iΛ)u = 0 (39)

represents the approximate one–way wave equation for the forward propagat-
ing waves within an inhomogeneous, anisotropic medium. The matrix Λ is
analogous to the square–root matrix B1/2 for homogeneous media and is the
operator–root now sought.

An expression for the operator–root Λ can be found by first rewriting equa-
tion (37) in the following form

N + M2 = (Λ− iM) (Λ + iM) , (40)

where the right–hand side is a product of two operators relating the operator
root Λ to the known matrices M and N. Each factor on the right represents a
sum in which M is a known partial differential operator and Λ is an unknown
pseudo–differential operator.

The approach taken here will involve a Fourier transform domain repre-
sentation of the PSDO Λ. The reason for this approach is because the cal-
culus of PSDOs can be ‘simplified’ when performed in this domain [71]. The
standard–ordering PSDO form will be used in evaluating the symbols or Fourier
representations of the PSDOs in equation (40). The symbols for the known ma-
trix partial differential operators on the left–hand side of equation (40) will be
evaluated first since these expression can be found exactly using basic Fourier
transformation properties (e.g., the Fourier derivative rule). Next, the Fourier
representation for the right–hand side of equation (40) is determined, but the
process is more complicated because it involves an unknown PSDO as well as
determining the symbol for the composition of two PSDOs [see 36, appendix
A].

The symbols for the PDOs N(xα, ∂α; ω) and M(xα, ∂α; ω) are written

sym [N(xα, ∂α; ω)] = N(xα, pα; ω)

= −ω2Pαβpαpβ + iωQαpα + R + ω2S

= ω2B + iωQαpα + R , (41)
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and

sym [M(xα, ∂α; ω)] = M(xα, pα; ω)

= iωMα(xα)pα + M0(xα)

= iωA + M0 , (42)

respectively, where

M0 =
1

2
C−1

11 ∂iCi1 and Mα =
1

2
C−1

11 (Cα1 + C1α)∂α . (43)

Since the coefficients of the PSDO M depend on position, the symbol sym M2 6=
(symM)2 and so it is necessary to expand the square of the PSDO M(xα, ∂α; ω)
as follows

M2 = (Mα∂α + M0) (Mβ∂β + M0)

= MαMβ∂α∂β + Mα (∂αMβ) ∂β + MαM0∂α + Mα (∂αM0)

+M0Mβ∂β + M2
0 . (44)

The symbol of equation (44) can be written

sym
[

M2
]

= MαMβ(iω)2pαpβ + Mα (∂αMβ) iωpβ + MαM0iωpα

+Mα (∂αM0) + M0Mβ iωpβ + M2
0 . (45)

Squaring the symbol (42)

(sym[M])
2

= (iωMαpα + M0) (iωMαpβ + M0)

= MαMβ(iω)2pαpβ + M0Mβ iωpβ + MαM0iωpα

+M2
0 , (46)

equation (45) can be rewritten

sym
[

M2
]

= (sym[M])
2

+ iωMα∂αMβpβ + Mα∂αM0

= M2(xα, pα) + iωMα∂αMβpβ + Mα∂αM0 . (47)

Thus, the symbol of the left–hand side of equation (40) in the Fourier transform
domain may be written

N(xα, pα) + M2(xα, pα) + iωMα∂αMβpβ + Mα∂αM0 . (48)

Turning to the right–hand side of equation (40), the symbol for the operator
M has already been determined, whereas the symbol for the operator–root Λ

has yet to be determined. A difficultly arises here, as it is the space domain
expression of the operator–root which is unknown and sought. To determine its
symbol Λ(xα, pα), the right–hand side of equation (40) is rewritten using the
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‘standard operator compound symbol formula’ [equation (A20b) in 36]. Specif-
ically, it is written

sym [(Λ(xα, ∂α) − iM(xα, ∂α)) (Λ(xα, ∂α) + iM(xα, ∂α))] =

exp
[

iω−1Dyα
Dpα

]

(Λ(xα, pα) − iM(xα, pα))

(Λ(yα, qα) + iM(yα, qα)) |(yα,qα)→(xα,pα) , (49)

where Dxα
= −i∂/∂xα, Dpα

= −i∂/∂pα and summation over α is implied.
An exact expression for the symbol of the operator–root Λ is not practical

(or even tractable) and so an approximation is sought in terms of some per-
turbation or iterative expansion to the right–hand side of equation (49). It is
important while expanding this right–hand term to consider not only the mate-
rial gradients, but also the frequency dependence. Since transient or impulsive
solutions to the wave equation are of interest, an approximation to the root is
sought in the form of an asymptotic expansion

Λ(xα, pα; ω) =

∞
∑

j=0

ω−j+1Λj(xα, pα; ω) . (50)

Substitution of the asymptotic series (50) for Λ and applying a Taylor series
expansion to the exponential term in equation (49) yields

(

1 + i
ωDyα

Dpα
+ O

(

1
ω2

)

)

