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Combining Multiple Classifications of Chemical Structures 
using Consensus Clustering 

 
Chia-Wei Chu1, John D. Holliday and Peter Willett2

Information School, University of Sheffield, 211 Portobello Street, 
 

Sheffield S1 4DP, United Kingdom 
 

Abstract: Consensus clustering involves combining multiple clusterings of the same set of objects to 
achieve a single clustering that will, hopefully, provide a better picture of the groupings that are 
present in a dataset.  This paper reports the use of consensus clustering methods on sets of chemical 
compounds represented by 2D fingerprints. Experiments with DUD, IDAlert, MDDR and MUV data 
suggests that consensus methods are unlikely to result in significant improvements in clustering 
effectiveness as compared to the use of a single clustering method. 
 
Keywords: Cluster analysis, Consensus clustering, Fingerprint, Group-average clustering method, k-
means clustering method  
 
 
1 Introduction 
Clustering involves the subdivision of a number of objects (chemical molecules in the present 

context) into clusters of objects such that each group exhibits a high degree of both intra-cluster 

similarity and inter-cluster dissimilarity 1.  There is an extensive literature on the use of clustering 

methods for files of chemical structures 2, with applications including property prediction 3, molecular 

diversity analysis 4, the analysis of substructure search outputs 5, and the merging of corporate 

databases 6

Many different clustering methods have been used in chemoinformatics.  The very first study, 

by Adamson and Bush 

 inter alia.  

7, used the single linkage method, which is the simplest of the popular class of 

hierarchic agglomerative clustering methods.  Extensive comparative studies of the clustering 

effectiveness of over 30 hierarchic and non-hierarchic methods 8 suggested the use of Ward’s 

hierarchical-agglomerative method 9, with the non-hierarchical Jarvis-Patrick method 10 also 

performing well.  The computational efficiency of the latter meant that it was the method of choice for 

chemoinformatics applications for many years, although developments in both software and hardware 

mean that Ward’s method is now employed much more extensively than previously.  Other studies 

have reported the use of modifications of the established Jarvis-Patrick and Ward methods 11, 12 and of 

methods that had not previously been applied to chemoinformatics 13, 14

Comparative studies of clustering effectiveness are helpful in providing guidelines as to the 

relative merits of different methods.  However, it is most unlikely that any single method will yield 

the best classification (however that is defined) under all circumstances, even if attention is restricted 

to a single type of application.  For example, when clustering is used to predict biological or 

.   
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physicochemical properties 3, the compounds to be clustered might be represented using different 

types of fingerprint, different types of property might need to be predicted, different sets of 

compounds might exhibit different degrees of structural homogeneity, etc.  The situation is analogous 

to that which pertains in virtual screening, where many different techniques have been described for 

ranking a database in order of decreasing probability of biological activity.  The multiplicity of 

available techniques has fueled interest in the combination of different types of database ranking to 

yield a single fused, or consensus, ranking that is expected to provide a more robust, and more 

generally effective, tool than can any single screening technique.  Combination procedures are now 

well-established in both structure-based and ligand-based virtual screening 15, 16

 There is an extensive literature on consensus clustering 

, and it hence seems 

appropriate to consider whether analogous procedures might be used to combine the classifications 

resulting from the use of multiple clustering methods.  Such an approach is normally referred to as 

consensus clustering, and we shall adopt this term here; other names that have been used in the 

literature include cluster aggregation, clustering ensembles, median partitioning, and partitions of 

partitions.  Consensus clustering has been used in two main ways, both of which are studied below: to 

combine the classifications resulting from multiple runs of a single, clustering method (e.g., the non-

deterministic k-means clustering method); or to combine the classifications resulting from single runs 

of multiple different clustering methods.   
17-24, with Gionis et al. providing a 

helpful introduction to the topic 25.  However, we have been unable to identify any discussion of its 

application in chemoinformatics (although applications have been reported in bioinformatics 26, 27

 

).  In 

this paper, we report an evaluation of consensus clustering for clustering files of chemical structures 

represented by 2D fingerprints, specifically using an approach based on a consensus similarity matrix 

as described in Section 2.1.  We investigate the use of consensus clustering to combine the 

classifications resulting from multiple runs of the k-means clustering method, and then investigate its 

use to combine the classifications resulting from single runs of multiple clustering methods.   

