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Abstract  

This paper presents results from modelling work investigating the effects of social networks 

on the adoption of energy technologies in the domestic sector. This work concerns ideas on 

social network interventions which have been successfully applied in other domains but 

which have seldom been applied to energy policy questions. We employ a dynamical multi-

parameter network model where households are represented as nodes on a network for 

which the uptake of technologies is influenced by both personal benefit and social 

influences. This is applied to demonstrate the usefulness of this type of model in assessing 

the likely success of different roll-out strategies that a local authority could pursue in 

promoting the uptake of domestic energy technologies. Local authorities can play a key role 

in the retrofit of energy-efficiency and low-carbon energy-generation technologies in order 

to realise carbon reductions and alleviate fuel poverty. Scenarios are modelled for different 

local authority interventions that target network interactions and uptake threshold effects, 

and the results provide insights for policy. The potential for the use of this type of modelling 

in understanding the adoption of energy innovations in the domestic sector and designing 

local-level interventions is demonstrated. 
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1. Introduction 

Much recent work in complex systems theory has highlighted the role of social networks in 

influencing individual behaviours (Barabási, 2003). However, the implications of these ideas 

have not been fully exploited in the context of the adoption of domestic energy 

technologies and energy-demand-reducing behaviours. In a recent review paper, Wilson and 

Dowlatabadi (2007) call for integrated approaches to modelling domestic energy decision-

making that better characterise heterogeneity and can be used to help design interventions 

aimed at influencing behaviours. Models based on individual behaviour tend to assume 

rational choice or reflect only individual psychological motivations (Nye et al., 2010), 

whereas approaches that address the social context of decision-making tend to be more 

qualitative (Shove, 1998). In response to this need, we have conducted new interdisciplinary 

modelling work to demonstrate the value of a quantitative approach combining personal 

and social motivation factors.  

We present results from a simulation of energy-innovation diffusion on a social network, 

employing real-world data. In the model, households are represented as dynamical nodes 

(connection points) on a network who choose whether or not to adopt an energy 

technology (or energy-efficiency measure) depending on both personal benefit and social 

influences. (For simplicity, we treat the household as a single decision maker, though in 

reality, people within the household may vary according to individual personal and social 

benefit.) Building on our previous work exploring the general mathematical features of a 

simpler version of this model (McCullen et al., 2013; Bale et al., 2013b), the present work 

develops the model to the point where it can be used to compare potential roll-out 

strategies available to a local authority aiming to increase uptake of energy technologies in 

the domestic sector. We examine interventions using social networks to promote adoption 

(‘network interventions’) and also those reducing barrier(s) to adoption (‘threshold 

interventions’). This provides preliminary insights for policy design and highlights the 

potential for further work. 

The objectives of the paper are to: 

1. evaluate the potential for applying social network theories to energy policy 

using a network model for the adoption of energy technologies in the domestic 

sector; 

2.  apply the model to explore different strategies that could be implemented 

by a local authority; 

3. identify those interventions that are likely to lead to the highest uptake, 

providing insight for policy implementation; 
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4. inform data gathering to enable refinement of this type of model to make it 

useful as a decision support tool for local authorities. 

In section 2, we discuss the empirical challenges that we aim to address and the theoretical 

approaches on which we draw. In section 3, we discuss the methodology of the modelling 

work, including the data used, assumptions, and related limitations. We then, in section 4, 

discuss the results from modelling different interventions that a local authority could take. 

In section 5, we discuss the insights for local-level policy based on the outputs from the 

model and areas for further research.  

2. Empirical challenges and theoretical approaches 

2.1 Local authority decision-making 

Local authorities have a significant role to play in the adoption of technologies that reduce 

domestic energy consumption. This role can be either direct, through the provision of free 

installation programmes (e.g. Wrap Up Leeds (Leeds City Council and Yorkshire Energy 

Services, 2012)), or indirect, through energy advice services (e.g. Actio2n Woking (Woking 

Borough Council, 2012)). Often, initiatives are tailored in an ad hoc manner to suit a given 

funding scheme, and are limited by available finance (Bale et al., 2012b). Nonetheless, local 

authorities still have to make choices as to how best to engage with residents on any given 

initiative. For a simple intervention such as offering free or reduced-cost insulation, local 

authorities can choose from a range of roll-out strategies, each of which may deliver 

different adoption rates. This suggests that local authorities need tools in order to be able to 

assess which strategies would be most successful. 

Local authority initiatives (both in the UK and elsewhere) aimed at installing domestic 

energy-efficiency measures represent a significant opportunity for achieving carbon 

reductions in line with national targets (Comodi et al., 2012; Hoppe et al., 2011; Sheldrick, 

1985). Large-scale retrofit of energy-efficiency and renewable and low-carbon generation 

technologies in domestic properties (together termed ‘domestic energy technologies’) will 

be required in order to meet the UK’s legally-binding target of reducing greenhouse gas 

emissions of 80% by 2050 (compared with 1990 levels) (Great Britain, 2008). In addition, 

energy-efficiency measures can provide benefits to local residents by tackling fuel poverty 

and improving health and wellbeing (Clinch and Healy, 2001). 

Insulation levels in domestic properties in Great Britain present one opportunity for 

improvement; it is estimated that, at the start of January 2012, only 60% of homes with lofts 

had loft insulation of at least 125mm and 59% of homes with cavity walls had cavity wall 

insulation, while only 2% of homes with solid walls had solid wall insulation (Department of 

Energy and Climate Change, 2012). Local authorities have a unique role to play in 
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encouraging adoption of energy-efficient measures in the both the social and private 

domestic sectors (Committee on Climate Change, 2012) as they are both a trusted source of 

information (which energy companies tend not to be (Bale et al., 2013a)) and have local 

knowledge of the needs of their residents and communities (which central government does 

not). In this paper, we examine how local authorities may be able to maximise this influence 

by harnessing or enhancing existing social networks to promote adoption of domestic 

energy technologies such as insulation or photovoltaic (PV) panels.  