(

ωΛ0 + Λ1 + ωMαpα − iM0 + O
(

1
ω

))

xα,pα

(

ωΛ0 + Λ1 − ωMαqα + iM0 + O
(

1
ω

))

yα,qα

. (51)

Matching the leading ω2 terms in equation (51) and (48) gives the following
expression

B = Λ2
0 + [A,Λ0] (52)

for Λ0. On comparing equations (52) and (23) an approximation of the operator–
root, to leading order in ω2, is seen to be given by

Λ0(xα, pα) = GP1G
−1 + A . (53)

Returning to the one–way wave equation (39), the Fourier transform domain
representation is explicitly written

F [(∂1 + M − iΛ)u(yα)] ≈

iω

∫

(p1 − GP1G
−1)u(yα) exp [−iωpαyα]dyα = 0 , (54)

where sym[∂1] = iωp1. This approximate one–way wave equation is obtained
by neglecting the lower order ω terms. That is, sym[M] ≃ iωA and sym[Λ] ≃
ωΛ0 = ω(GP1G

−1 + A).
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Rearranging equation (54)
∫

iωp1u(yα) exp [−iωpαyα]dyα =

∫

iωGP1G
−1u(yα) exp [−iωpαyα]dyα (55)

and applying the inverse Fourier transform from p– to x–space, equation (55)
yields the explicit integral formulation of the frequency domain one–way wave
equation

∂1u = iω
( ω

2π

)2
∫ ∫ P(xα, pα) exp [iω(xα − yα)pα]u(yα)dyαdpα , (56)

where the (xα, pα)–dependent propagator is defined byP(xα, pα) = GP1G
−1 . (57)

Equation (56) is conceptually attractive because its action is easily under-
stood in a geometric sense. The wavefield is first decomposed into local plane–
waves by the Fourier transform of the variable y. The matrix G−1 resolves
the complete field into the individual plane–wave modes (i.e., qP– and qS–
waves). The diagonal slowness matrix P1 defines the rate of advance of these
plane–waves in the x1 direction. The matrix G then reconstitutes the indi-
vidual modes back into the total field. Finally, summation over slowness (pα)
reconstructs the curved wavefronts.

This equation can correctly describe the zeroth–order ray theory, Maslov
and Kirchhoff–like representations including rays which range widely over xα

and pα. More importantly, it describes the coupling between wave modes in
media exhibiting not only strong anisotropy but also weak anisotropy. Further-
more, it is capable of modeling coupling for wave propagation directions near
slowness surface singularities. This is mainly due to the form of the propagator
which is slowly varying even when there are rapid variations of the individual
eigenvector columns of G. However, the solution to this equation requires very
fine sampling of the integrals for accurate numerical evaluation and hence is not
computationally practical for routine use on small desktop computers.

3.3 Practical implementation

3.3.1 Narrow–angle approximation

Equation (56) is valid for wide angles as the derivation makes no explicit as-
sumptions about pα being small. For many practical scenarios only a limited
range of pα is needed and so further approximations to equation (56) are pos-
sible. For narrow angles, an approximation to the propagator matrix P can be
obtained from a Taylor series expansion about pα of the formP ≈ P0 + Pαpα + Pαβpαpβ . (58)

This narrow–angle approximation should be appropriate when the incident wave
is near planar or gently curved. The ‘subpropagator’ matrices P0, Pα and Pαβ
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are determined by substitution into the defining equation (52) and matching
powers of pα. The first few terms necessary for the narrow–angle (15◦) approx-
imation are given by

P0 =

√

ρC−1
11 , (59)

P0Pα + PαP0 = −C−1
11 (C1α + Cα1)P0, (60)

P0Pαβ + PαβP0 = −C−1
11 Cαβ − C−1

11 (C1α + Cα1)Pβ − PαPβ . (61)

The matrix C11 is real and symmetric, and for isotropic media reduces to a
diagonal matrix whose elements relate closely to the inverse wavespeeds [64].
The eigensolution of C11 must be known to construct the symmetric matrix
P0. The ‘higher–order’ propagators (60) and (61) require the solution to nine
simultaneous equations of the nine elements as well as the inversion of a 9 × 9
matrix constructed from P0. However, an alternative approach is used that is
based on the symmetry properties of P0. For instance, the difference between
equation (60) and its transpose leads to three independent equations for the
antisymmetric part of Pα. Adding equation (60) and its transpose leads to six
equations for the symmetric part of Pα.

Substitution of the narrow–angle propagator (58) into the integral equation
(56) and noting that ∂α ⇔ iωpα yields the frequency domain narrow–angle
one–way wave equation

∂1u = iωP0u + Pα∂αu +
1

iω
Pαβ∂α∂βu . (62)

The time domain equivalent is further obtained by noting that ∂t ⇔ iω and is
written

∂1∂tu = −P0∂
2
t u + Pα∂α∂tu− Pαβ∂α∂βu . (63)

These narrow–angle approximations to the one–way wave equation lend them-
selves to solution by FD methods and are computationally more efficient than
the integral equation (56).

