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Abstract9

There has long been substantial interest in understanding consumer food choices, where a key complexity10

in this context is the potentially large amount of heterogeneity in tastes across individual consumers, as11

well as the role of underlying attitudes towards food and cooking. The present paper underlines that both12

tastes and attitudes are unobserved, and makes the case for a latent variable treatment of these components.13

Using empirical data collected in Northern Ireland as part of a wider study to elicit intra-household trade-14

offs between home-cooked meal options, we show how these latent sensitivities and attitudes drive both the15

choice behaviour as well as the answers to supplementary questions. We find significant heterogeneity across16

respondents in these underlying factors and show how incorporating them in our models leads to important17

insights into preferences.18

19

Keywords: food preferences; latent variables; stated choice; taste heterogeneity20

1 Introduction21

There has long been interest in better understanding consumers’ food choices, with a focus on22

people’s motivations, preferences and habits. Recently, particular emphasis has been put on eating23

habits within an obesity risk context.24

Food choices are complex as well as frequent. In a recent study, Wansink and Sobal (2007)25

estimated that a person can make over 200 food and beverage related decisions every day. Asp26

∗Corresponding author. Tel.: +44 (0)113 34 36611.
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1 Introduction 2

(1999) in turn discusses in detail some of the factors which affect consumers when they are deciding27

what to eat, particularly cultural, psychological and lifestyle factors as well as food trends to name28

but a few. Work by Lennernäs et al. (1997) has highlighted the role of quality/freshness, price,29

taste, as well as family preferences and trying to eat healthily, while Drewnowski and Darmon (2005)30

consider the effects of taste, convenience and economic constraints on food choices. Lennernäs et al.31

(1997) also found that respondents in different socio-economic categories select different factors as32

contributing a large portion of influence on their food choices. The extent of heterogeneity in33

preferences is also highlighted in other work. For example, Logue and Smith (1986) indicate that34

women have higher preferences for low-calorie foods than men and Rappoport et al. (1993) found35

that insofar as the health value of food was concerned, men had a much simpler cognitive structure36

than women. Consumer information and market research companies are continually developing37

classification systems which aim to identify different consumer segments and consequently try to38

predict consumer behaviour (Asp, 1999). These systems make use of important lifestyle factors to39

describe how consumers make food decisions. With the exception of examples such as above, most40

food studies focus on a limited socio-geographic based population (Glanz et al., 1998; Jaeger and41

Meiselman, 2004; Marshall and Bell, 2004).42

A large body of work has looked at respondent reported measures of importance of key at-43

tributes. For example, Glanz et al. (1998) examine the self-reported importance of taste, nutrition,44

cost, convenience, and weight control on personal dietary choices and whether these factors vary45

across demographic groups, are associated with lifestyle choices related to health, and actually46

predict eating behaviour. They found that the importance placed on taste, nutrition, cost, conve-47

nience, and weight control helped predict types of food consumed. A share of studies which have48

investigated adult preferences for a variety of foods have involved the respondent rating individual49

food items on either a nine, five or four point scale, wherein the studies reported the mean rating50

for each food item (see, for example Bell and Marshall, 2003, Drewnowski and Hann, 1999, Jaeger51

and Meiselman, 2004 and Rappoport et al., 1993).52

Whilst simple rating methods can provide rich information about specific food preferences, they53

do not examine food preference patterns which would help elicit more general food preferences. For54

example, a person’s preference for one type of food could be a predictive indicator of that person’s55

preference for another type of food (Logue and Smith, 1986). Across a number of fields, mathemat-56
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ical structures belonging to the family of random utility models have established themselves as the57

preferred method for the study of choice behaviour at the disaggregate level (Train, 2009). These58

models quantify the relative importance of the different attributes describing each alternative and59

are used across fields as diverse as transport, marketing and health economics. This study adds to60

a growing literature that has used these models to examine food choices and preferences for food61

attributes (see, for example Campbell and Doherty, 2013, Carlsson et al., 2007, Hu et al., 2004,62

Jaeger and Rose, 2008, Jaeger et al., 2008, Lusk and Briggeman, 2009, Ortega et al., 2011 and63