2.2 Social networks 

The importance of social network influences on behaviour is well recognized outside of the 

energy policy domain, and network interventions can be used to accelerate behaviour 

change (Valente, 2012). In this paper, we define network interventions as purposeful efforts 

to use social networks to accelerate the increase of adoption of energy technologies in 

domestic properties. By ‘social network’, we refer to all inter-household interactions that 

are relevant to energy either face-to-face or online (although the latter currently account 

for only a small proportion of actual total interactions (King, 2012; Southwell et al., 2012)). 

Network interventions have been used successfully for tackling health-related issues 

(Valente, 2010), and much theoretical work exists on various diffusion processes on 

networks (Watts, 2002). Yet the insights from social network theory have so far been under-

exploited in the area of energy policy. The role of social networks and network interventions 

in the spread of information on energy technologies and behaviours, and the subsequent 

adoption rates of both, is a relatively new area for research. There are some early examples 

of such ideas in the literature e.g. Coltrane et al. (1986), Darley and Beniger (1981), and, in 

relation to climate change, Maibach et al. (2008). In addition, there has been some recent 

empirical work on the role of social networks in the diffusion of energy innovations 

(McMichael and Shipworth, 2013; Michelsen and Madlener, 2013; Fell et al., 2009). 

2.3 Modelling diffusion of innovations on a network 

Diffusion of innovations (Rogers, 1983) is a social communication process that influences 

individual adoption of a specific innovation. The theory has been applied in the context of 

domestic energy consumption (Wilson and Dowlatabadi, 2007). The spread of ideas or 

technologies has been widely studied across different domains as diffusion on networks 

(Valente, 2005). One of the most commonly studied network diffusion processes is the 

spread of infection by a single contact where transmission occurs from one individual to 

another, but, for a consumer product (or behaviour) to spread, empirical studies show that 

many people wait for a proportion of their social group to precede them in the process 

(Granovetter and Soong, 1983; Valente, 1996). Threshold models have been developed to 

account for this phenomenon (Grönlund and Holme, 2005; Watts, 2002). Diffusion models 
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usually consider only the social aspects of spreading, which is appropriate in many cases. 

However, the decision to adopt a technology may be based on a combination of factors, 

including ability to install/use the technology and the willingness to purchase, which will not 

only include personal considerations but also social influence from peers and the wider 

population. Modelling therefore needs to take into account these multiple factors: ability to 

adopt, personal usefulness of the item (as perceived by the householder), and the benefits 

of aligning with the social norm (Deffuant et al., 2005; Delre et al., 2010; Valente, 1996). In 

this work we include both personal and social aspects of diffusion in the model.  

Mathematical network models can be constructed to reproduce features found on real-

world networks (Castellano et al., 2009). Such features include the small-world effect (Watts 

and Strogatz, 1998) and scale-free degree distributions (Barabási, 2003). In the real-world, 

people often share common groups of friends, where a friend of a friend is also a friend. 

This is known as clustering (or transitivity) and is found to play a significant role in the 

dynamics of diffusion on such models (McCullen et al., 2013). However, often the clustering 

is not uniform across the whole network, with individuals being part of groups or 

communities within which links are denser between individuals than with the outside world. 

More realistic network models have been constructed that take this feature into account by 

linking individuals by associating them through group interactions (Newman, 2003). We use 

a variation on this type of network model, with added individual links and geographical 

information (similar to Hamill and Gilbert (2009)). This has the potential to be 

parameterized using real-world data; the method is described in more detail in the Section 

3. 

2.4 Network data  

Although there has been a considerable amount of research and analysis of social network 

structures, this has mainly been conducted for networks for which the data is relatively easy 

to obtain, such as either moderately small systems or online social networks. There is 

limited empirical data available on the networks that may operate between households in 

relation to energy technologies or behaviours, and this remains a challenge for modelling 

the influence of social networks on the adoption of energy innovations. Information is 

needed on the following aspects of the system: 

 The structure of the network — Who do people exchange information with 

regarding domestic energy technologies? 

 The density of the networks — How many others do people communicate 

with about energy? 
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 The weight of the links on the networks — What influence do certain links to 

individuals or groups have on adoption decisions? 

In section 3.2.1 we discuss our approach to the inclusion of empirical data, where available, 

and the assumptions that we have made in the absence of appropriate information. A more 

detailed discussion of the data requirements for this type of modelling can be found in Bale 

et al.(2013b). 

By its nature, diffusion on networks is intrinsically very sensitive to the structure and 

properties of the network. In an urban area the true structure of the social network cannot 

be known exactly (and will ceaselessly change over longer time-scales), and the factors 

affecting individual decision-making are complex and varied. Given these limitations, 

methods are required which can assess the most probable outcome of an intervention by 

means of simulation and scenario analysis over a range of possibilities rather than by means 

of predictive tools. This is common practice in other disciplines, where models are very 

sensitive to details and ensembles are used to derive useful insights (Stephens et al., 2012). 

2.5 Approach to application of the model in policy-making 

Adapting a general complexity policy-making approach proposed by Room (2011), we follow 

the following process: 

 Identify the stakeholders and their relationships: we consider households and those 

wishing to influence them. 

 Use real-world data to map out the connectivity between the various elements of 

the system (in these cases between households), as well as the options open to 

policy-makers, and use these to build a conceptual model which will guide the 

network and dynamical models. 

 Modify the system parameters to re-shape the outcomes: we change the parameters 

of the model in ways that relate to real-world interventions in order to study the 

resulting variation in uptake. 

 Use mathematical and computational models to help to identify the range of 

possible scenarios and outcomes. This is done not to forecast the future but to guide 

and inform as to which interventions might provide more leverage.  

