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Single-Degree-of-Freedom Response of Finite Targets Subjected

to Blast Loading – The Influence of Clearing

S.E. Rigbya, A. Tyasa, T. Bennetta,∗

aDepartment of Civil & Structural Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK

Abstract

When evaluating the dynamic response of a structure subjected to a high explosive detona-

tion, it is common to simplify both the target properties and the form of the blast pressure load

– a standard approach is to model the target as an equivalent Single-Degree-of-Freedom (SDOF)

system with the blast load idealised as a pulse which decays linearly with time. Whilst this

method is suitable for cases where the reflecting surface is large, it is well known that for smaller

targets, the propagation of a rarefaction ‘clearing’ wave from the edges of the target may cause

a premature reduction in the magnitude of the blast pressure and hence reduce the total impulse

acting on the structure. In this article, a simple method for calculating clearing relief, based on

an acoustic approximation of the rarefaction wave, is coupled with an SDOF model to investi-

gate the influence of clearing on the dynamic response of elastic targets. Response spectra are

developed for a range of target sizes and blast events that may be of interest to the engineer, en-

abling the effects of blast wave clearing to be evaluated and situations where blast wave clearing

may increase the peak displacement of the target to be determined. When the natural period of

the target is large compared to the duration of loading, the reduction in positive phase impulse

leads to significantly lower values of peak displacement when compared to an identical system

subjected to a triangular blast load. For systems where the natural period is comparable to the

duration of the loading, the early onset of negative pressure (attributed to blast wave clearing) can

coincide with the rebound of the target and result in greater peak displacements. It is concluded

that blast wave clearing should be evaluated and its influence quantified in order to ensure that

blast resistant designs are efficient and safe.
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1. Introduction

The potentially devastating effects of a high explosive detonation, coupled with a perceived

increase in the use of such weaponry against civilian targets, has highlighted the need to analyse

and design structures to resist such extreme loading events. In order to ensure that a structure

can respond safely to a high explosive detonation, the loading imparted on the target, and hence

the response of the system must be quantified with a sufficient level of confidence.

Numerical analysis methods are a valuable design tool, however the associated computational

expense often renders such methods impractical for use in the early stages of design. It is often

more desirable to undertake quick, approximate calculations to refine a scheme before more

complex analyses are undertaken, however this is normally facilitated by simplifying the load

model subjected to the target.

The empirical load model proposed by Kingery and Bulmash [1] – implemented into the

U.S. Department of Defense Design manual UFC-3-340-02 [2] (previously TM-5-1300), auto-

mated predictive tool ConWep [3], and Blast Effects Design Spreadsheet (SBEDS) [4] – provides

predictions for the blast pressure acting on an infinite target.

It is well known that a relief wave, travelling inwards from the edges of a finite target, can

reduce the late time pressure acting on the loaded face. Current design guidance [2, 3, 4] provides

simple corrections to account for this pressure reduction, however recent studies have questioned

the validity of this approach [5, 6] and suggested improved empirical corrections for the clearing

effect. In fact, as discussed in recent articles by the current authors [7, 8], a simple, yet robust

approach to predicting clearing relief was developed almost 60 years ago at Sandia National

Laboratory [9]. This article investigates the effect of this clearing relief on the dynamic response

of finite targets.

2. Blast Loading on an Infinite Target

Following an explosive detonation, the rapid conversion of the reacting material into high

temperature, high pressure gas displaces the surrounding medium (typically air) at a rapid rate,

causing a shock wave to form. This shock wave travels outwards from the source of the explosion
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and is characterized by an abrupt increase in pressure, pmax, followed by an exponential decay to

ambient pressure, the duration of which is called the positive phase duration, td. After the positive

phase comes a period of ‘negative’ (below atmospheric) pressure caused by over expansion of

the air following the shock front. The pressure-time profile for an ideal blast wave in free air is

shown schematically in Figure 1, where the minimum pressure is given as pmin and the negative

phase duration is given as tn.

Figure 1: Idealised pressure-time profile for a blast wave in free air

If a blast wave propagates in air without encountering an obstacle, the air will be compressed

to an ‘incident’ or ‘side-on’ pressure, pso. When the blast wave is obstructed by a rigid tar-

get, conservation of momentum and energy at the boundary results in a significant increase of

pressure, to a reflected pressure, pr. Blast resistant design is concerned with ensuring that the

structure can resist this reflected pressure and impulse.