Rigby et al., 2009). More specifically, this paper contributes to the literature where these models64

have been used to investigate the link between food choice, diet and health (e.g., Balcombe et al.,65

2010; Gracia et al., 2009; Mueller Loose et al., 2013).66

The present paper illustrates how advanced choice models can be used to obtain a better67

understanding of consumer food choices. In particular, we recognise, in line with previous work,68

that there exist significant differences in preferences across individual consumers. We hypothesise69

that while some of these differences can be linked to socio-demographic characteristics, others70

cannot. The standard modelling approach for such “unexplained” differences would be a model71

allowing for random taste heterogeneity. Any information about sensitivities1 and differences in72

sensitivities would be inferred solely on the basis of the choices made by respondents. We use a73

more refined approach that allows us to make use of the supplementary information provided by74

respondents in ranking questions and attitudinal questions within a hybrid choice model making75

use of latent variables (e.g., Ben-Akiva et al., 2002a,b; Bolduc et al., 2005). This gives us a better76

understanding of what drives food choices, and the differences in these drivers across the population.77

The remainder of this paper is organised as follows. Section 2 presents an overview of the78

empirical data and methods used in this study. This is followed in Section 3 by a discussion of the79

results for both the base models and the latent variable models. Finally, a concluding discussion is80

presented in Section 4.81

1 We have chosen to use the term ‘sensitivities’ here, as we felt it more appropriate in this specific context, as the
more commonly used term ‘preferences’ can be seen to relate to alternatives, not just attributes.
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2 Material and methods82

2.1 Survey work83

Data were collected as part of a wider study to elicit intra-household trade-offs between home-84

cooked meal options. The respondents used for the survey formed a random sample of Northern85

Ireland households, and face-to-face interviews were used for preference elicitation.86

Table 1 shows the socio-demographic characteristics of the respondents. Just over a third of the87

respondents were aged between 35 and 50, with the rest split evenly above and below these ages.88

The average income per week was £211, with 48% of the respondents in full-time employment.89

10% had at least a degree level education.90

2.1.1 Stated choice component91

In the stated choice component of the survey, respondents were presented with the choice between92

three different meal options representing a typical evening meal that they would share with their93

partner at home. After a qualitative stage, including consultation with experts and assisted in-94

terviews with respondents, we conducted a pilot study. Following this, we were able to select the95

following attributes to describe the meal options: calories, cooking time, food type and cost. Taste96

was not included as a direct variable in the choice tasks as it would be subject to interpretation by97

the respondent. Instead, “food type” was used as a proxy for taste. Three levels were used for each98

attribute, where the specific combinations presented in a given choice scenario were obtained from99

a D-efficient experimental design with Bayesian priors (Bliemer and Rose, 2010; Rose and Bliemer,100

2009), produced using NGene (ChoiceMetrics, 2012). A D-efficient design was chosen so as to min-101

imise the asymptotic variance covariance matrix. The final design contained 24 rows which were102

divided into 3 blocks of 8 choices, where each respondent was asked to complete 8 choice tasks. To103

ensure that any heterogeneity retrieved in both the parameter estimates as well as the variances of104

the error terms is not simply an artefact of the design of choice set scenarios (Arentze et al., 2003),105

we used orthogonal blocking, and randomly assigned people to blocks.106

Table 2 shows the three levels used for the different attributes, where “Cost” represented the107

total cost for all of the ingredients needed to produce a typical evening meal, which would feed108

both the respondent and his or her partner. To allow respondents to better relate to the attribute109
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Tab. 1: Socio-demographic characteristics

Age Female Male Total

18-24 32 11% 27 9% 59 10%
25-34 71 24% 66 23% 137 23%
35-50 100 34% 100 34% 200 34%
51-59 35 12% 40 14% 75 13%
60-64 22 8% 20 7% 42 7%
65-75 32 11% 35 12% 67 11%
75+ 0 0% 4 1% 4 1%