2. Materials and Methods 

2.1 Consensus similarity matrix 

The identification of the optimal consensus given some evaluation function has been shown to belong 

to a class of computational problems (the so-called NP-complete problems) that cannot be solved in 

polynomial time and that are known to be extremely demanding of computational resources 19

Given a dataset containing N molecules and NCLASS different classifications of this dataset, 

the consensus similarity matrix (hereafter CSM for brevity) is an N×N matrix, the JK-th element of 

which contains the number of those classifications in which molecules J and K find themselves in the 

.  Many 

different approaches have hence been developed to derive good, approximate solutions: here, we use 

an approach that is simple in concept, has been widely adopted, and has been found to work well in 

practice.   



same cluster.  The generation of the matrix is described in the simple pseudo code below, where all 

the elements of CSM have been initialised to zero and where the counter I loops through each of the 

NCLASS classifications in turn. 

FOR I := 1 TO NCLASS 

FOR J := 1 TO N-1 

FOR K := J+1 TO N 

IF J and K are in the same cluster THEN CSM[J,K] := CSM[J,K] + 1. 

If desired, each resulting element CSM[J,K] can be converted to lie between zero and unity by 

dividing by NCLASS, so that it contains the fraction of the classifications in which J and K co-occur.   

Once the CSM has been generated, it can be used as input to one’s clustering method of choice (e.g., 

the Jarvis-Patrick method or Ward’s method) for the generation of the final consensus classification, 

in just the same way as a conventional similarity matrix acts as the input to a clustering method for the 

generation of an individual classification.   

It will be realised that the simple procedure above assumes that multiple non-hierarchic 

classifications are available, so that the procedure involves combining NCLASS partitions.  If multiple 

hierarchic classifications are available then two strategies are possible.  First, a similarity threshold 

can be applied to the dendrogram describing each hierarchic classification to obtain a set of partitions 

prior to the generation of the CSM.  Alternatively, if J and K are in the same cluster then CSM[J,K] 

can be incremented not by one but by the similarity level at which they are first clustered together in 

the hierarchy (although this makes assumptions regarding the distribution of clustering levels in the 

classifications that are being combined).   

 This CSM-based approach has been used to generate consensus classifications for both 

multiple runs of a single clustering method and individual runs of multiple methods as described in 

the following section.  

 

2.2 Combination of classifications from multiple runs of a single clustering method 

2.2.1 Datasets and clustering method 

The k-means clustering method is a very popular relocation clustering method in which an initial 

partition of a dataset is progressively refined by shifting objects between clusters so as to optimize 

some criterion of the “goodness” of the partition.  Many implementations of k-means are non-

deterministic, in that the precise classification of a dataset that is obtained at the end of a run is 

dependent on the order in which the dataset is processed.  Consensus clustering can then be used to 

obtain a single solution based on the classifications obtained from multiple clustering runs.  This 

approach has been studied here using Pipeline Pilot's R Statistics implementation of the k-means 

method (Pipeline Pilot available at http://www.accelrys.com; R statistics available at http://www.r-

project.org), where the initial database partition is generated using a random seed and then the 

database molecules are sequentially assigned to that cluster to which they are most similar.  The 



molecule-cluster similarity is calculated using the Euclidean metric between the molecule’s 

fingerprint and the centroid of the cluster, where the centroid is the arithmetic mean of the fingerprints 

of the molecules currently contained in the cluster.  

The experiments used data from the Directory of Useful Decoys (DUD) and Maximum 

Unbiased Validation (MUV) datasets (available at http://dud.docking.org/ and 

http://www.pharmchem.tu-bs.de/lehre/baumann/MUV.html, respectively.  Each of these contains 

groups of ligands that exhibit a common biological activity, with the groups having been designed to 

provide a benchmark for quantitative evaluations of virtual screening methods.  Our studies involved 

a total of 3691 molecules from 40 DUD activity classes and 510 molecules from 17 MUV activity 

classes, with the molecules being characterized by Pipeline Pilot extended connectivity fingerprints 

that encode circular substructures using a calculation based on the Morgan algorithm 28

2.2.2 Consensus clustering method 

.  Each non-

hydrogen atom in a molecule is assigned an initial code based on the number of connections, the 

element type, the charge, and the mass.  This code, in combination with bond information and with 

the codes of the immediate neighbour atoms, is hashed to produce the next order code, and the process 

repeated until a circular substructure of the required size has been encoded.  The ECFP_4 fingerprints 

used here described circular substructures with a diameter of four bonds.    