2.1. Modelling the Positive Phase

The positive phase pressure-time history of the empirical load model [1] is approximated by

the ‘modified Friedlander equation’ [10],

p(t) = pmax

(

1 −
(t − ta)

td

)

exp

(

−b(t − ta)

td

)

, (1)

and the values of peak overpressure (pmax), arrival time (ta), positive phase duration (td) and

waveform parameter (the coefficient describing the rate of decay of the pressure-time curve, b)

can be determined from the empirical data presented by Kingery and Bulmash [1]. This enables

incident and reflected airblast parameters to be predicted for either surface bursts or free air bursts
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at any scaled distance, Z = R/W1/3, where R is the distance from the charge centre to the target,

and W is the mass of explosive charge, expressed as an equivalent mass of TNT.

Using this simplified load model allows the analyst, as a first approximation, to estimate the

magnitude and temporal variation of loading on a structure exposed to a blast wave, without the

need to model the blast wave propagation and interaction with the structure, vastly saving on

computational expense. This simple method forms the basis of design guidance such as UFC

3-340-02 [2], and software such as ConWep [3] and SBEDS [4].

2.2. Modelling the Negative Phase

It is a common approach to ignore the negative phase when using the empirical load model.

Whilst this may perhaps be considered conservative, Teich et. al. [11] and Krauthammer and

Altenberg [12] demonstrate that this approach can be un-conservative if the onset of negative

pressures coincide with the rebound of the target.

For highly impulsive loading, neglecting the negative phase can be grossly over-conservative,

particularly considering that the magnitude of negative phase impulse approaches that of the

positive phase at larger scaled distances. As such, it may be important to model the negative

phase accurately.

In this study, the negative phase parameters compiled by Goodman [13] are used with the

cubic expression presented in the Naval Facilities Engineering Command Design Manual, Blast

Resistant Structures [14]

p(t) = pmin

(

6.75(t − [ta + td])

tn

) (

1 −
t − [ta + td]

tn

)2

, (2)

where pmin is the peak underpressure and tn is the negative phase duration.

2.3. Experimental Validation

In a review of simplified blast predictive models, Bogosian et. al. [15] concluded that the

ConWep method best represented the average results from a wide range of test data collected,

although the full-scale experiments demonstrated a significant spread. Rickman and Murrell

[5] observed that, for small scale tests, the ConWep predictions of reflected pressure agreed

remarkably well with the measured pressures.

As part of the current investigation, a number of blast trials were conducted at the University

of Sheffield Blast & Impact Laboratory, Buxton, UK. 0.25kg C4 hemispherical explosive charges
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were detonated 4m, 6m, 8m and 10m away from a semi-infinite, rigid target1. The charges were

detonated on a 50mm thick steel plate, placed on a level, flat concrete ground slab, enabling

the detonation to be considered as a hemispherical surface burst. A Kulite HKM 7 bar pressure

gauge was placed 375mm from the base of the target, with a distance of at least 4m to any free

edge of the reflecting surface. Pressure was recorded using a 16-Bit Digital Oscilloscope at a

sample rate of 100kHz synchronised with the detonation. Figure 2 shows experimental pressures

and ConWep (positive phase) and NavFac [14] (negative phase) predictions from this study –

the experimental traces show a small amount of sensor ringing at the shock front, and record the

presence of the well-known ‘second shock’ at the beginning of the negative phase, but overall

the predictions match the experimental traces remarkably well.
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Figure 2: Experimental and predicted pressure time histories for a 0.25kg C4 (0.3kg TNT) charge detonated on a rigid

surface at ranges of 4m, 6m, 8m and 10m from a semi-infinite target (Z = 6.0, 9.0, 12.0 and 14.9m/kg1/3)

It is clear that both the positive and negative phase predictions provide a highly accurate rep-

resentation of the experimentally measured pressure-time history of a high explosive detonation.

The empirical load model can thus be a very useful tool for the first stages of blast-resistant

design; however the method assumes that the structural geometry has no influence on the devel-

opment of reflected pressures on the face of the target, i.e., that the structure is effectively infinite

in size in the directions parallel to the blast wave front. When this is not the case, the propagation

of a ‘relief’ pressure wave from the free edges of the target may influence the load applied to the

structure. This process is known as ‘clearing’.