Income
Per week Per Year Female Male Total

Less than £150 Less than £7,800 142 49% 91 31% 233 40%
£150 - £299 £7,800 - £15,599 98 34% 121 41% 219 38%
£300 - £449 £15,600 - £23,399 41 14% 59 20% 100 17%
£450 - £599 £23,400 - £31,199 8 3% 15 5% 23 4%
£600+ £31,200+ 3 1% 6 2% 9 2%

Employment Female Male Total

In full-time employment 109 37% 174 60% 283 48%
In part-time employment 68 23% 18 6% 86 15%
Self-employed 7 2% 11 4% 18 3%
Unemployed 36 12% 30 10% 66 11%
Retired 48 16% 50 17% 98 17%
Student/Otherwise not working 24 8% 9 3% 33 6%

Education Female Male Total

No qualifications 52 18% 46 16% 98 17%
CSE/GCSE/O Levels 148 51% 141 48% 289 49%
A Level/Baccalaureate 46 16% 36 12% 82 14%
Vocational Qualification 18 6% 38 13% 56 10%
Degree 25 9% 25 9% 50 9%
Postgraduate Degree 3 1% 6 2% 9 2%

Total 292 100% 292 100% 584 100%

levels for calories, cooking time and food type, they were provided with illustrative reference cards110

that showed what type of meal could be expected for given attribute combinations. We chose cost111

levels of £5, £10 and £15 pounds after conducting a pilot study; the large cost differences were112

found to be needed as respondents were reacting very strongly to the different levels of the other113

attributes, causing the cost attribute to become insignificant when smaller price differences were114

used.115

In each choice task, respondents were asked to choose their most preferred option for a typical116

evening meal that they would share together with their partner at home, and which would be117
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Tab. 2: Attribute levels

Attribute Levels

Calories (per portion) Less than 400 calories
Between 400 and 600 calories
Over 600 calories

Cooking Time Less than 30 minutes
Between 31 and 60 minutes
Over 60 minutes

Food Type (proxy for taste) Asian
Italian
Local

Cost £5
£10
£15

cooked at home. An example choice scenario is shown in Figure 1. We decided against explicitly118

including a “no choice” option, but if a respondent could not decide, then this was recorded as119

a “Don’t know” by the interviewer2. For the present study, we made use of responses from 584120

individuals, giving 4, 672 observations in total.121

2.1.2 Supplementary questions122

In addition to completing the choice tasks, respondents were also asked to state their most preferred123

and least preferred level of each of the three non-cost attributes. A summary of the information124

obtained in this manner is shown in Figure 2, where the first two columns in each subfigure show125

the responses to the questions eliciting the respondent’s most preferred options, for females and126

males respectively, and the last two columns in each subfigure show the responses to the questions127

eliciting the respondent’s least preferred options, for females and males respectively.128

The results from this exercise are in line with expectations and the prior literature. We can see129

that for calories, 49% of the interviewed women prefer the medium calories range, with a total of130

80% preferring fewer than 600 calories in their meal. Whilst this preference pattern is also shown131

by male respondents, the level of uncertainty (“Don’t know”) is increased, especially for the least132

2 We acknowledge this potential limitation within the data (Olsen and Swait, 1997), but this approach was taken
as the sample size was quite small and we did not want to reduce the data further by encouraging “Don’t know”
responses. However, although respondents were not told upfront that they could state “Don’t know”, if they did
so, it was recorded. Further, if the respondent stated “Don’t know” at any point in the questionnaire and it was
recorded down then they would know that it was safe to say “Don’t know”, meaning that only the first instance of
“Don’t know” could be subject to any bias.
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Fig. 1: Example choice task

preferred calorie level. With regards to cooking time, medium cooking time is again the most133

preferred, while high cooking time is generally the least preferred. Overall, the question which134

encountered the fewest “Don’t know” responses was that which asked respondents for their most135

preferred food types. Local food was the most popular choice; this is in line with findings by136

McIlveen and Chestnutt (1999), where they conclude that greater product awareness needs to be137

instigated by retailers in Northern Ireland in order to inform consumers of the larger range of food138

products available to them and consequently encourage greater uptake. McIlveen and Chestnutt139