The consensus similarity matrix was computed from multiple k-means runs as described in the 

previous section, and then the consensus classification generated using the group average clustering 

method (specifically, the unweighted pairs group method using arithmetic mean, or UPGMA).  This is 

one of the family of hierarchic agglomerative clustering methods 1, 2

 The procedure takes just a few seconds on low-end PC equipment for the generation of the 

CSM from the individual classifications and then for the generation of the UPGMA hierarchy from 

the resulting CSM; this is much less time-consuming than the generation of the NCLASS (here 20) 

different classifications.  However, like many clustering procedures, the overall time and space 

requirement is of complexity O(N

 and is probably the most 

generally effective of the linkage members of this family, providing a balance between the extreme 

clustering criteria used in the single linkage and complete linkage methods.  A threshold was applied 

to the group-average hierarchy to obtain the required number of clusters, i.e., 40 for the DUD dataset 

and 17 for the MUV dataset. 

2

2.2.3 Evaluation of performance   

) for N molecules, and the computational requirements hence 

increase rapidly as larger files need to be processed (such as the MDDR and IDAlert files described in 

Section 2.3).  

The k-means methods was used to cluster the complete set of molecules comprising the 3691 DUD 

molecules or the 510 MUV molecules into a number of classes (40 or 17) equal to the number of 

different activity classes.  The ideal classification would be one where the dataset had been partitioned 



so that each final cluster contained all the molecules from a single activity class and no molecules 

from any of the other classes.  The difference between the observed distribution of molecules and this 

ideal distribution can be computed using the Rand index 29

 Assume that we are comparing a partition, X, of a total of n molecules resulting from a single 

k-means run with the ideal partition, Y.  Then the Rand index involves considering the extent to which 

pairs of molecules do, or do not, occur in the same cluster in X and in Y.  Let there be a pairs that are 

in the same cluster in X and also in the same cluster in Y, b pairs that are in different clusters in X and 

different clusters in Y, c pairs that are in the same cluster in X and in different clusters in Y, and d pairs 

that are in different clusters in X and in the same cluster in Y.  The Rand index, 

. 

RI

dcba
baRI
+++

+
=

, is then given by: 

. 

The index takes values between zero and unity, with the former representing complete disagreement 

(i.e., there is no agreement between the partitions for even a single pair of molecules) and the latter 

representing complete agreement (i.e., the partitions are identical), respectively.  Although widely 

used, RI has limitations in that its expected value for two random partitions does not have a constant 

value, and in that its value approaches its upper-bound as the number of clusters increases 30.  We 

have hence also computed the Fowlkes-Mallows Index 31
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which has been designed to address the limitations of the basic RI. 

 

2.3 Combination of classifications from single runs of multiple clustering methods 

2.3.1 Datasets and clustering methods   

Our experiments here used two sets of molecules and activity classes that we have studied previously 

in a comparison of standardisation methods for clustering and similarity searching 32.  These datasets 

comprised 10,201 molecules from the MDL Drug Data Report (MDDR) database (available from 

Accelrys Inc. at http://www.accelrys.com/) and 11,607 molecules from the IDAlert database 

(provided to us by Current Drugs Ltd, which is now part of Thomson Reuters at 

http://www.thomsonreuters.com).  The molecules were characterized by Pipeline Pilot ECFP_4 as in 

the previous experiments and were coded as being active or inactive (more probably, not tested) in 

eleven activity classes that had been studied previously by Hert et al. 33.  These activity classes 

contained between 38 and 125 MDDR molecules, and between 12 and 123 IDAlert molecules, as 

detailed by Chu et al. 31.  Inter-molecular similarities were computed using the Tanimoto coefficient, 

or the Euclidean distance in the case of the Ward’s and extended Ward’s methods (since these require 

the use of this similarity coefficient). 