1A 500mm thick, reinforced concrete bunker wall, 4.5m high × 4.0m long.
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3. Blast Loading on a Finite Target

Clearing begins the moment a blast wave reaches the free edge of a finite reflecting surface.

At this free edge, whilst the reflected shock front begins to reflect away from the surface, the

incident shock front continues unimpeded past the edge of the target, causing diffraction around

the free edge. This diffraction generates a low pressure rarefaction wave travelling along the

loaded face, beginning at the boundaries and propagating in towards the centre of the target (see

Figure 3). As it passes over a point of interest, the rarefaction wave reduces the pressure acting

on the loaded face, and hence reduces the total positive phase impulse imparted to the target.

Incident shock front

Reflected shock front

Rarefaction wave

Target

Source of explosive

Figure 3: Diffraction of a blast wave around a finite target causing the propagation of a rarefaction clearing wave

3.1. Current Methods for Predicting Clearing

Early attempts to predict the clearing effect [2, 3] assumed a linear decay from the peak

reflected overpressure to a ‘stagnation pressure’ over a characteristic ‘clearing time’. As dis-

cussed by Rickman and Murrell [5], there are two main reasons why this approach is physically

questionable:

• The approximation of a linear reflected pressure decay rather than an exponential decay.

• The assumption that the reflected pressure begins to decay immediately after the arrival of

the shock wave. This assumption is true for the total load acting on the face of the target,

however it cannot be valid for the pressure at a point on the target located away from a free

edge, since there will be a transient time for the clearing wave to arrive. Because of this
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assumption, the traditional approaches cannot be used to accurately determine the spatial

variation of reflected pressures acting on the target.

The calculation of the ‘clearing time’ (the time at which clearing is completed and the stag-

nation pressure is reached) is inconsistent throughout the approximations, casting serious doubt

on their validity [5]. Another problem with the traditional approach is the inability to predict the

early onset of negative pressures due to clearing, which is clearly seen in the experimental results

in [5] and [7]. This has been addressed by the improved methodologies of Rickmann and Murrell

[5], where an empirical method for predicting clearing relief was developed from experimental

data, and Rose and Smith [6], where ‘clearing factors’, determined from numerical analyses, are

applied to the reflected impulse, based on various target geometries and scaled distances.

3.2. The Hudson Method

Tyas et al. [7, 8] present an approach to blast wave clearing predictions, first developed by

Hudson [9]. The rarefaction relief wave is approximated as an acoustic pulse initiating at the

edge of the target and travelling inwards along the loaded face. The Hudson method assumes the

following conditions:

• The blast wave is plane and parallel to the target surface. This implies that the target

dimensions are small relative to the charge stand-off.

• The depth of the target is sufficiently large so that no diffraction waves arrive from the rear

of the target.

• The clearing wave propagates into stagnant air across the target face, i.e. no flow condi-

tions exist in the direction of travel of the rarefaction wave.

• The velocity of the rarefaction wave is equal to the ambient sonic speed in air. This re-

quires the incident pressure to be relatively low – Hudson judged that the assumption was

reasonable for peak incident pressures of less than 300kPa i.e. Z ≥ 2.0m/kg1/3.

Predictions for the pressure acting at a point on the target face are given as a superposition of

the ‘clearing pressure’ associated with the acoustic wave and the reflected pressure acting on an

infinite target.
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The temporal and spatial pressure distribution of the acoustic pulse, presented by Hudson

[9], is shown in Figure 4. The non-dimensional clearing length is given as η = x/a0td, (the

distance from a free edge, x, divided by the ‘length’ of the positive phase of the blast wave,

where a0 = 340m/s). Values of η > 1 indicate a point where the clearing wave arrives after the

completion of the positive phase (hence one that will be subjected to the full reflected pressure

for the entire positive phase), whereas η = 0 indicates a point on the free edge where clearing

relief will begin immediately upon the arrival of the blast wave.

η 
=

 x
/a

0t d

δ = t/t
d
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Figure 4: Contours of clearing pressure relief from acoustic theory [9]

Figure 5 shows how the Hudson method can be used to predict the pressure acting at a point

on a finite target. In this example, the ConWep predictions for the blast pressure resulting from

a 1kg TNT detonation at 10m are superimposed with the Hudson clearing function (Figure 4) at

a distance of 0.15m from a free edge (the positive phase duration of 4.788ms gives this point a

value of η = 0.09). Superposition of the ConWep predictions with the Hudson relief function at

a given point, to account for blast wave clearing, has been shown to be in excellent agreement

with experimental results [7].