[41] derives a true amplitude 3D wide–angle one–way acoustic wave equation
by including both the first and second order inverse frequency (ω−1) terms in
the asymptotic expansion of the acoustic operator root, where the importance
of including the higher order energy–flux term (i.e., the second term in the
asymptotic expansion of the operator root) is discussed. It is shown that the
inclusion of the energy–flux term not only provides important information about
the nature of the one–way expansion, but also correctly models waves that travel
close to the lateral direction. [40] derives the following approximate narrow–
angle amplitude correction (or energy–flux normalization) terms

Λ1 =T ≈ T0 + Tαpα + Tαβpαpβ . (64)

These approximate amplitude correction terms are evaluated by the following
recursive equations

P0T0 + T0P0 = i
(

M
†
0P0 − P0M

†
0 + ∂3P0

)

,
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P0Tα + TαP0 = T0A
†
α − A†

αT0 − PαT0 − T0Pα +

i
(

Q†
α + M

†
0Pα − PαM

†
0+

M
†
0A

†
α − A†

αM
†
0 + ∂3A

†
α + ∂3Pα

)

,

P0Tαβ + TαβP0 = TαA
†
β − A

†
βTα − PαTβ − TαPβ − PαβT0 − T0Pαβ

+i
(

M
†
0Pαβ − PαβM

†
0 + ∂3Pαβ

)

, (65)

where M
†
0 = (1/2)C−1

33 ∂3C33, A
†
α = (1/2)C−1

33 (Cα3+C3α) and Q†
α = C−1

33 ∂3C33−
(1/2)∂3C

−1
33 (Cα3+C3α). The amplitude correction matrices of equation (65) are

complex valued, functions of both the medium elasticity and the subpropagator
matrices, and evaluated in the same manner as equations (59)–(61).

Including the higher order amplitude correction terms of equation (65) in the
approximation of the operator–root, Λ, the true amplitude frequency domain
narrow–angle wave equation is written

∂1u =

[

iω

(

P0 +
1

ω
T0 −

1

iω
M

†
0

)

+

(

Pα +
1

ω
Tα

)

∂α

+
1

iω

(

Pαβ +
1

ω
Tαβ

)

∂α∂β

]

u . (66)

Comparing equation (66) with the leading–order narrow–angle wave equation
(62), it can be seen that the amplitude correction matrices are indeed included
as higher order terms in inverse frequency (ω−1).

An intuitive understanding of the amplitude correction matrices of equation
(65) can be found by inspecting their form in the isotropic, homogeneous limit.
By restricting propagation to normal incidence, pα = 0, P0 reduces to a diagonal
matrix of the inverse wavespeeds and the narrow–angle amplitude correction
term given by equation (64) simplifies toT ≈ T0 =

1

2

∂1P

P
. (67)

The term iT0 −M0 represents the energy–flux normalization term (or differen-
tial transmission coefficient), which includes the effect of elasticity and density
gradients in the x3 direction. Since Pα describes P–to–S wave coupling, Tα

represents an amplitude correction associated with P–to–S wave coupling from
gradients. Tαβ appears to describe the effect material gradients have on wave-
front curvature.

3.3.2 Acoustic heterogeneous case

Wide–angle Fourier or dual–domain derivations of one–way wave extrapolators,
such as the phase–screen and wide–angle exponential propagator methods, rep-
resent a class of simulation algorithms that can efficiently calculate accurate
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Greens functions in 3D heterogeneous media. The wide–angle one–way wave
equation for 3D acoustic media [41] is written

φ(x1 + ǫ, xα, pα; ω) = exp [iωP1ǫ](1 + Qǫ)φ(x1, xα, pα; ω) , (68)

where φ is the acoustic wavefield and ǫ is the incremental extrapolation step
length in the x1 direction. The phase propagator coefficient is defined

P1(x1, xα, pα) =

[

1

v2(x1, xα)
− p2

α

]1/2

, (69)

where v(x1, xα) is the 3D variable acoustic velocity. The propagator P1 is the
local x1 component of slowness and serves to advance each plane–wave compo-
nent of the acoustic wavefield in the preferred direction of propagation x1. The
differential transmission coefficient is written

Q(x1, xα, pα) = −
1

2

∂1P1

P1
. (70)

The transmission coefficient is an energy–flux normalization (i.e., amplitude cor-
rection) term and becomes important when gradients in acoustic velocity in the
propagation direction x1 are significant [note that equation (70) is the acoustic
equivalent to equation (67)]. The propagator and transmission coefficient terms
are evaluated on the plane x1 + ǫ/2. Equation (68) has been shown to accu-
rately simulate both the phases and amplitudes of the acoustic wavefield in 3D
heterogeneous media [41]. [72] address some of the limitations of equation (68)
when large material gradients exist in the velocity model, but for the exam-
ples presented in this paper the wide–angle wave extrapolator should provide
accurate solutions.

Although these techniques can be considered computationally efficient meth-
ods when compared to more complete full–waveform methods, such as FD meth-
ods, they can still be computationally cumbersome, especially for 3D media.
One of the significant computational costs of these algorithms stems from the
shuttling between the space and wave number domains; for many algorithms,
this shuttling is done via very efficient fast Fourier transforms (FFTs). Thus,
improvements can be made by implementing theoretical approximations [73] or
by manipulating model parameterization [41].