 Identify areas of the model parameter space which give rise to large sudden 

changes, as these can indicate instabilities in either the model or the real-world 

system.  
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3. Methodology 

In previous work we developed the mathematical basis of a model (McCullen et al., 2013) to 

analyse how the diffusion of innovations depends on personal and social factors. The 

present paper focuses on developing this model to incorporate the means to explore roll-

out strategy scenarios as required for application to local authorities. We first summarise, in 

section 3.1, our previous work on the main features of the approach and the mathematical 

basis for the model. Section 3.2 and onwards then describes the novel development and 

methodology used for the present work. 

3.1 Summary of modelling approach — previous work 

In the model, households are represented as nodes on a network, with the links between 

the nodes representing lines of communication between householders, for example 

between individual households or at workplaces or other group environments. In McCullen 

et al. (2012) all nodes were homogeneous in their parameters, making the model amenable 

to mathematical analysis. In Bale et al. (2013b) we discussed how the model could be 

developed to include empirical data, and reported on the effects of introducing 

heterogeneous nodes representing different household archetypes into the network. 

The nodes on the network are each assigned a binary variable representing the current 

adoption state of the household they represent, xi = 0 or 1 for non-adoption or adoption, 

respectively. The number and pattern of adopters changes at each time-step (which for 

illustrative purposes we take to represent one month) according to the following rules. The 

total perceived usefulness or utility of a product to a household is a combination of factors, 

broadly divided into personal and social benefit (Delre et al., 2010). Personal benefit pi is a 

measure of the perceived benefit of acquiring the technology to the household. This could 

include factors such as cost savings, comfort gains, alignment with pro-environmental 

attitudes and interest in new technology. Total social benefit is the utility derived from the 

perceived benefit of fitting in with others, which can be divided into two parts: the influence 

from a household’s personal social links (peer-group) and the influence from society in 

general (population) (Valente, 1996). The relative contribution of personal and social benefit 

for different households is an empirical question. The model we have developed thus has 

three factors, which can be given relative weightings i, i and i, (with i + i + i = 1), to 

account for different preferences of the household. The parameter i is the weighting given 

to the perceived personal benefit to the household pi, i is the weighting given to the 

perceived benefit gained from following the influence of adopters within the household’s 

social network neighbourhood si, and i is the weighting given to m, the average uptake over 

the entire population, which represents the perceived benefit of aligning with the 

mainstream social norm. Different household types will weight these factors differently; we 
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are able to introduce different archetype groups to reflect this. The total utility to each 

household at any one time is therefore given by the equation: 

ui = i pi + i si + i m  (1) 

where si is the mean average level of uptake amongst the network neighbours of household 

i (which can be weighted by the strength of communication from each neighbour (the link 

weight)), and m is the weighted mean uptake for the whole population. Both si and m are 

recalculated at every time-step. The initial state for all households is chosen to represent 

the proportion of the households who have adopted the technology at the start of the 

period in question. The decision to adopt a technology is determined at each time-step if 

the perceived total utility to the household outweighs the barriers to adoption, seen as a 

combined threshold i, i.e. adoption occurs if ui > ,, and is a one-way process. 

The model was written in Python using NetworkX for the construction of the networks and 

Scientific Python (SciPy) for the dynamical time-stepping. Codes are available at 

http://sourceforge.net/projects/netdifmodel/. 

3.2 Development of the model — the present research 

For the scenario analysis presented here, we base our model on the City of Leeds, where we 

conducted a survey to gather some of the data needed for the model. However, the insights 

are more broadly applicable to urban areas and could easily be modified to represent other 

areas. 

In these model runs, the average properties of the network are largely fixed (except for the 

exact locations of the links, which are randomized), in order to investigate a dense set of 

possible realities covered by the uncertainty in the network structure. We also investigate 

the effect of weighting all links to either 1 or 0.5 in order to represent different innovations 

(more details given in section 3.2.6).  

We first summarise the main data collection process, and then discuss the approach to 

integrating data for the structure and properties of the network, the archetypes (parameter 

distributions for ,  and ) and the threshold (). 

3.2.1. Data 

We have taken primary data from a survey we conducted of domestic households in the City 

of Leeds, and these data are intended to be sufficient to inform and illustrate the operation 

of the model rather than a definitive work on attitudes to energy use in the City of Leeds.  

To collect empirical data with which to populate the model, a survey of Leeds residents was 

undertaken in May–June 2011. Two convenience sampling methods were used to reach 
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different segments of the population: 1) through an online collection method whereby 

participants were recruited by email and social media advertising via large organisations in 

Leeds (e.g. the university, council and other large employers) and 2) attending a twice-

weekly drop-in centre for residents in the east Leeds area of Burmantofts to encourage 

participation in the survey by low-income households without access to the internet. 

Burmantofts is an area with a large proportion (> 50%) of council-owned homes and has a 

high score on a number of socio-economic deprivation indices (Office for National Statistics, 

2011). The questionnaire sought information on attitude and behaviours with regard to 

energy use in the home as well as demographic information (including income level, 

employment status, and geographic area). A series of questions was also asked about the 

respondent’s social network, current sources of information about energy, and likely 

organisations that they would trust to provide energy advice. In total, 1068 valid responses 

were received, which represents 0.34% of the total number of households in the 

metropolitan district of Leeds. The sample was found to be broadly representative of the 

population in terms of tenancy, house type and pro-environmental behaviour (as 

benchmarked to the Defra Survey of pro-environmental behaviours (Thornton, 2009)). 

However, the difficulties in reaching certain sectors of the population resulted in under-

sampling of the unemployed, the retired and those on lower incomes. SPSS was used to 

analyse the questionnaire data. 

Figure 1 shows the key data that were used to develop the network representation.  