Rose and Smith [6] and Bogosian et. al. [15] conclude that blast wave clearing is an essen-

tial consideration for Z > 2.0m/kg1/3, and the Hudson method appears to provide a simple yet

accurate means of predicting the clearing effect for simple geometries. It is the purpose of this

paper to demonstrate the effect that blast wave clearing may have on the dynamic response of a

structure, and to highlight the errors and conservatism that may be associated with neglecting the

clearing effect.
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Figure 5: Prediction of pressure acting at a point 150mm (η = 0.09) from the free edge of a finite target, based on the

superposition of the reflected pressure and clearing pressure (for W = 1kg, R = 10m)

4. The Influence of Clearing

4.1. Developing a Numerical Model

A Single-Degree-of-Freedom (SDOF) analysis is a common approach to determine the blast

response of a structure, and requires the solution of Newton’s equation of motion

mz̈ + cż + kz = F(t), (3)

where m, c and k are the system mass, damping and stiffness, z̈, ż and z are the acceleration,

velocity and displacement of the system, and F(t) is the externally applied load.

The motion of the entire system is described by one coordinate, i.e. the displacement at a

significant point on the structure. The equivalent parameters (mass, stiffness, spring yield load

and applied load) are calculated by equating the kinetic energy, internal strain energy and work

done for both systems, and applying the resultant mass factor and load factor to the ‘real life’

parameters [16]. It is common to ignore structural damping in equivalent systems (as, typically,

a low number of vibratory cycles are considered and small damping ratios have little short-term

effect [12]), which gives the equivalent equation of motion as

mez̈(t) + kez(t) = Fe(t). (4)
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4.1.1. SDOF Model Under a Non-Uniform Load

The derivation of the SDOF load transformation factor for a loaded plate assumes a spatially

uniform pressure – an assumption that is not valid when considering the effects of blast wave

clearing. In order to ensure that the spatially varying pressure, p(x, y, t), acting on the face of a

target can be validly represented in an SDOF model, the energy equivalent uniform pressure and

spatial load factor are derived in this section.

The energy equivalent uniform pressure acting on a target is given such that the work done at

any instant is equal for both the uniform (penergy,equiv(t)) and ‘real-life’ (p(x, y, t)) pressure, i.e.

∫

A

p(x, y, t)φ(x, y) dA =

∫

A

penergy,equiv(t)φ(x, y) dA, (5)

where A is the panel area, and φ is the shape function (describing the normalised deflected

shape of the target). Since the uniform pressure is independent of x and y it can be given as

penergy,equiv(t) =

∫

A
p(x, y, t)φ(x, y) dA
∫

A
φ(x, y) dA

, (6)

where the two-dimensional shape function can be expressed in separable variable form,

φ(x, y) ≈ φ(x)φ(y) [17] and is assumed to be constant with time.

The SDOF equivalent force is given as

Fe(t) = KLFenergy,equiv(t) (7)

where KL is the load factor given by SDOF theory [16] and Fenergy,equiv(t) is the energy equiv-

alent uniform pressure multiplied by the area of the plate. The spatial load factor, Kspatial(t) can

be defined as a time varying load factor used to transform the total force acting on the plate at

any instant into the energy equivalent force, i.e. the equivalent SDOF force now becomes

Fe(t) = KLKspatial(t)F(t). (8)

Equations 7 and 8 can be combined to give

Kspatial(t)F(t) = Fenergy,equiv(t), (9)

and from the definition of the energy equivalent force acting on the plate (equation 6 multi-

plied by the target area), the time varying load factor can be expressed as
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Kspatial(t) =

∫

A
p(x, y, t)φ(x, y) dA

∫

A
p(x, y, t) dA

∫

A
φ(x, y) dA

. (10)

Kspatial is effectively a measure of the non-uniformity of the applied pressure (it can be easily

seen that if the pressure is uniform, i.e. independent of x and y, Kspatial(t) = 1) and, combined

with the traditional load factor, can be used to ensure that the force acting on the SDOF model is

equivalent in terms of energy to the real life system for the entire duration of loading. The spatial

load factor is derived using the same assumptions and conditions as the traditional load factor

and ensures the analysis is consistent with the SDOF method. Although the spatial load factor

is used to model the effects of blast wave clearing, it could in practice be used to transform any

spatially varying load into an energy equivalent uniform load.