For each extrapolation step ǫ in the x1 direction, the solution to equation (68)
requires (i) one FFT to transform the wavefield φ from the lateral space domain
xα into the lateral wave number (or slowness) domain pα and (ii) time consuming
construction of the propagator P1(x1, xα, pα) and transmission Q(x1, xα, pα)
coefficient terms and an inverse FFT for each lateral grid point xα to reconstruct
the total wavefield from plane–wave components. [41] shows that a reduction
in computational time can be obtained by implementing natural interpolation
(i.e., interpolating the slowly varying amplitude terms P1 and Q). [74] generalize
the phase–shift (i.e., stationary exponential extrapolator) method to laterally
varying media by introducing wavefield interpolation. In this method, lateral
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velocity variations can be incorporated by interpolating wavefields extrapolated
using the stationary phase–shift method using at least two reference velocities.
The choice of the number of reference velocities is based on discretizing the
velocity field such that the velocity increment (or step) never exceeds 50% and
hence minimizing dispersion (or phase) error.

To simplify implementation of the wide–angle wave equation (68) and make
use of the natural interpolation concept, we can introduce an automated linear
interpolation scheme [42]. In this approach, at each x1 + ǫ/2 plane the acoustic
velocity model is discretized into i = (1, N) lateral velocities

Vmin(x1 + ǫ/2, xα) ≤ V i ≤ Vmax(x1 + ǫ/2, xα) , (71)

where Vmin and Vmax are the minimum and maximum model acoustic veloci-
ties, respectively. Next the propagator P1 and transmission coefficient Q are
evaluated for each discrete lateral velocity Vi. Then N acoustic wavefields
φi(x1 + ǫ; ω) are evaluated for each discrete lateral velocity V i using the wide–
angle equation (68). Finally, for each lateral xα grid point, the complete wave-
field φ(x1 + ǫ, xα, pα; ω) is synthesized using the linear velocity interpolation
scheme

φ(x1 + ǫ, xα, pα; ω) = ηφi(x1 + ǫ; ω) + (1 − η)φi+1(x1 + ǫ; ω) , (72)

when V i ≤ V (x1, xα) ≤ V i+1. The linear scaling factor is

η =

[

1 −
V (x1, xα) − V i

∆V

]

, (73)

where

∆V =

[

Vmin(x1 + ǫ/2, xα) − Vmax(x1 + ǫ/2, xα)

(N − 1)

]

. (74)

4 Numerical examples

Anisotropy and heterogeneity in the Earth exists on a variety of scales, ranging
from several tens of kilometres down to meters in tectonic settings, meters to
centimetres in exploration and engineering applications, and down to less than
millimetres in hand sample specimens. As well, in many applications, significant
fine scale anisotropic fabric in the form of crystalline or lattice–preferred orien-
tation, and/or shape–preferred orientation (SPO), such as horizontal alignment
of micaceous minerals in shales, can be observed. Since the frequency content
of the probing seismic energy (i.e., the relative scale lengths involved) dictates
how the wave interacts with the medium, a heterogeneous medium may appear
either very simple producing predictable wave phenomena or extremely complex
generating incoherent waveform distortion and attenuation [39]. Furthermore,
variations in orientation and averaging of fine scale anisotropic fabric make its
net effect on longer wavelength seismic signals difficult to access. As well, when
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anisotropic fabric is coherent and has significant strength, frequency–dependent
waveform and wavefront distortion arise from slowness surface indentations (i.e.,
wavefront folding) as well as slowness surface intersections (or singularities),
where rapid rotations and discontinuities in wave mode polarisations lead to a
strong frequency–dependent coupling or leakage between quasi–shear waves in
a gradient [37].

With improvements in data quantity and quality, improved waveform sim-
ulation using algorithms based on physically–motivated approximations that
describe the frequency–dependent effects of wave propagation are becoming in-
creasingly important [75; 76]. For instance, in the pioneering study of [77], the
acoustic parabolic equation of [78] was adapted to study the P–wave travel-
time and amplitude anomalies over the NORSAR array. Their results indicated
that the 3D heterogeneities in the underlying lithosphere/asthenosphere could
be modeled, that the observed large scale traveltime and amplitude anoma-
lies across the array share the same structural origin, and that the teleseis-
mic P–waves are deflected no more than 5◦ from the propagation path. The
narrow–angle propagator not only has the ability to model such 3D hetero-
geneity, but it also has the ability to augment interpretation by considering
anisotropic slowness surface and polarization effects as well as utilizing the en-
tire three–component waveform [75].

In this section I show waveform modeling results using the one–way wave
equations applied to various applications. The results will highlight the key
feature of the one–way wave equation approach by stressing its ability to model
gradual vector waveform evolution along the underlying wavefront. Specifically,
the results will show that the one–way wave equation is capable of modeling the
evolution of important and observable wave phenomena across an array, and so
can help in constraining not only the vertical, but also the lateral variations in
material properties.