 

Figure 1 Responses (valid percentage, excluding missing values 3–7 %) to the question ‘Do 
you currently talk to any of the following people about energy use and/or saving money on 
energy?’ from 1068 households in Leeds. 
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Our survey showed that around 40–50% of people discuss energy use issues with family, 

friends or work colleagues, whereas only 10–20% talk about energy use to neighbours or 

members of other social groups to which they belong. These results are comparable with 

those reported by Southwell et al., (2012) who found that one third of a sample of people in 

the US reported sharing information about energy use. Importantly, they also found that, of 

those households, 85% shared information verbally and only 3% reported sharing through 

online social networking sites. These findings suggest that, although sharing energy 

information is not nearly ubiquitous, there is a significant proportion of the population that 

can be targeted by the local authority and their existing social networks utilised. 

It was not possible to ascertain the relative weight that people assigned to the views of 

others in their social network or the wider population, without undertaking a more in-depth 

survey. For all model runs, pi, the personal benefit of the innovation to the household, is set 

to 0.5 for all nodes. Through the modelling, we investigate how the decision to adopt 

depends on the relative weighting of this personal benefit and the social benefits derived 

from others adopting, relative to that household’s uptake threshold value.  

3.2.2 Network 

We gathered information on the network links related to energy information that exist in 

the City of Leeds. Using information from questions in the survey of 1068 respondents, we 

developed a social network relating to the sharing of information on energy between 

households. In the network, each node representing a household shares information with 

other nodes in the network with which it has individual, group or workplace links, as shown 

in table 1. Suggested types of group were given in the questionnaire to aid understanding 

(although the type is not important for the modelling): community/volunteer groups, 

religious meeting places, social groups, sports groups, groups related to children’s activities 

or other. The option of ‘none’ was also available. 

If respondents reported talking to friends, family and/or neighbours about energy they were 

assigned 5, 3 and 2 (or combinations thereof, up to a maximum of 10) links to other nodes, 

respectively. It was not feasible in a questionnaire format to ask respondents to keep track 

of and report the number of these links, so these are arbitrary values for each category. If 

the respondent reported talking to groups about energy, then that household was 

associated with their reported number of groups. Workplace links were assigned if the 

respondent was employed and reported talking to colleagues about energy. From 1068 

responses it was found that 756 households reported talking about energy-related issues to 

at least one other individual household, group (local) or workplace (long distance). The 

remaining 312 households are represented as nodes that are unconnected to the network 

but are able to adopt if seeded, or if their combination of personal benefit and the influence 

of the total population exceeds their threshold value. 
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Table 1 — Number of households with various links on the network. 

Active Individual Links Active Group Links Active Workplace Links 

# of 
Links 

# of 
Nodes 

% of 
Nodes 

# of 
Links 

# of 
Nodes 

% of 
Nodes 

# of 
Links 

# of 
Nodes 

% of 
Nodes 

0 394 37 0 948 89 0 588 55 

1 0 0 1 50 5 1 480 45 

2 24 2 2 40 4    

3 90 8 3 25 2    

4 0 0 4 3 0    

5 192 18 5 2 0    

7 42 4       

8 247 23       

10 79 7       

 

The construction of a model network based on association with groups (as well as 

individually) is shown in figure 2.   



13 

 

Please cite this article as: Bale, C.S.E., et al., Harnessing social networks for promoting adoption of energy technologies in the domestic 

sector. Energy Policy (2013), http://dx.doi.org/10.1016/j.enpol.2013.09.033i  

 

 (a)      (b) 

 

 (c)      (d) 

 

Figure 2 Building a network to include groups association (a) each node is associated with 
others as part of association with various groups or individually, (b) the red dots show 
locations (based on the 476 lower level super output areas (LLSOA) in Leeds) for households 
and the larger green dots for theoretical group locations (based on the 108 middle layer 
super output areas (MLSOA), (c) household nodes are associated with local groups, (d) links 
are formed to five of the other households with whom they share group membership. 
Further stages in the process involve forming links through workplaces (in a similar manner 
to local groups) and individual links. Some nodes are present but remain unconnected on 
the network, representing those households that do not talk to any other household or 
group about energy.  
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3.2.3 Archetypes 

The archetypes in the model refer to the segments of the population with different 

preferences with regard to the weighting of factors p, s and m; that is, we define a particular 

(j) archetype Aj=(j, j, j). None of the interventions we investigate in the present work 

change the number and/or types of archetypes; instead the interventions are aimed at 

altering the network, threshold, or both. This translates to the interpretation that in the real 

world it would be very difficult for a local authority to alter individual household 

preferences as to whether decisions are led by personal or social (peer or population norm) 

benefit. We do, however, set the archetypes to include heterogeneity in the population, as 

would be seen in the real world. Every run presented in this paper is set with three different 

archetypes: A1 = (0.7, 0.3, 0.0), A2=(0.4, 0.3, 0.3), A3=(0.1, 0.1, 0.8), with proportions P(A1, A2, 

A3) = (0.3, 0.5, 0.2). This implies that, for half the population, personal, social and societal 

factors are all significant, whereas other parts of the population are more strongly 

personally oriented or strongly influenced by society. The values, for both the relative 

weighting in each archetype and the proportion of that archetype in the population, were 

chosen on the basis of where meaningful results arose in previous analytical work and in 

order to reflect what is known about the proportions of people who exhibit different 

behaviour in diffusion theory, e.g. early or late adopters (Rogers, 1983). From previous work 

(Bale et al., 2013b), we know that the proportion of different archetypes will make a 

significant change to the simulations. However, here we maintain the archetype groups in 

these proportions, as the aim of this work is to compare intervention scenarios for a set 

population. 

3.2.4 Threshold 

In the model we introduce further heterogeneity by allocating different thresholds across 

the nodes, relating to households’ ability to adopt. The threshold categories and values are 

estimated as shown in table 2. The percentage of households (nodes) assigned to each 

category are based on household income, house type and tenancy using empirical data 

collected from the survey. We grouped households into threshold categories. Those living in 

flats, halls of residence, or in shared or rented accommodation are deemed unable to adopt, 

as they will typically not be able to change the physical fixtures and fittings. 
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Table 2 – Threshold rules and number of nodes assigned to each value for N=1068 (1% 

missing values). The percentage of our sample with a threshold of =1 compares with 41% 
in this category using data from the 2001 Census for the Leeds area (Office for National 
Statistics, 2001). 