(1999) found that the Italian food sector represented a growth area, whereas Indian and other newly140

developing food sectors were not yet evident in Northern Ireland. Note that this relates to cooking141

meals at home rather than eating out, where there is an abundance of international restaurants142

available.143

As a final component, respondents were also presented with three questions relating to attitudes144

towards cooking. In particular, respondents were asked to indicate their level of agreement (on a145

five-point Likert scale) with three statements, namely:146

• “Cooking is not much fun”;147

• “Compared with other daily decisions, my food choices are not very important”; and148
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Fig. 2: Attribute importance rankings

• “I enjoy cooking for others and myself”.149

Figure 3 shows a summary of the responses to the three attitudinal questions, highlighting a more150

positive attitude towards cooking for female respondents, along with a higher prevalence of “Don’t151

know” responses for male respondents.152

The inclusion of these statements was driven in part by the success achieved in Bell and Marshall153

(2003) and Marshall and Bell (2004) at being able to classify differences in food choices and food154

choice patterns by using a measure of food involvement, namely the “Food Involvement Scale”155

(FIS). Bell and Marshall (2003) define food involvement as ‘the level of importance of food in a156

person’s life’. They also assume that as a result of this, the level of food involvement will vary157

across individuals. Bell and Marshall (2003) and Laaksonen (1994, pg. 8-9) suggest that food158

involvement is a mediating variable, acting between stimulus objects and response, depending on159
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Fig. 3: Answers to attitudinal questions relating to cooking

both the characteristics of the stimulus object and those of the consumer.160

2.2 Base model specification161

As a first step, we estimate simple Multinomial Logit (MNL) models on our data, where we use162

the panel specification of the sandwich estimator to recognise the repeated choice nature of the163

data in the computation of standard errors (cf. Daly and Hess, 2011). All models reported in this164

paper were coded in Ox 6.2 (Doornik, 2007). For the MNL model, we used maximum likelihood165

estimation, while maximum simulated likelihood estimation was used for the hybrid models, with166

simultaneous estimation of all model components.167

Two different specifications are used. In the first model, the deterministic component of utility3
168

for respondent n and alternative i in choice task t (out of 8) is written as:169

3 In the MNL specification, the random component of the utility function follows a type I extreme value distribution.
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Vint =βLowCalLowCalint + βHighCalHighCalint+

βLowTimeLowTimeint + βHighTimeHighTimeint+

βAsianAsianint + βItalianItalianint+

βCostCostint ∀1 ≤ i ≤ 3 (1)

V4nt =δDKDK4nt, (2)

where, as an example, LowCalint is set to 1 if alternative i has the low calories level (and is set to170

0 if alternative i has a calories level other than low), and where βLowCal is the associated marginal171

utility coefficient, which is to be estimated. Equation 1 shows the utility individual n will receive172

if they select any of the first three alternatives, whereas Equation 2 shows the utility individual n173

will receive through the selection of the “Don’t know” option (displayed as alternative 4, in this174

case)4. Other than cost, the attributes were entered as dummy variables in order to allow us to175

capture any non-linear preference structure for these attributes, where the middle level was used176

as the base (i.e. sensitivity fixed to zero).177

The specification thus far has assumed that the sensitivities to the different attribute levels (i.e.178

the preferences) are constant across individuals in our sample. To address this shortcoming, we179

make use of a revised specification that allows for differences in sensitivities for the three non-cost180

attributes by age group as well as by gender. For each level (other than middle), we thus estimate181

a base coefficient, along with offsets for male respondents, respondents under the age of 35 and182

respondents over the age of 50, using the middle age group as the base. This specification is shown183

in Equation 3, where, for example, ∆Italian;Male shows the shift in the utility for Italian food for a184

male respondent aged 35-49 years relative to a female respondent aged 35-49 years.185

Vint =βLowCal;BaseLowCalint + ∆LowCal;MaleLowCalint

+∆LowCal;Under 35LowCalint + ∆LowCal;Over 50LowCalint

4 We previously tested for left-to-right bias by estimating alternative specific constants for i−1 of the hypothetical
choices and found none, so we decided to use an alternative specific constant for the “Don’t know” choices.
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+βHighCal;BaseHighCalint + ∆HighCal;MaleHighCalint