4.1 Global applications: shear–wave splitting

Seismic anisotropy in the upper mantle is a commonly observed seismic phe-
nomenon. Shear–wave splitting analysis (e.g., from SKS phases) has become
the standard tool in assessing seismic anisotropy to infer fabric and tectonic
evolution. This is because shear–wave splitting provides the most unambiguous
measure of anisotropy. Large lateral variations in measured splitting param-
eters are often observed over small spatial distances due to tectonic features.
Constraining the depth extent of observed seismic anisotropy can be difficult,
but, if possible, can help distinguish the lithospheric and the asthenospheric
components of anisotropy.

To gain insight into the tectonic evolution of the Main Ethiopian Rift, [75]
investigated the feasibility of using shear wave splitting analysis and waveform
modeling to constrain spatial variations in anisotropy. To do this, they used the
narrow–angle wave equation (62) to simulate bandlimited waveforms for a suite
of models. The models represented regions with rapidly changing anisotropy not
too dissimilar to the Main Ethiopian Rift. [75] showed that variation in shear–
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Figure 2: Schematic representation of the Ethiopian rift. The dashed line along the border
of the Eastern rift border represents the subset of waveforms shown in the following figures.

wave splitting delay, δt, is dependent on source frequency, initial polarization as
well as the vertical thickness of the anisotropic medium.

In Figures 3–5, I show some new results from this study to highlight the
strength of using bandlimited waveform modeling to help constrain hypotheses.
This is important because there is often some confusion regarding the non–
uniqueness of seismic forward modeling versus seismic inversion. For instance,
[79] states:

Others attempt to explain their results using forward modeling (e.g., Hammond

et al., 2010a,b). However, forward modeling of SWS observations suffers from

the problem of non–uniqueness and it does not fully explore the true extent of

the parameter space. To get a quantitative parameterisation of the spatial dis-

tribution of anisotropy, SWS observations should be interpreted in tomographic

inversion fashion.

However, this statement is very misleading and only true if the forward problem
in the tomographic algorithm is solved exactly (i.e., exact Green’s function), and
this is often not the case. Tomographic algorithms tend to use ray theoretical
approximations and this is because it allows for efficient searches for the optimal
model [e.g., 80]. However, if the wave physics is not modeled correctly then
any quantitative parameterisation is likely to be inaccurate (or as good as the
forward model used in the tomographic code). Thus, the implied statement that
tomography suffers less from non–uniqueness is ill–informed. Ideally, the best
approach is to let tomography guide the range of possible models to be tested
with suitably advanced forward modeling algorithms.

For the global shear–wave modeling, [75] used a real SKS wavelet extracted
from a typical SKS waveform from the Ethiopian seismic array. The propagated
initial SKS wavefield had a backazimuth of 40◦. The elastic anisotropic model
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Figure 3: Synthetic waveforms propagated through the eastern margin of Ethiopian rift
model (the model is symmetric). Shown are the displacement waveforms for the East, North
and Vertical components (note that the waveforms for each component along the array are
overlaid and that the amplitude of the Vertical component is orders of magnitude less than
the East and North components). Also shown is a sample plot of the particle motion before
and after shear wave splitting correction.
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Figure 4: North component displacement waveforms of the propagated wavefield. The
waveforms show very little variation across the rift transition.

had a depth of 45 km and total lateral extent of 300 × 300 km2 with rift zone
width of 100 km in the middle (see Figure 2). The strength of anisotropy was
constant throughout the model at 10%, with fast direction of 30◦ outside the rift
(i.e., on the flanks) and 0◦ within the rift. The initial polarization of the SKS
shear–wave was 40◦ with a dominant period of 8 s. The elasticity was based
on background P– and S–wave velocities of 7800 and 4000 km/s, and density of
3800 kg/m3. The anisotropy was modeled as aligned cracks [81] with crack infill
P– and S–wave velocities of 2500 and 0 km/s, and density of 2700 kg/m3. The
cracks were modeled as penny–shaped inclusions with an aspect ratio of 0.01.

Figure 3 shows the synthetic displacement waveforms for all three compo-
nents along the sub–array shown in Figure 2. The East component displace-
ment waveforms are relatively constant, whereas there is observable variation
in the North component displacement waveforms. Although the magnitude of
the Vertical component displacement waveforms are several orders of magni-
tude less than the horizontal components, they show significant variation across
the array. In Figure 4, the North component of displacement is shown across
the sub–array. Visually the subtle variations in waveforms seen in Figure 3 are
indistinguishable. However, inspecting Figure 5, it can be seen that the Verti-
cal component waveform variations are strong and physically meaningful. This
variation results from frequency–dependent shear–wave coupling resulting from
the rotation of the anisotropic elastic tensor across the rift [e.g., 37; 76].
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Figure 5: Vertical component displacement waveforms of the propagated wavefield. The
waveforms show the influence of shear–wave coupling due to the rotation of the shear–wave
fast–axis across the transition.