Threshold 

Value () 

Rules for type and 
tenancy of household 

with threshold() 

Banding threshold 
level for those 
households that 
are able to adopt 

Percentage of 
population in 
model with 

threshold () 
 

0.25 (Low) Able to adopt 
House types: Detached; 
Semi-detached; Terrace. 
Tenancy: Owned 
outright; Buying with 
mortgage. 

High income band  
(> £40,000 pa) 

25 

0.45 (Mid) Middle income 
band (£40,000 < 
£20,000 pa) 

16 

0.75 (High) Low income band  
(< £20,000 pa) 

4 

1 Not able to adopt  
House types: Flat; Halls 
of residence; Other. 
Tenancy: Shared; Rented 
(Privately or from 
Council, HA etc.); Other. 

 52 

 

Given the personal utility value, pi = 0.5, that we adopt (see section 3.2.1), this implies that 

the adoption of the energy technologies will be personally beneficial to high- and middle-

income households, but not to low-income households or those unable to adopt (because, 

for example, they are in rented accommodation). Whether those households that are able 

to adopt actually do so will depend on the relative weighting of their personal, social and 

societal benefits.  

3.2.5 Estimates 

In the absence of complete data, we have had to make estimates in the model, as follows. 

For the network representation we assume that households have 5 friends, 3 family links 

and 2 neighbours. If a household has a group or workplace link then we assume that the 

household has five active group contacts within that group. This gives the numbers shown in 

table 1. We assume values for p and the archetype groups. Once a household’s perceived 

utility exceeds the threshold they immediately become adopters at the next time-step. In 

reality, the time taken for making the decision and then completing the contracting and 

installation process could be considerably longer, but this would not change the basic 

operation of the model. We also assume that all decisions are made synchronously and at 
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regular (monthly) intervals, which is computationally convenient but unrealistic in the real 

world. Although the proportions of households assigned to each threshold level are those 

defined by the survey data, the threshold values are assigned only to give meaningful results 

in the simulation, as there are no existing data to enable us to easily quantify these values. 

3.2.6 Simulation of policy scenarios 

For each simulation, a social network is created based on the above rules and assumptions, 

and an initial seeding chosen. The model is run for 36 time-steps. This was found to be 

enough to give a stable final configuration. For each initial network configuration this is 

repeated for 100 random realisations to give an average final uptake. 

Having developed a network representation of the city based on empirical evidence (table 1 

and figure 2), we simulated the different roll-out strategies that could be implemented by 

the local authority. We largely follow the framework of network interventions outlined by 

Valente (2012), informed by strategies that have been proposed, such as the Committee on 

Climate Change’s proposal that energy-efficiency measures be rolled-out in a street-by-

street/neighbourhood approach (Committee on Climate Change, 2009). However, we also 

propose interventions that are aimed at the threshold (barrier to adoption) as opposed to 

altering the network itself. The different strategies are simulated by altering different 

parameters in the model and can have effects in the following ways: seeding different initial 

conditions for the households that already have the technology at the outset, or have it 

imposed on them at time-step 1; strengthening or adding the weights of the links on the 

network; or lowering the threshold value. The first two strategies are closely related to 

Valente’s categories segmentation and induction. The incentive and snowball strategies are 

informed by ideas from interventions that local authorities have implemented (Bale et al., 

2013a) 

In addition to the baseline case (Do Nothing scenario), we investigated four different roll-

out strategies: 

 Seeded: Free installation of the technology directly to a percentage of 

households (that are able to adopt (  <1)) randomly chosen on the network – 

modelled by increasing the initial seed to a range of 5 to 20% of households. 

 Communities: Free installation of the technology directly to households that are 

connected via a number of (work or local) groups on the network – modelled by 

seeding all nodes (who are able to adopt (  <1)) of a given number of groups 

from 0 to 20, an attempt to induce a ‘critical mass’ for propagation by clustering 

effects (see McCullen et al.(2013)). 
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 Incentive: A voucher is made available to all households on the network which 

lowers their threshold to adoption (if they are able to adopt) – modelled by 

decreasing the threshold for all households that are able to adopt (  <1).  

 Snowball: A recommend-a-friend voucher is given to each household that 

becomes an adopter (which gives them a reward for spreading the word). Each 

new adopter is assigned one extra link to another node on the network (at 

random) and the threshold to one, two or all of their linked households is 

lowered to represent the voucher incentive they can pass on to other 

households. 

In addition, this is implemented for two specific technology examples: (a) photo-voltaic (PV) 

panels and (b) loft insulation, which would have different social diffusion mechanisms 

representative of the different characteristics of the technologies. Strong peer effects have 

recently been identified in the diffusion of PV panels; Bollinger and Gillingham (2012) show 

that additional installation of PV panels increased the probability of adoption for homes in 

the same geographic area by a significant and observable degree. Bollinger and Gillingham 

propose that increasing the visibility of adoptions would be expected to increase the rate of 

adoption. In this modelling work the set of archetypes remain the same (as do all other 

parameters in the given scenario) but in case (a) the technology is visible and therefore 

likely to have a higher social diffusion element compared to case (b), where the technology, 

once installed, is hidden from view. In case (b) the network links are weighted to 0.5, 

whereas in case (a) weighting remains at 1. The parameter values for all scenarios and both 

cases can be seen in Table 3. Weighting all links by 0.5 is represented in the model by 

altering equation (1) to:  

 ui = i pi + 0.5 si + 0.5 m  (2) 

for case (b). 
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Table 3 — Intervention scenarios and parameter values. The value for p = 0.5 is set the same 
for all runs. Each scenario is run for a set of archetypes A1 = (0.7,0.3,0.0), A2=(0.4,0.3,0.3), 
A3=(0.1,0.1,0.8), with proportions P(A1, A2, A3) = (0.3, 0.5, 0.2). For technology case (a), 
where innovation is more easily socially diffused (such as solar panels, as people tend to see 
and discuss these more), all links are weighted to 1; for technology case (b), for those that 
are not (e.g. insulation, where the intrinsic benefits are considered by potential adopters 
but the technology, once installed, is hidden from view), links are weighted to 0.5. 