 The two datasets were clustered using nine different clustering methods: these methods are 

described briefly below, with the reader being referred to the listed sources for further details.  The 

first was the group average method, a hierarchic agglomerative method that has been described in the 

previous section.  Ward’s is another such method that has been widely used for chemoinformatics 

applications of cluster analysis 2.  Székely and Rizzo have described a generalisation of Ward’s 

method 34, which Varin et al. found gave excellent results for the clustering of several PubChem 

datasets 12; this method is referred to here as extended Ward’s.  The k-means method was the first of 

the relocation clustering methods 35.  It involves an initial partition that is progressively refined by 

moving objects from one cluster to another to optimize a chosen clustering criterion 1, 2. Two versions 

were used here, one using a criterion that seeks to maximize within-cluster similarity, and the other a 

criterion that seeks to minimize between-cluster similarity; these criteria are referred to as I2 and E1, 

respectively, by Zhao and Karypis 36.  There has been much recent interest in a development of this 

method, sometimes called hierarchic k-means, that provides an efficient tool for hierarchic divisive 

clustering of large datasets 6, 13, 37.  This was used with the same two optimization criteria as for the 

conventional k-means method.  Finally, Yin-Chin and CAST 38 were two of the methods evaluated by 

Raymond et al. in a comparison of both established and new methods for clustering several compound 

series represented by both fingerprints and chemical graphs 14.  The Yin-Chen method 39

 The Yin-Chen and CAST methods were coded from the published descriptions, the Ward and 

extended Ward methods used the implementations in the Energy package of the R statistical system 

(available at http://www.r-project.org), while the runs for the other five methods were carried out 

using the implementations in the CLUTO (for CLUstering TOolkit) software package 

 identifies 

clusters that are connected components of the graph described by a similarity matrix, i.e., it merges 

objects if their separation is greater than a threshold similarity (which can be varied so as to identify a 

required number of clusters).  The CAST method is based on an approximate clique-finding algorithm 

that avoids much of the costly enumeration necessary in traditional algorithms, and that uses a 

threshold parameter t to establish cliques of mutually similar objects; this adjustable parameter was 

set in our experiments to yield the desired number of clusters (or, more generally, as close to that 

number as possible).   

40

2.3.2 Consensus clustering methods 

.  Runs were 

carried out to generate partitions containing 500, 600, 700, 800, 900 and 1000 clusters.  In the case of 

the Ward, extended Ward, group average and two hierarchic k-means methods, a threshold was 

applied to the hierarchy to obtain the required number of clusters, and this number was used as the 

input for the two k-means methods; in the case of the Yin-Chen and CAST methods, the methods’ 

parameters were varied to achieve a number of clusters as close as possible to that required.   

Once the partitions had been generated from each of the nine clustering methods, they were used to 

generate the CSM as described previously.  There were thus six different CSMs for each dataset, one 

for each of the six possible partition-sizes.  A consensus classification was then produced from a CSM 



by application of one of seven different consensus clustering methods as described below.  Of these, 

the CCPivot and BOK methods (vide infra) were coded from the published descriptions while the 

remainder used the implementations in the CLUTO package.   

 The first three consensus clustering methods were the conventional single linkage, complete 

linkage and group average hierarchic agglomerative methods, with thresholds applied to the resulting 

hierarchies to obtain partitions containing 500, 600, 700, 800, 900 or 1000 clusters.  When the single 

linkage method has been used for consensus clustering it has been referred to as the majority rule or 

the quota rule 21, 41.  The DIRECT procedure in CLUTO provided the next consensus clustering 

method.  This is a k-means-like method that uses a greedy optimizer to move objects between clusters 

so as to maximise the value of a chosen criterion function, which in this case was the CLUTO default 

function (called I2) 42.  The min-cut graph partitioning clustering method in CLUTO applies a 

connected components algorithm to the similarity matrix to give a partition that contained (as close as 

possible to) the required number of clusters.  The BOK (for Best Of K) method picks one clustering 

from the set of input classifications and measures its similarity to each other classification using the 

Rand Index 28.  The consensus classification is then the classification that has the greatest mean Rand 

Index 19.  Finally, the CCPivot method 43, 44 picks an object at random as an initial cluster pivot and 

then assigns to that cluster every object with a consensus similarity greater than a pre-defined 

threshold.  It then picks another pivot from the remaining, unclustered objects and continues in this 

way until all the objects have been clustered (i.e., the procedure is essentially that used in the sphere 

exclusion approach to dissimilarity-based compound selection 45

2.3.3 Evaluation of performance  

).  This method was found to be 

extremely sensitive to the choice of initial pivot and similarity threshold: it was hence run 30 times 

with different pivots and thresholds for each experiment, and that consensus classification chosen that 

gave the best fit to the required number of clusters.   