Based on varying key model parameters and performing several simulations,
[75] were able to estimate the region of anisotropy in the Ethiopian Rift that
extends to an approximate depth of 90 km, beneath both flanks and the rift.
Along the margins, anisotropy was estimated to have fast–axis orientation of
30◦, whereas the rift valley was estimated to be orientated at 0◦. By using
the modeling results, the measured variation in δt of the observed seismic data
could be attributed to the influence of the two different anisotropic regimes on
the seismic wavefield.

4.2 Exploration applications: frequency dependent shear–

wave splitting

Imaging fractures and fracture systems within hydrocarbon reservoirs has been
of great interests over the past few decades. Although the relationship between
reservoir permeability and fractures is complex, it is recognized that fractures
play an important role in reservoir fluid flow. The compliance of fractures influ-
ences the deformation behaviour and hence influences the fluid pathways within
fractures. Although field–scale seismic techniques do not have sufficient reso-
lution to image individual fractures, the presence of fracture systems can be
observed and characterised via seismic anisotropy. Seismic anisotropy in reser-
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voirs can be due not only to preferred alignment of sub–seismic scale fractures,
but also due to intrinsic anisotropy, fine–scale layering or fabric and the influence
of non–hydrostatic changes in the stress field on microcracks and grain bound-
aries [82]. The fact that sub–seismic scale fractures can lead to anisotropy is
because fractures form coherent regions with directional dependence of reduced
strength. There are several techniques to measure seismic anisotropy that can
estimate fracture orientation and strength, such as Amplitude Versus Offset and
Azimuth (AVOA). However, distinguishing between the various sources of seis-
mic anisotropy as well as seismic heterogeneity is often not a simple task [e.g.,
83; 84], and interpretation can be complicated further by frequency–dependent
anisotropy [85].

Measurement of fracture compliance from static and dynamic measurement
can provide valuable information on fracture strength and potential fracture
infill [86; 87; 88]. [88] use the excess compliance formulation of [89] to map
P–wave anisotropy measurements to excess fracture compliance. As well, theo-
retical predictions [90; 91] and ultrasonic observations [92] have shown that the
ratio of normal to tangential compliance may be an indicator of fluid fracture
content. However, it is difficult to uniquely determine from seismic data whether
a fracture set is composed of a few large compliant fractures, or a larger number
of small stiff fractures. Several recent investigations have reported frequency–
dependent anisotropy within hydrocarbon reservoirs, such that the measured
anisotropy decreases with increasing frequency [85; 93; 94; 95]. Assuming seis-
mic anisotropy is due to aligned fractures and their compliance, a mechanism
that reduces the apparent compliance of the fractures with increasing frequency
is required. Two possible mechanisms to achieve this are (i) wave induced fluid
flow between fractures and pores and (ii) scattering due to rough fractures.

The presence of fluid within fractures can significantly reduce its normal
compliance. Assuming the background rock matrix is porous and permeable,
the response of the fluid–filled fracture is dependent on the frequency of the seis-
mic wave. For low frequencies, the fluid pressure can equilibrate (i.e., the fluid
has time to flow out of the fractures) in response to the seismic disturbance and
hence the effect of fluid on fracture compliance is minimal. However, at high fre-
quencies, the wave disturbance may be too rapid for the fractures to fully drain
and hence the fractures will appear stiff. [96] developed a poroelastic squirt–flow
model, where the frequency dependence is strongly influenced by the porosity
and permeability of the host rock, the fluid properties (e.g., viscosity and bulk
modulus) and the average size of the fractures (with larger fractures affecting
lower frequencies). [97] measured frequency dependent fracture compliance in
lab samples and demonstrated that the frequency dependence could be due to
waveform scattering as the wave propagates through a non–uniform distribu-
tion of local compliance within the plane of a rough fracture. [98] generalize the
results of [96] and [97] and propose a method to model the frequency dependent
anisotropy due to scattering from aligned fluid–filledrough fractures. These re-
sults show a dependence on the mean compliance of the constituent fractures
and can be used potentially to distinguish between anisotropy produced by large
or small fractures.
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Figure 6: Propagated incident plane S–wave synthetic showing three components based on
the [99] model on left and [100] model on right. The top panel is for a 80 Hz dominant
frequency wavelet and bottom panel for a 400 Hz dominant wavelet. In each panel, the
direction of horizontal propagation with respect to the fracture plane is 0◦, 20◦, 45◦, 65◦ and
90◦ from top to bottom.
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Here, I examine various waveform distortion effects for seismic wave prop-
agation in fractured and porous media. Specifically, I consider two categories
of effective medium fracture models: frequency independent media and fre-
quency dependent media. Although the approach typically taken to model
fractures in reservoirs is to assume frequency independence, recent evidence
suggests frequency–dependent anisotropy and attenuation effects [e.g., 85]. For
the first category (i.e., the frequency–independent effective media models), I
use laboratory–derived elasticities of siliciclastic sandstones from the Clair reser-
voir, where grain–scale contributions to anisotropy are assessed using additional
elastic compliances due to inter–granular effects [101]. The effect of fractures
is modeled using the effective medium models of [99] and [100], and the effect
of fluid is modeled using Gassman’s theory [102]. For the second category, the
effect of fractures is simulated using the frequency–dependent fracture model of
[98]. In the models of [96] and [98], the elasticity tensors are complex valued.
Given that one form of the narrow–angle equation is expressed in the frequency
domain (equation 62), these rock physics models can be implemented easily,
leading to complex valued propagator matrices (equations 59–61 and 65).