Scenario Type of 
Intervention 

Example of possible 
action taken by LA to 
affect intervention 

Parameters 

Do Nothing 
(Fig 3 & 4) 

None. None. values assigned in table 2 
Initial seed = 0 
Network = Baseline 

Seeded 
(Fig 5) 

Network: Target 
individual 
households on 
network.  

Free installation of 
the technology to a 
proportion of 
randomly selected 
households in the 
city. 

values assigned in table 2 
Initial seed (m0) = 0.05–0.20, 
randomly assigned 
Network = Baseline 

Communities 
(Fig 6) 

Network: Target 
households 
connected by a 
group or 
community hub.  

Free installation of 
the technology to a 
proportion of 
households in the 
city who are 
connected to 
selected groups. 

values assigned in table 2 
Initial seeding (m0) for 0–20 
groups, assigned via groups 
Network = Baseline 

Incentive 
(Fig 7) 

Threshold: Reduce 
threshold for 
random selection of 
households. 

Voucher to refund 
part of the cost of 
installation for all 
households in the 
city. 

= values reduced by 0–
0.20 
Network = Baseline 

Snowball 
(Fig 8) 

Threshold and 
Network: One new 
link to another 
random node on 
the network is 
added to each new 
adopter. In addition 
the threshold is 
reduced for 1 
(single voucher 

Money-back 
voucher(s) for new 
adopters which they 
pass to other 
households whose 
threshold is lowered. 

reduced by 0–0.20 
for households that receive a 
voucher from a new adopter 
on the network. Network = 
Baseline + increased number 
of links on the network at 
each time-step. 
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scheme), 2 (two 
vouchers) or all 
(unlimited 
vouchers), of the 
adopters’ network 
neighbours. 

 

The data used to populate the model show that a significant portion of the social 

interactions important to domestic energy-use behaviour are between households that are 

not physically adjacent, due to social interactions in other venues (e.g. the workplace) that 

affect behaviour at home (Thøgersen and Ölander, 2003). This was a typical feature of all of 

the strategies investigated. Hence, the “communities” strategy, for example, focuses on 

communities that are not necessarily geographic, but rather those that are work-based or 

social in nature. 

4. Results 

In this section we discuss the results from the intervention scenarios modelled (table 3). 

4.1 Scenario analysis 

Model results are shown in Figure 3 for the baseline case where the local authority has 

taken no intervention. Note that maximum uptake is limited by the high proportion (50%) of 

households in this case who are unable to adopt (threshold value,  

 

Figure 3 Uptake over 36 time-steps on the baseline model with no initial seeding for cases 
(a, red) and (b, blue). The dashed lines give the average of all the runs. In case (a) links on 
the network are weighted to 1.0 and in (b) are 0.5. 100 runs are shown to assess the effect 
of the initial conditions.  
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The uptake curves exhibited in figure 3 can be explained as follows. In the first month, 

uptake is entirely a consequence of adoption for those households for whom the weighted 

personal benefit to them exceeds their personal threshold ( ). In the following months, 

those who are initially below the threshold begin to adopt as the social benefit from peer-

group ( ) and the wider population ( ) come into effect. The higher level of uptake for 

case (a) compared to case (b) is a result of the social effect being greater as the connection 

weighting is stronger (1.0 versus 0.5). This shows the effect of the greater visibility of the 

technology inducing social network propagation. 

There are two steady states found in case (a): one where the uptake ‘stagnates’ at around 

15% and one where uptake of nearly 30% is achieved. This is a particular feature of the 

sensitivity of networks, where cascading dynamics can depend strongly on the precise 

network structure. For these reasons we look at ensemble averages over 100 different 

realizations for the following results.  

4.1.1 ‘Seeded’ and ‘communities’ scenarios 

Figure 4 shows the results from the ‘seeded’ scenario, where we represent the local 

authority giving the technology free of charge to a certain number of households. Nodes in 

the model are randomly seeded and are therefore assigned to the adopted state at the start 

of the model run. The model reveals that there is a certain range in the level of initial 

seeding, in which the total rate of adoption is greater than one-to-one with the level of 

investment. This level is seen at a lower level of seeding (m0) in case (a) than case (b). This 

effect gives rise to more adoption by propagation on the network than could be achieved by 

the seeding alone. This demonstrates how such network models can reveal non-intuitive 

results that would give the local authority a better return on investment (‘more bang for 

their buck’) and could be explored in more detail when designing interventions of this type. 

 

In figure 4, segments of the graph with a slope greater than the 1:1 line indicate levels 

where more adoption is induced through the network effects over and above the increase in 

seeding level alone. 

In figures 5 and 6, the ‘communities’ results are shown, where the seeded nodes are linked 

to a certain number of groups, either workplace groups (figure 5) or social groups (figure 6), 

instead of being assigned randomly across the network.  
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Figure 4 Seeded scenario: Increasing the initial level of seeding (m0) randomly across the 
network. The average final uptake after 36 time-steps, over 100 realizations, is shown for 
case (a; red squares) and case (b; blue dots); the lines show the 1:1 ratio in rates of increase 
of seed level to final uptake.  

 

 

Figure 5 Communities scenario – workplace group case: Results are shown for case (a; red 
squares) and case (b; blue dots); the lines show the 1:1 (seed level:final uptake) ratio in the 
increase of seeding. A line is drawn in at 10% to allow comparison with the results in figure 4 
and 6. There are 24 households assigned to each workplace and 0–10 workplaces are 
seeded.  
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Figure 6 Communities scenario – social group case: Results are shown for case (a; red 
squares) and case (b; blue dots); the lines show the 1:1 (seed level:final uptake) ratio in the 
increase of seeding.  