The consensus classifications were evaluated on the extent to which they clustered together 

compounds that belonged to the same activity class.  Two evaluation measures were used: the F-

measure, which was first devised to evaluate methods for document clustering in information retrieval 
46; and the QPI- (for quality partition index) measure, which was devised by Varin et al. to measure 

the separation between actives and inactives resulting from use of a clustering method 47

Assume that a cluster contains n compounds, that a of these are active and that there is a total 

of A compounds with the chosen activity.  The precision, P, and the recall, R, for that cluster are then 

.   

n
aP =  and 

A
aR = , 

and F is then the harmonic mean of P and R, i.e.,  

RP
PRF
+

=
2 . 



This calculation is carried out for each and every cluster and the F-measure is then the maximum 

value obtained across all of the clusters, i.e., it describes that single cluster that provides the best 

combination of precision and recall for the current bioactivity. 

 Define an active cluster as a non-singleton cluster for which the percentage of active 

molecules in the cluster is greater than the percentage of active molecules in the dataset as a whole.  

Let p be the number of actives in active clusters, q the number of inactives in active clusters, r the 

number of actives in inactive clusters (i.e., clusters that are not active clusters) and s the number of 

singleton actives.  Then the quality partition index, QPI, is defined to be 

srqp
pQPI

+++
= , 

with a high value occurring when the actives are clustered tightly together and separated from the 

inactive molecules.  The QPI-measure hence describes the entire set of clusters, whereas the F-

measure describes the single, best cluster.  

 Consensus classifications were generated for each of the seven consensus clustering methods 

when applied to each of the two datasets (MDDR and IDAlert) to obtain each of the six partitions 

(500-1000 clusters in 100-cluster steps).  The F and QPI values were computed for each such 

consensus classification. 

 

3. Results and Discussion 

3.1 Combination of classifications from multiple runs of a single clustering method 

The k-means clustering method was run 20 times for each dataset, and the RI and FMI values 

computed for each run.  The means and standard deviations for the indices are listed in Table 1.  The 

table also contains the index values for the consensus classifications obtained from the sets of 20 

individual clustering runs.  Inspection of the table 1 shows that the consensus clustering is never 

significantly better than the individual clustering runs, suggesting that there is no benefit to be gained 

from using a consensus approach. 

 

3.2 Combination of classifications from single runs of multiple clustering methods 

The mean F and QPI values, averaged over the eleven activity classes in each dataset, are shown in 

Tables 2 (for the MDDR dataset) and 3 (for the IDAlert dataset), where the best-performing 

consensus clustering method in each column of the table has been shaded and bold-faced for ease of 

reference. 

 Inspection of the MDDR results in Table 2 shows that consensus clustering using the single 

linkage method is consistently inferior to all of the other approaches, using both criteria.  This is, 

perhaps, not very surprising given its generally unsatisfactory performance when clustering chemical 

datasets 8.  The other consensus methods offer more comparable levels of performance; complete 



 DUD MUV 

 RI FMI RI FMI 

Mean (sd) 0.932 (0.011) 0.389 (0.069) 0.880 (0.007) 0.102 (0.023) 

Consensus 0.938 0.401 0.879 0.113 

 

Table 1.  Effectiveness of clustering (averaged over 20 individual runs) and of consensus clustering 

using the DUD and MUV datasets and three clustering indices 

 

linkage, group average and DIRECT perform well on the MDDR data using F, while DIRECT is 

consistently the method of choice using QPI.  With the IDAlert dataset, as shown in Table 3, group 

average again performs very well using F while the QPI results are dominated by the graph 

partitioning method, followed by DIRECT.  Overall then, it would seem that group average or 

DIRECT are the methods of choice for consensus clustering as implemented here.    

For comparison with the consensus methods, the bottom row of each table contain the results 

when a single classification is generated using the established Ward’s method.  A comparison of these 

results with those for the best consensus clustering method in each case (i.e., that marked as shaded 

and bold faced) shows that the latter is nearly always to be preferred, the sole exception being the 

500-cluster MDDR partition using the F criterion.  We hence conclude that a consensus method can 

indeed out-perform the current standard clustering method for chemoinformatics applications.  