In Figure 6, the results of propagating a shear–wave within the two different
fracture models is shown. The models both assume a background vertical trans-
verse isotropy (VTI) observed in the sandstones from the Clair reservoir [101].
In both fracture models, the crack density is 0.05 and aspect ratio of 0.05, and
the permeability is 3 mD. For both fracture models, two source frequencies of
80 Hz and 400 Hz were used and five different horizontal propagation directions
were simulated: 0◦, 20◦, 45◦, 65◦ and 90◦ to the fracture plane. The wavefield
was propagated for a total distance of 200 m in the homogeneous anistropic
model. For directions normal (0◦) and parallel (90◦) to the fractures, there is
minimal shear–wave splitting (i.e., there is no energy on the x1 component).
However, there is some energy on the x3 component due to the lithological
(VTI) anisotropy. For oblique angles of propagation, the shear–wave splitting is
observable. The magnitude of the shear–wave splitting differs between the two
fracture models, but the delay time and polarity are consistent. For the two
source frequencies, the shear–wave splitting is the same (note the time axes are
different) and hence there is no development of frequency–dependent anisotropy.
The frequency dependence would only arise if the wave was propagating along
the direction of a slowness singularity, where frequency–dependent shear–wave
coupling would occur [e.g., 37].

In Figure 7, the results of propagating an incident shear–wave (initially a
smoothly curved wavefront) within the frequency–dependent fracture models
is shown. In this model, a background medium with isotropic P– and S–wave
velocities of 4850 and 3200 m/s, respectively, density of 2110 kg/m3, and Thom-
sen parameters [103] ǫ = 0.24, γ = 0.11 and δ = 0.20 are used to generate the
background VTI medium. The influence of fluid squirt–flow is modeled accord-
ing to [96], with porosity φ = 10%, fluid bulk modulus kf = 0.0068e9, fracture
flow relaxation parameter τ = 9.50e−7, and fracture density and aspect ratio
of 0.024 and 1.0, respectively. After propagating 135 m an 270 m, the incident
shear–wave with initial polarization primarily in the x2 direction has split into a
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Figure 7: The x2 component of the propagated incident curved S–wave withing the
frequency–dependent fracture model at propagation distances of 0, 135 and 270 m.
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Figure 8: Random acoustic velocity model with background velocity of 3000 m/s and con-
stant density of 2500 kg/m

3. The medium has correlation length a1 = 30 m in the depth (x1)
direction, a2 = 90 m in the offset (x2) direction and is invariant in the x3 direction.

fast and slow component. As well, the effects of dispersion due to wave induced
squirt–flow can be seen in the waveforms.

4.3 Acoustic applications: sub–Fresnel zone heterogeneity

To explore the efficiency and accuracy of implementing an automated linear
acoustic velocity interpolation scheme, examples are presented for a 2D stochas-
tic velocity model (see Figure 8). The acoustic velocity model is defined by
anisotropic random Gaussian distributed heterogeneities, having correlation lengths
of 90 m laterally (in the x2 direction) and 30 m vertically (or in the x1 direction)
and a background velocity of 3000 m/s (the maximum velocity perturbation is
on the order of ±10%). The model is extended into 3D by introducing a third
dimension (i.e., x3) and is invariant with respect to x2. The random model has
dimension 2048 × 2048 m2 laterally (xα) and 1150 m vertically (x1). For the
examples presented, a plane–wave is extrapolated on a computational domain
having 128 × 128 lateral grid points with 16 m spacing and x1 extrapolation
step ǫ of 2 m.

Figure 9 compares extrapolated plane–waves having a Ricker source wavelet
with peak frequency of approximately 440 Hz. Although all simulations show
similar wavefront distortion, it can be seen that as the number of velocity in-
terpolants decrease so does the frequency content of the resulting waveforms
(i.e., fewer high frequencies). Since the amplitudes between N=8 and 16 are
comparable, the optimum number of model interpolants is likely close to N=8.
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Figure 10 compares extrapolated plane–waves having a Ricker source wavelet
with peak frequency of approximately 235 Hz. By lowering the source wavelet
peak frequency, the effect of decreasing model interpolation on waveform fre-
quency content is less pronounced. For this example, the optimum number of
model interpolants is close to N=4.

The results indicate that the automated natural interpolation scheme allows
sufficiently accurate computation of acoustic wavefields. For smoothly varying
velocity models the scheme yields relatively identical results for both N=2 and
10 interpolants, even for large velocity perturbation [42]. The simulations indi-
cate that there exists a trade–off between waveform frequency content and the
number of model velocity interpolants. This suggests that when the medium is
expected to vary significantly on the sub–Fresnel zone scale more interpolants
are necessary to accurately simulate high frequencies. However, it should be
stressed that the waveforms presented here were chosen deliberately in the high
frequency range to enhance simulated wavefront and waveform distortion effects
and to examine the limitations of the method for high frequency wavefields.