This is a scenario which, in theory, as a result of propagation via clusters, was expected to 

show a significant increase in uptake versus the randomly seeded scenario. However, as can 

be seen in figure 5, the model does not support this assumption. The results for the 

‘communities’ scenario for seeding up to 10% are no better than in the ‘seeded’ scenario, 

and higher levels of seeding do not result in any significant increase in final uptake. On 

closer consideration, we conclude that this is because there is no significant overlap 

between communities (seeded clusters), and thus even once each cluster is seeded there is 

no mechanism for adoption to propagate socially across the whole network and the results 

are therefore similar to those in the randomly seeded case. 

For the social group 'communities' case shown in figure 6, the uptake is much the same as in 

the workplace case, however more people are connected to, and talk with colleagues at, 

workplace, so there is potentially scope for increased peer reinforcement towards adoption.  
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4.1.2 ‘Incentives’ scenario 

Figure 7 shows the results from the intervention which aims to reduce the threshold to 

adoption rather than altering anything related to network properties.  

 

Figure 7 Incentives scenario: Results are shown for case (a; red squares) and case (b; blue 
dots). The thresholds are lowered by increasing amounts (except those with a threshold of 
1, who cannot adopt, and remain unable to do so). 

In case 7(a), where there is a higher social spreading component (reflected by the 

connection weightings), a small decrease in threshold level significantly increases the uptake 

of the technology at a critical value. This is the point at which the thresholds of members of 

one of the archetypes are reduced below the level of their utility required to induce social 

spreading, bringing final adoption up to the theoretical maximum. A larger decrease in the 

threshold levels is needed in case 7(b), as their utility is lower due to the reduced weighting 

on social aspects. In this latter case, several steps can be seen as increasingly more 

subgroups are enabled by their threshold crossing below their utility. 

4.1.3 ‘Snowball’ scenario 

Results are shown in figure 8 for the snowball scenario intervention, where a link is added to 

nodes that have just adopted and thresholds reduced for their new network neighbour, two 

neighbours, or all of their neighbours. This is a simple model of a voucher scheme, which 

would encourage interaction by giving cash-back for the giver, and make the receiver more 

likely to listen by giving them an incentive (reducing their threshold). This can be seen to 

have a positive effect on uptake. For full comparison with the other scenarios, more data 

would be required on the effect on individual behaviour of such a voucher scheme. 

However, these results are a first attempt to model roll-out strategies based on network-

based interventions, and can be seen to show potential gains in levels of adoption.  
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Figure 8 Snowball scenario: Results are shown for case (a; red squares) and case (b; blue 
dots). A new link is added to every adopting node to another node randomly selected in the 
network. In 1 (dotted lines) the newly connected node has the threshold parameter reduced 
by a set amount (single voucher scheme), in 2 (dashed lines) this happens for two network 
neighbours (two vouchers) of the adopting node, and in 3 (solid lines) all network 
neighbours have their thresholds reduced (unlimited vouchers). Results are plotted over a 
range of this fixed reduction. 

4.2 Evaluation of scenarios 

The aim of modelling the different roll-out interventions is to determine the potential for 

employing network models to compare and identify those interventions that will most likely 

lead to increased uptake of the technology. 

The most easily comparable results are the two seeded scenarios, seeded (where 

households are randomly seeded) and communities (where groups are seeded). Here we 

can compare directly, as costs for either intervention would be roughly the same (because 

they are proportional to the number of people to whom we seed the innovation). The only 

difference will be the logistic costs of delivery, as it would likely be cheaper to install 

technologies if the seeded households were located close to each other. In this case we see, 

unexpectedly, that there is no appreciable difference between the effectiveness of the two 

scenarios. This is at first surprising, as we might have expected to induce a ‘critical mass’ of 

adopters from which the innovation would spread via the clustering effects given in 

McCullen et al. (2013). Here the model reveals the possibility that the system does not meet 

intuitive expectations and we are driven to ask why, and whether this could arise in the real 

world. The network topology we use in these simulations has very little overlap between 

communities; this is seen as the primary reason for the lack of enhanced spreading. If many 

members of one (seeded) community were also members of another, the cluster-based 

spreading would take over as a diffusion mechanism, but this is not the case here. This 
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highlights two findings: firstly, that these models can reveal possible diffusion dynamics that 

it would be difficult to anticipate without a model, which could have a negative or positive 

effect on the outcome, and, secondly, that we need to be careful that the essential features 

revealed by the model are accurately programmed using real-world data to ensure that we 

are seeing the correct behaviour. In general, to quantify and fully compare the different 

strategies would need two things: i) better understanding of individual-level behaviour in 

response to various incentives and information, in order to quantify the relative level of 

modification of the network parameters; and ii) costing of the various options, so that a 

cost-benefit analysis could be carried out by a local authority.  

In all the modelled scenarios, it is important to note that the results show non-trivial 

emergent behaviour that would not have been revealed through conventional analysis. In 

this respect, there is a clear case for using this type of complexity modelling to support the 

design of local-level policy interventions. 

5. Discussion 

We have shown the importance of this type of dynamical network modelling to understand 

the role of network interactions in the diffusion of technologies by using complexity 

modelling to assess the emergent behaviour of the system. This method provides several 

advantages for studying the diffusion of energy technologies, and assessing interventions, 

that other methods may not provide. These include the ability to: 

 include the effects of both personal preferences and social influences in the 

diffusion process. 

 model a heterogeneous population of households with different network 

connections, thresholds to adoption, and preferences towards the balance between 

personal and social benefits.  

 include nodes on the network that, while they may not be ‘active’ in terms of talking 

to others about energy, are still important to include, as they may mediate the 

spread of technologies by their adoption state being visible to others and may still 

be able to be seeded (if they are able to adopt  < 1)). 

 include nodes that are ‘active’ on the network, cannot (under our rules) themselves 

become adopters, but may still have a role in the diffusion process. For example, 

they could either block diffusion by being non-adopting neighbours of a potential 

adopter, or be a potential route to higher rates of adoption if the barriers to their 

adoption are specifically targeted. 
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 model a population without the need to understand the exact motivation of each 

individual household for adopting a certain technology (e.g. pro-environmental 

behaviour, saving money, enthusiasm for the technology). With further insight into 

the types of household that fall into different archetype groups and different 

threshold categories (alongside information on the social network), it is envisaged 

that larger datasets of socio-economic information could be used in future to define 

a population and assist modelling at the city level. 