4.2. Numerical Example

In order to demonstrate how the consideration of clearing effects may influence the dynamic

response of a target, the equivalent equation of motion (4) was solved for two undamped elastic

systems subjected to the same blast load – a 1kg TNT hemispherical surface burst detonated

10m from the target. Three load cases were considered; an idealised linear decay, a full positive

and negative phase acting on an infinite surface, and the pressure acting on a 2 × 2m target with

Hudson clearing corrections.

The relevant blast load parameters are given in Table 1. The linear approximation is taken

to have the same peak overpressure and impulse as the infinite load case, with a reduced loading

duration. The clearing pressure was calculated by discretizing the target face into a grid of

100 × 100 elements and determining the Hudson clearing function at each node (Figure 4). The

spatially varying pressure was then transformed into an equivalent SDOF force at each time step

using equation 8. The shape functions φ(x) and φ(y) for a one-way spanning, elastic clamped

beam are given in Belvins [17]. Diffraction was allowed around the top face and side faces only,

i.e. the bottom edges of the plates were situated on a rigid surface.

The two targets were modelled as linear elastic, two-way spanning aluminium panels, fixed

on all sides. The relevant dynamic model parameters are shown in Table 2, where the dynamic

coefficients are given using the revised values from Morison [18]. The three load cases are shown

in Figure 6, where the pressures have been converted into an equivalent force using the target area
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Parameter Value

Peak reflected pressure pr,max 31.54 kPa

Peak reflected underpressure pr,min 7.68 kPa

Positive phase duration td 4.79 ms

Negative phase duration tn 14.45 ms

Positive phase impulse i+ 59.33 kPa.ms

Negative phase impulse i− 62.39 kPa.ms

Linear load duration t̄d 3.76 ms

Clearing positive phase duration td,clear 3.39 ms

Clearing negative phase duration tn,clear 15.27 ms

Clearing positive phase impulse i+
clear

49.74 kPa.ms

Clearing negative phase impulse i−
clear

38.71 kPa.ms

Table 1: Loading parameters applied to the numerical model. Pressures are converted into an equivalent force using the

load transformation factor, KL = 0.308, and the spatial load transformation factor, Kspatial, derived in section 4.1.1

and load transformation factor, KL = 0.308 (and spatial load transformation factor, Kspatial(t) for

the clearing load).
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Figure 6: Three load cases applied to the numerical model

A representative parameter used in structural dynamics is the ratio of the load duration to

the natural period of the structure, td/T . Larger values of td/T indicate that the target response

is quick in relation to the loading duration and the loading can be considered as quasi-static,
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Parameter Plate A Plate B

Young’s modulus E 69 GPa 69 GPa

Density ρ 2700 kg/m3 2700 kg/m3

Poisson’s ratio ν 0.35 0.35

Load factor KL 0.308 0.308

Mass factor KM 0.182 0.182

Elastic stiffness coefficient ke/(D/h
2) 808.5 808.5

Height h 2 m 2 m

Thickness t 7 mm 27.5 mm

Equivalent stiffness ke 140 kN/m 8484 kN/m

Equivalent mass me 13.76 kg 54.05 kg

Natural frequency f 16.05 Hz 63.05 Hz

Natural period T 62.31 ms 15.86 ms

Time ratio td/T 0.077 0.302

Table 2: Dynamic Properties for 2 × 2m linear elastic, two-way spanning aluminium panels, fixed on all sides

whereas smaller values of td/T indicate that the loading is tending towards impulsive. Plate A and

plate B have time ratios of 0.077 and 0.302 respectively, i.e. the two plates lie within the dynamic

region of loading, and hence will be sensitive to the time-varying effects of clearing relief. The

displacement-time histories of the two systems, as well as values of peak displacement, can be

seen in Figure 7.

For plate A (Figure 7(a)), with the lower value of td/T , the decrease in positive phase im-

pulse attributed to clearing relief results in a significantly lower value of outward displacement.

The early onset of negative pressure (the shortening of the positive phase) initially serves to de-

crease the velocity of the plate, however when the velocity becomes negative and the plate begins

to rebound, the application of negative pressure results in a greater displacement in the inward

direction. This rebound effect, although acting to increase the value of peak displacement, is

lessened by the simultaneous reduction of both negative phase duration and peak underpressure

caused by blast wave clearing (Figure 6). In this case, neglecting blast wave clearing and design-

ing for a simplified triangular load function can lead to an over-prediction of peak displacement.