5 Conclusions

The one–way wave equation approach has been shown to accurately simulate
the propagation of elastic waves in generally–anisotropic (for the elastic case)
and smoothly varying heterogeneous, 3D media. Since the one–way propagator
can be implemented in the frequency domain, I have shown also the poten-
tial of modeling wave propagation in visco–elastic media, such as the case of
frequency–dependent fractured media. Although the vector elastic narrow–angle
wave equation is the most restrictive of all the elastic one–way wave equations
derived by [36], it does allow the closest examination of the influence of the
elasticity tensor on wave propagation in terms of the local directional prop-
erties of the slowness surface and polarizations. Furthermore, adaptation to
curvilinear coordinates can improve the narrow–angle restriction [38], increas-
ing the range of allowable slownesses as well as introducing point–sources. A
key feature of the one–way approach is the ability to model gradual vector (for
the narrow–angle equations) and scalar (for the acoustic wide–angle equation)
waveform evolution along the underlying wavefront. This is important because
the Earth displays not only vertical, but also lateral variations in heterogeneity
and anisotropy. Across a dense array of receivers, the gradual evolution of the
seismic wavefield is observable and the variations in the frequency dependent
effects due to anisotropy and heterogeneity can be significant. The capability
of modeling the evolution of these wave phenomena across an array can not
only help in constraining both the vertical and lateral variations in material
properties, but also highlight significant observable wave phenomena. Thus, it
is expected that the one–way propagator approach will be useful for a range of
transmitted wave 3D global, exploration and engineering scale applications.

Although parallels can be drawn between the vector narrow–angle matrix
formulation and conventional ray–based approaches, the narrow–angle wavefield
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Figure 9: Extrapolated wavefields in random 2D acoustic velocity model for an input Ricker
wavelet having peak frequency of 440 Hz. Waveforms are compared for various velocity inter-
polants (M). Simulations for all model interpolations show similar wavefront distortion, but
the waveform frequency content varies, with the most noticeable difference being between M
= 4 and M = 16 interpolants.
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Figure 10: Extrapolated wavefields in random 2D acoustic velocity model for an input
Ricker wavelet having peak frequency of 234 Hz. Waveforms are compared for various velocity
interpolants (M). Simulations for all model interpolations show similar wavefront distortion
and there appears to be an improvement between M = 4 and M = 8 velocity interpolants in
comparison to the wavefield extrapolation at 440 Hz.
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extrapolator is more generally applicable than ray methods. This is primarily
because it can handle robustly transitions from weak–to–strong or arbitrary
anisotropy, is not limited by caustics and can model wave coupling. However,
it is important to reiterate that for most problems considered in seismology,
there is no one correct approach to the evaluation of the wave solution. Rather,
there are various approaches available and their appropriateness depends on the
required accuracy, speed and robustness of the calculated solution.

In the opinion of [104], recent advances in computer architecture will al-
low 3D simulations of global seismic wave propagation on high–performance
computing systems in a matter of seconds in the not so distant future. These
computational advances will lead to earthquake source and tomographic inver-
sions based solely on full–wave numerical methods, such as the spectral–element
method [4; 105; 106]. Whether or not this view is overly optimistic, there is
presently still a need for efficient, although approximate, wave solutions to con-
strain hypotheses. Furthermore, algorithms that are not restricted to paral-
lel computing architectures, but rather can be performed on standard desktop
computers will likely still be preferred, especially for researchers with limited
computational resources. It is also possible that the one–way approach will be
used in the field as a preliminary modeling or processing tool.

One of the primary difficulties associated with waveform inversion is the
strong non–linearity of the inverse problem. This non–linearity becomes im-
portant when the medium is complicated, but is further aggravated when the
data include large–offset or wide–angle data [69]. Large offset transmitted wave
data are becoming increasingly prevalent because it has been recognized that
they are required to resolve lateral structure [107]. In fact, a recent survey of
frequency–domain waveform inversion algorithms has indicated that large off-
set transmitted or refracted data are commonly applied in seismic tomographic
imaging [107]. The non–linearity of the inversion can be improved by precon-
ditioning the data as well as having a good starting model. These starting
models are usually obtained from conventional traveltime tomography and so
are limited by the asymptotic ray approximation. However, newer methods such
as the so–called strongly damped wave equation can be used to compute the
first–arrival traveltimes [108] or one–way wave equations to compute the most
energetic traveltimes and amplitudes [54]. In theory, the acoustic wide–angle
wave equation should be applicable to acoustic full–waveform inversion (and
the narrow–angle wave equation for elastic full–waveform inversion) either as a
means of generating a starting model or as an approximate elastic wave extrap-
olator for the iterative forward and reverse propagation steps. However, the
theoretical details of its implementation in waveform inversion have yet to be
clarified.
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