+∆HighCal;Under 35HighCalint + ∆HighCal;Over 50HighCalint

+βLowTime;BaseLowTimeint + ∆LowTime;MaleLowTimeint

+∆LowTime;Under 35LowTimeint + ∆LowTime;Over 50LowTimeint

+βHighTime;BaseHighTimeint + ∆HighTime;MaleHighTimeint

+∆HighTime;Under 35HighTimeint + ∆HighTime;Over 50HighTimeint

+βAsian;BaseAsianint + ∆Asian;MaleAsianint

+∆Asian;Under 35Asianint + ∆Asian;Over 50Asianint

+βItalian;BaseItalianint + ∆Italian;MaleItalianint

+∆Italian;Under 35Italianint + ∆Italian;Over 50Italianint

+βCostCostint ∀1 ≤ i ≤ 3 (3)

2.3 Integrated Choice and Latent Variable (ICLV) model specification186

The base model with deterministic heterogeneity allows for variations in sensitivities as a func-187

tion of age and gender. However, it is easily conceivable that additional differences exist which188

cannot entirely be linked to socio-demographic characteristics. Rather than relying on a simple189

random coefficients specification, we propose to make use of the additional information collected190

from respondents in terms of attribute rankings as well as attitudinal questions. Specifically, we191

hypothesise that these additional data can serve as proxies for the underlying differences in sen-192

sitivities. However, it is important to recognise that answers to attribute ranking questions and193

attitudinal questions do not provide us with a direct error-free measure of the actual underlying194

sensitivities. Indeed, they are merely a function of these sensitivities. Similarly, these data points195

are likely to be correlated with other unobserved effects, and their incorporation as explanatory196

variables in our choice models would thus put us at risk of endogeneity bias.197

To allow us to use the additional data while not exposing ourselves to the risk of measurement198

error and endogeneity bias, we make use of a hybrid model specification in which the answers199

to ranking questions and attitudinal questions are treated as dependent rather than explanatory200

variables. A number of latent variables are then used to create a link between a given respondent’s201
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choices and his/her answers to these additional questions. Within such an Integrated Choice and202

Latent Variable (ICLV) model, the responses to the subjective questions are modelled jointly with203

the actual choice processes, all the while maintaining the assumption that both processes are at204

least in part influenced by the latent attitudes. This approach integrates choice models with205

latent variable models resulting in an improvement in the understanding of preferences and allow206

us to make use of additional data sources. The theoretical developments of such hybrid choice207

models centre on the work of Ben-Akiva et al. (2002a,b) and Bolduc et al. (2005), with numerous208

applications, for example Abou-Zeid et al. (2010), Alvarez-Daziano and Bolduc (2009), Daly et al.209

(2012a), Fosgerau and Bjørner (2006), Hess and Beharry-Borg (2012), Johansson et al. (2006) and210

Yáñez et al. (2010).211

Our work makes use of seven latent variables:212

• two latent variables linked to the underlying sensitivities to the low and high levels for calories,213

αLowCal and αHighCal;214

• two latent variables linked to the underlying sensitivities to the low and high levels for cooking215

time, αLowTime and αHighTime;216

• two latent variables linked to the underlying sensitivities to Italian and Asian food, αItalian217

and αAsian; and218

• one latent variable linked to general attitudes towards food, hereafter known as the ‘cooking’219

attitude, αCooking.220

We use a linear in attributes specification for the deterministic part, and write:221

αk,n = γαk
zn + ηk,n,

k = LowCal, HighCal, LowTime, HighTime, Italian, Asian, Cooking (4)

where γαk
zn represents the deterministic part of αk,n, with, zn being a vector of socio-demographic222

variables, γαk
being a vector of estimated parameters and ηk,n being a random disturbance, which223

follows a standard Normal distribution across respondents.224
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Hereafter, αn represents the vector of latent attitudes for respondent n. These latent variables225

are now used as explanatory variables in the utility function, which is rewritten as:226