For plate B (Figure 7(b)), the opposite can be said. The plate reaches its maximum positive

13
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Figure 7: Displacement-time history for Plate A and Plate B under three different load cases shown in Figure 6

displacement and hence begins to rebound at roughly the same time as the beginning of the

negative phase (around 26ms), resulting in a greater peak displacement than the triangular load

model. The influence of clearing is to reduce both the positive and negative phase pressures and

the rebound effect is less pronounced, however it still results in a greater peak displacement than

the triangular load model alone. The triangular load model is thus under-conservative.

4.2.1. Verification of the Spatial Load Factor

The veracity of the spatial load factor can be highlighted using a simple example. Here, Plate

B (27.5mm thick 2× 2m aluminium plate) was analysed using the explicit FEM code LS-DYNA
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[19]. The FE model was discretised into a grid of 100×100 elements and the pressure prediction

at each node was applied as a separate time-varying force. The plate was modelled using the same

material properties as those given in table 2. The SDOF model was evaluated for two load cases;

the equivalent force calculated using the standard load transformation factor and the spatial load

factor (Fe(t) = KLKspatial(t)F(t)) and the equivalent force calculated by using the standard load

transformation factor only (i.e. setting the spatial load factor to unity, Fe(t) = KLF(t)). Figure

8 shows the response of the SDOF model under both applied loads and the response of the FE

model.
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Figure 8: Verification of Kspatial(t) by comparing Single-Degree-of-Freedom and Finite Element response

It can be seen from Figure 8 that, whilst there are some discrepancies in the early stages of

deformation due to the FE model’s ability to include higher modes of response, the energy equiv-

alent load SDOF model generally exhibits excellent agreement with the FE model. In particular,

there is excellent correlation in the results from the two models for the the peak displacement

on the first negative half-cycle (3.95mm in the FE model compared to 3.96mm in the energy-

equivalent load SDOF model). It is also apparent that an improvement in the accuracy of the

model is observed when using the spatial load factor compared to the simple average pressure

SDoF model.

The function Kspatial(t) is shown in Figure 9, where the inclusion of the spatial load factor

results in an increase in the applied load (Kspatial > 1 because the mid-span of the plate is more

heavily loaded than the edges). There is a discontinuity in the function when the applied force

goes from positive to negative as, momentarily, the denominator in equation 10 is zero.
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Figure 9: Kspatial(t) and equivalent forces for a 2 × 2m elastic target subjected to a 1kg hemispherical TNT burst at

10m. Fe denotes the force calculated using the spatial load factor and Fe,Kspatial=1 denotes the force calculated from the

average pressure on the plate, i.e. assuming Kspatial = 1

Equipped with a simplistic and experimentally validated means for predicting the pressure

acting on a finite target [7], coupled with a valid means for implementing a non-uniform load

into an SDOF model (using the time-varying spatial load factor, Kspatial(t)), a comprehensive

parametric study can be undertaken.

4.3. Parametric Study

A useful parameter for determining the influence of clearing relief is the displacement ratio,

the ratio of peak displacements of the SDOF system under the clearing and linear load respec-

tively,

Displacement ratio = zmax,clear/zmax,lin (11)

i.e. the level at which the traditional approach may under or over predict the peak elas-

tic deformation. For plate A and plate B, the corresponding displacement ratios are 0.54 and

1.23 respectively. It is clear that consideration of clearing cannot be inherently under or over-

conservative. In order to be able to determine the influence of clearing relief on a given target,

the study was extended to investigate a range of target dimensions.

4.3.1. Varying Target Dimension

The clearing length to the centre of a target, ηc, is given as
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ηc = h/2a0td, (12)

where h is the height of the target. For a given scaled distance, there exist many combinations

of target size and charge mass that will give the same value of ηc, as is shown in Figure 10. For

two targets of different physical dimensions, providing the scaled distance and scaled target size

are the same, both will experience the same level of scaled clearing relief.