However, this is certainly not the case if we are restricted to a single consensus method, as would be 

the case in any practical context.  For example, if we take group average as the consensus method of 

choice then inspection of the corresponding F and QPI values in Tables 2 and 3 shows that Ward’s 

method out-performs consensus group average just as many times as the converse is true.   

 

4. Conclusions 

 

Consensus clustering has been suggested as a way of improving the effectiveness of the classifications 

resulting from the use of individual clustering methods.  The experiments reported here suggest that 

this can sometimes be the case for the clustering of files of using chemical structures represented by 

2D fingerprints.  However, the results obtained are far from consistent with no significant 

improvements being noted when consensus classifications were generated either from multiple runs of 

the k-means clustering method or from single runs of multiple clustering methods.  Since even 

individual clustering runs can be computationally demanding if large files are to be processed, it 

would appear that the use of consensus clustering, at least as implemented here, is at best unproven 

for the classification of chemical structure databases. 

 

 



Clustering method Partition size 
 500 600 700 800 900 1000 

 Single linkage 10.88 13.12 19.11 9.98 13.14 17.31 
 Group average 27.87 27.82 27.16 27.50 28.58 32.76 
  Complete linkage 26.64 29.06 28.61 25.24 30.55 29.10 
Consensus CCPivot 24.50 25.08 26.34 26.38 26.84 27.65 
 DIRECT 27.64 31.07 27.93 23.62 26.32 24.65 
 Graph partitioning 26.19 16.54 26.26 24.08 22.42 21.83 
 BOK 23.99 22.61 22.89 23.19 22.93 21.72 
Single Ward’s method 29.74 29.57 27.90 27.03 25.74 24.23 

(a) 

Clustering method Partition size 
500 600 700 800 900 1000 

 Single linkage 4.43 1.55 6.52 2.88 2.59 7.09 
 Group average 11.27 12.63 14.18 16.64 19.46 23.69 
 Complete linkage 11.87 13.07 15.09 14.81 19.35 22.37 

Consensus CCPivot 10.14 10.65 12.28 13.97 16.80 19.36 
 DIRECT 18.44 19.06 22.63 24.24 26.87 28.58 
 Graph partitioning 16.75 17.20 18.82 22.02 21.95 26.12 
 BOK 12.12 13.58 15.18 16.83 18.63 20.40 

Single Ward’s method 16.37 18.07 20.17 22.35 23.60 25.59 
(b) 

Table 2.  Effectiveness of clustering of the MDDR dataset: (a) F values, (b) QPI values.  

 

Clustering method Partition size 
500 600 700 800 900 1000 

 Single linkage 7.91 12.70 8.69 12.25 17.75 18.26 
 Group average 18.62 24.86 23.93 26.14 28.15 26.12 
  Complete linkage 16.97 19.37 21.23 23.20 22.15 21.30 
Consensus CCPivot  17.82 18.75 21.28 25.04 20.58 19.53 
 DIRECT 25.42 22.98 23.71 22.03 24.72 22.01 
 Graph partitioning 24.92 21.04 21.76 21.48 20.21 19.65 
 BOK  22.85 21.67 21.38 21.13 20.62 18.68 
Single Ward’s method 21.50 21.35 21.59 21.59 21.19 20.60 

(a) 

Clustering method Partition size 
500 600 700 800 900 1000 

 Single linkage 1.53 4.74 3.50 5.52 4.80 3.85 
 Group average 6.24 7.04 8.39 8.94 11.22 11.40 
  Complete linkage 4.99 6.91 7.35 9.10 9.96 10.57 
Consensus CCPivot  4.24 5.26 5.57 7.12 7.06 7.76 
 DIRECT 8.19 9.86 11.22 11.60 12.81 14.31 
 Graph partitioning 8.47 9.98 11.35 11.61 13.44 13.68 
 BOK  7.52 8.71 9.93 10.94 12.22 13.22 
Single Ward’s method 7.07 7.29 8.30 8.93 9.68 10.38 

(b) 

Table 3.  Effectiveness of clustering of the IDAlert dataset: (a) F values, (b) QPI values. 
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