This work, therefore, provides the basis for decision-making tools that could be used by a 

local authority to inform the design of roll-out strategies for initiatives aimed at encouraging 

uptake of energy technologies in the domestic sector. Informal feedback we received from 

local authority representatives suggested that this type of quantitative modelling and 

scenario analysis would be useful in supporting internal business case development for 

energy-efficiency retrofit programmes. There are many variations that could be made to the 

scenarios as implemented in the model and to the parameters of the model (thresholds, 

network properties, archetypes). However, we have chosen illustrative strategies guided by 

the literature of technology uptake – see section 2.1. In the absence of specific data, 

examining further strategies would not at this stage provide further insights. Nevertheless, 

the investigation and development of the model we have undertaken to date could, with 

appropriate inputs, form the basis of a decision-making or assessment tool for specific local-

level interventions. Suggestions for future investigation include: 

 Different policy scenarios where those with barriers to adoption are targeted, e.g. 

private rented sector where tenants do not have the power to install technologies 

that alter the building. 

 The uptake of different energy technologies that each exhibit different social 

diffusion properties. 

 Uptake of the Green Deal (Department of Energy and Climate Change, 2011) in the 

UK. Local authorities are likely to play a significant role in encouraging uptake (Bale 

et al., 2012a) and network effects could be used to leverage the social benefits. 

As we consider in detail elsewhere, the issue of availability of data is key, and it is worth 

emphasising that more data and experiments in this area, as well as evidence (as to the 

success or otherwise) of real-world network interventions for promoting uptake, are 

warranted. 

Although it would be important to investigate in more detail using data appropriate to each 

specific intervention and target population before using models such as ours to support 

specific decisions, we are able to draw some useful generic policy implications for local 
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authorities seeking to influence the likely uptake of an energy technology. As we have 

explained above, our model scenarios were parameterized using generalized, rather than 

policy-specific, input data (section 3.2.1).  

As can be seen from the numbers presented in table 2, we estimate that 50% of our sample 

is not able to adopt either insulation or PV panels because they are either in flats (with 

limited roof area per resident and where concerted action is needed) and/or rented 

properties (where the decision would be out of residents’ hands). Enabling such households 

to adopt specific energy technologies would have an enhanced effect, over and above 

simply their own level of adoption, by making them active influences on the network, 

‘unblocking’ obstacles in the whole-system network and allowing spreading to occur more 

widely. The return on investment in such cases has the potential to be greater than that 

expected when not accounting for network effects.  

Initial adopters who adopt because the technology is considered personally beneficial to 

their household are needed to trigger spreading on the network. Increasing the perceived 

value of the innovation (p) or its average relative weighting in the decision process ( ) would 

increase this activation. It would be difficult for a local authority to change the intrinsic 

preferences of a household, and thereby influence the weighting factor 

easier route to the same outcome would be to make the personal benefits of the 

technology clearer to different groups across the city (including those that are on low 

incomes and/or those who are landlords of privately tenanted properties).  

An important finding is that network effects can play a significant role in increasing uptake, 

as is particularly seen in the Snowball scenario. Potentially beneficial social network effects 

can be enhanced by increasing the communication of energy information between peers on 

the network. Encouraging communication of energy-related issues increases the weighting 

of the links, which in turn can lead to a wider uptake.  

Prior to the application of modelling results in policy decision support, it would be important 

to investigate in more detail using data appropriate to each specific case, where necessary. 

6. Conclusion   

In this paper we have highlighted the value of incorporating complex-systems thinking on 

social networks into models of energy decision-making and policy interventions. This is 

based on consideration of the existing evidence for the success of network interventions in 

other domains and the development of a model that enables exploration of different roll-

out strategies for local authority interventions. In this model we have incorporated both 

personal benefits (and therefore intrinsic properties of the technology, e.g. cost) and social 

influences in order to draw together both sides of the decision-making process. For a case 



28 

 

Please cite this article as: Bale, C.S.E., et al., Harnessing social networks for promoting adoption of energy technologies in the domestic 

sector. Energy Policy (2013), http://dx.doi.org/10.1016/j.enpol.2013.09.033i  

 

for which the social influence is reduced, corresponding to a less visible technology, there 

are lower levels of technology uptake in the model, showing the importance of social 

network effects. Whilst our work does not go all the way to addressing the problems 

identified by Wilson and Dowlatabadi (2007), this type of modelling could be useful in 

bridging the gap identified between adoption models based only on individual behavioural 

motivations and more qualitative approaches based on the social context of decision-

making (Nye et al., 2010). We have shown the potential for use of these modelling methods 

in the assessment of local authority interventions. The results of the simulations have 

revealed the qualitative dynamics of the uptake in response to various alternative strategies 

and provided a strong motivation for using this type of network model-based thinking to 

inform policy decisions. Further work is certainly needed in this area, including more data, 

experimental evidence for the success (or otherwise) of different strategies, and a better 

understanding of household decision-making related to different energy technologies. 

Nonetheless, the results presented here suggest ways in which a dynamical network 

approach could be used as the conceptual basis of a decision-support tool for local authority 

interventions in domestic energy demand.  

We propose that local authorities could use this type of modelling to their advantage for 

maximizing adoption of retrofit domestic energy technologies at a time of limited resources 

and great imperative for action in the face of rising fuel bills and climate change. 
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