ηc

ηc

W

Ws

Rs
1/3

hs
1/3

R

h

Figure 10: Scaled target dimensions giving the same value of ηc

For larger clearing lengths, the arrival time of the clearing relief wave increases and the

magnitude of pressure relief decreases – hence as the target size tends to infinity, a smaller

proportion of the loaded face experiences clearing relief and the blast pressure approaches the

fully reflected pressure. As the target size tends to zero, the loading approaches the incident

pressure [20], however for intermediate sized targets, particularly at larger scaled distances, it is

known that clearing relief may ‘overshoot’ the incident pressure and result in the early onset of

negative pressures [6, 7]. This could have a significant impact on the response of a target in the

dynamic range of loading.

The influence of target size on the development of cleared pressures on the loaded face can be

seen in Figure 11 – the equivalent uniform pressure (equation 6) acting on finite targets subjected

to a 1kg hemispherical surface burst at a range of 10m. Given the positive phase duration,

td = 4.79ms, values of ηc = 0.2–1.0 equate to target heights of 0.65–3.25m. Early negative

pressures can be seen for all target sizes, and it can be seen that smaller targets are subjected to

significantly lower positive impulse.
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Figure 11: Equivalent uniform pressure acting on range of target sizes from a 1kg TNT detonation at 10m. ηc denotes

the clearing length to the centre of the target, from equation 12

4.3.2. SDOF Response Spectra

With the numerical framework in place, it is possible to evaluate a combination of scaled

distance (Z), target size (ηc) and dynamic properties (time ratio, td/T ) to determine the influence

of clearing relief on the peak elastic deformation of finite targets (i.e. the displacement ratio,

zmax,clear/zmax,lin) over a range of target properties and blast scenarios that may be of interest to

the engineer.

Figure 12 shows response spectra for linear elastic, clamped square targets subjected to blast

loads at different scaled distances. The target size and dynamic properties are independent of

scale and can be used to determine the effect of clearing for any blast event2, offering a quick and

simple first approximation to the influence of clearing relief.

Given a likely blast event and an estimation of the target properties, the corresponding value

of displacement ratio can be easily determined from Figure 12, giving a valuable and immediate

appraisal of the likely influence that clearing relief may have on the design of the structure in

question. The curve for ηc = ∞ indicates an infinite sized target subjected to (non-cleared)

reflected pressures. In the example outlined in section 4.2, Z = 10m/kg1/3 and ηc ≈ 0.6. Figure

12(c), for time ratios of 0.08 and 0.3, gives displacement ratios of approximately 0.55 and 1.22.

This compares to displacement ratios of 0.54 and 1.23 respectively from the data given in Figure

7.

2Providing the assumptions of the Hudson method remain valid, i.e. the shock wave arrives planar and the target has
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(a) Z = 2m/kg1/3
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(b) Z = 5m/kg1/3
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(c) Z = 10m/kg1/3
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Figure 12: Response spectra for elastic square targets of varying dimension and dynamic properties, subjected to blast

loads at scaled distances of 2, 5, 10 and 20m/kg1/3

5. Discussion

The response spectra can be used to make a number of general observations on the scenarios

where clearing relief is likely to be a significant factor.

When td/T is large, the natural frequency of the system is sufficiently high to ensure that the

target reaches its peak displacement before the onset of clearing. For all scaled distances, as the

natural period of the structure decreases, the displacement ratio tends towards 1, so it can be said

that clearing relief has negligible effect.

When td/T is small, the key loading parameter is the net impulse imparted to the target.

sufficient depth, as outlined in section 3.2.
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Clearly the consideration of the negative phase alone significantly reduces the total impulse –

the displacement ratio for ηc = ∞ ranges between 0.4–0.6 for the scaled distances studied. The

influence of clearing is to reduce the total impulse, further reducing the displacement of the

SDOF system. This finding is in agreement with the observations of Ballantyne [21], whereby

a series of numerical analyses demonstrated that clearing relief reduces the impulse acting on a

finite target by around 50% of the reflected value. In Figure 12, the displacement ratios for finite

targets at the impulsive extreme are roughly 0.5 of the displacement ratio for ηc = ∞. This is

particularly true at larger scaled distances.

There exists a region in the dynamic realm of loading, broadly 0.1 < td/T < 1.0, where

negative pressures coincide with negative velocities of the target and the result is a greater peak

displacement on rebound – an effect which has already been observed for infinite targets [11].

This rebound effect is at its peak when the onset of the negative phase coincides with the peak

positive displacement, at the end of the first quarter cycle of displacement, i.e. when td/T = 0.25.

The influence of clearing is to reduce the value of peak displacement, but a reduced positive

duration means that this rebound effect occurs at different values of T than would be the case

with no clearing. This results in a region where the displacement ratio of the target is greater

than would be predicted even if negative phase effects were taken into account. In this case, the

reduction of pressure initiates ‘clearing resonance’ and neglecting clearing could be significantly

under conservative.

The influence of target size can also be observed – a reduction in target size (ηc) results in

more complete clearing relief and, accordingly, reduces the pressure and hence peak displace-

ment of the target. In the clearing resonance region (0.3 < td/T < 1.0 for Z = 2m/kg1/3), the

relationship between target size and displacement ratio is less simple, due to each target size hav-

ing a different reduced positive phase (see Figure 11). It is acknowledged that clearing resonance

requires very specific target properties, however it is important to be aware of the phenomenon

and the conditions in which it exists.

These observations are consistent throughout the range of scaled distances studied, with a

general trend of increasing displacement ratio with increasing scaled distance. The response

spectra can be used to dispel the notion that clearing relief simply acts to reduce the pressure and

hence neglecting it is conservative.

It is assumed that the deformed shape of the plate, φ, remains constant throughout the anal-
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ysis, and that the deformation of the plate and the load are decoupled (i.e. Fluid-Structure Inter-

action (FSI) effects are not taken into account). Whilst this has been shown to be an important

consideration in recent studies [22, 23], it is not the purpose of this article to investigate these

effects; it is intended that this study will highlight the implications of neglecting blast wave clear-

ing in a simplistic numerical model. The numerical method outlined in this report may be used

in conjunction with other methods pertaining to FSI effects, however, observations made in this

article can be used as a first appraisal of the influence of blast wave clearing, and as an indicator

as to when a more refined treatment of clearing should be considered.

6. Summary

This paper introduces a simple, accurate, and physically valid means for predicting the spatial

and temporal pressure relief associated with blast wave clearing. This method, known as the

Hudson method, can be readily combined with the traditional empirical loading model and has

shown to demonstrate a remarkable level of accuracy [7].

A spatial load transformation factor, Kspatial, has been derived as a function of the applied

pressure and the normalised deflected shape of the target. This has enabled a spatially non-

uniform load to be accurately represented in an SDOF model.

Linear elastic Single-Degree-of-Freedom systems are analysed using a modified load model

to take into account the pressure relief caused by clearing, and the values of peak displacement

are compared against a traditional SDOF model; a linear system subjected to an equivalent trian-

gular blast load under the assumption that the target is sufficiently large so that edge effects can

be neglected. For two sample targets, it is shown that, depending on the dynamic properties of

the system, clearing relief may be either beneficial or adverse.

A wider study is conducted by varying both the dimensions of the target (modifying the level

of clearing relief) and the dynamic properties (i.e. the fundamental natural period) such that a

wide range of target sizes can be considered. The results of which, shown in Figure 12, can be

used to quickly determine the effect of clearing on the response of the structure.

For systems where td/T → ∞, clearing has little effect – for systems where td/T → 0,

clearing acts favourably; reducing the net impulse and hence the peak displacement of the target.

If the loading lies within the dynamic realm, i.e. the period of the system is similar in magni-

tude to the duration of the loading event (0.1 < td/T < 1), negative pressures may coincide with
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the ‘rebound’ of the target and result in a greater peak displacement. It is known that clearing

may result in early negative pressures, and this effect may initiate ‘clearing resonance’, causing

greater peak displacements than would have been predicted had clearing not been considered.

Comprehensive response spectra are presented, taking into account dynamic properties, tar-

get sizes and blast scenarios that may be of interest to the engineer. These response spectra enable

a first approximation to the influence of clearing relief to be evaluated, giving an indication as

to whether clearing is likely to have an impact on the design of the structure. It is observed that

a decreasing target size leads to more significant clearing relief, reducing the peak displacement

of the target. It is also observed that clearing relief is broadly more significant with larger scaled

distances.

When considering far-field events, it is unlikely that key structural members will fail under

the prescribed blast pressure, however, lightweight, flexible systems such as cladding and glazing

may be particularly prone. The approach outlined in this report offers an effective and powerful

means to establish the influence of clearing relief on the dynamic response of finite targets, and

can be used as a rapid way to evaluate likely blast damage without relying on computationally

expensive methods. Blast wave clearing should be evaluated and its influence quantified in order

to ensure blast resistant designs are efficient and safe.
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