Vint = f (β, xint, δ, αn, τ) (5)

where τ is a vector of parameters that explain the impact of the vector of latent variables αn on227

the utility of alternative i, possibly in interaction with the attributes xint and the parameters β.228

At the same time, we use the latent variables to explain the responses to the ranking questions229

and the attitudinal questions. In particular, the first two latent variables, αLowCal and αHighCal, are230

used to explain the ranking of the three different calorie levels, the following two latent variables,231

αLowTime and αHighTime, are used for the ranking of the three different time levels, and the fifth and232

sixth latent variables, αItalian and αAsian, are used to explain the ranking of the three different food233

types. Finally, the seventh latent variable, αCooking, is used to explain the answers to the three234

attitudinal questions about cooking.235

For each of the three non-cost attributes, respondents were asked to state their most preferred236

and least preferred level (i.e. best and worst level respectively). We represent the underlying237

sensitivities to the different levels in a utility framework, where, for the example of the calories238

attribute, we have that:239

• the utility for low calories is given by the latent variable for the underlying sensitivity to low240

calories, i.e. αLowCal, plus a parameter µR,LowCal; where µR,LowCal captures the mean ranking241

in the sample;242

• the utility for high calories is given by the latent variable for the underlying sensitivity to243

high calories, i.e. αHighCal, plus a parameter µR,HighCal; where µR,HighCal captures the mean244

ranking in the sample; and245

• the utility for medium calories is set to zero.246

For the response to the worst attribute level, the sign of the utilities was reversed5. Respondents247

5 Clearly, the actual latent variable used in the two specifications needs to be the same here, so the only assumption
relates to using the same µR terms in the best and worst (with sign change) specifications. We found no significant
asymmetry in these terms, hence our decision. The same does not apply for the “Don’t know” term where separate
constants were used.
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were also allowed to opt out of each ranking question, by giving a “Don’t know” response to either248

their best or worst preferred level. The utilities for such responses are given by constants, where249

separate constants are used for the best and worst rankings, given the differential rates of “Don’t250

know”.251

The actual probabilities for the observed responses to the best and worst ranking questions are252

now given by:253

Pcal-best,n =
IBLC,ne

µR,LowCal+αLowCal,n +IBMC,n+IBHC,ne
µR,HighCal+αHighCal,n +IBDK BC,ne

δR,DKBestCal

eµR,LowCal+αLowCal,n + 1 + eµR,HighCal+αHighCal,n + eδR,DKBestCal
(6)

Pcal-worst,n =
IWLC,ne

−µR,LowCal−αLowCal,n +IWMC,n+IWHC,ne
−µR,HighCal−αHighCal,n +IWDK WC,ne

δR,DKWorstCal

e−µR,LowCal−αLowCal,n + 1 + e−µR,HighCal−αHighCal,n + eδR,DKWorstCal
(7)

where:254

• IBLC,n is an indicator variable, equal to 1 if respondent n choose ‘Low’ as his/her most preferred255

calorie level and 0 otherwise;256

• IBMC,n is an indicator variable, equal to 1 if respondent n choose ‘Medium’ as his/her most257

preferred calorie level and 0 otherwise;258

• IBHC,n is an indicator variable, equal to 1 if respondent n choose ‘High’ as his/her most preferred259

calorie level and 0 otherwise; and260

• IBDK BC,n is an indicator variable, equal to 1 if respondent n did not know his/her most261

preferred calorie level and 0 otherwise.262

Equivalently IW is an indicator variable for the least favourite rankings. The parameters δR,DK BestCal263

and δR,DK WorstCal give the utility for the “Don’t know” choices.264

A corresponding specification was used for the ranking questions for time and food type. From265

this, we then obtain:266

L (Rn | α∗,n) = Pcal-best,nPcal-worst,nPtime-best,nPtime-worst,nPtype-best,nPtype-worst,n, (8)
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which gives the probability of observing the specific responses given by respondent n to the ranking267

questions as a product of logit probabilities which is conditional on the first six latent variables,268

where α∗,n = 〈αLowCal,n, αHighCal,n, αLowTime,n, αHighT ime,n, αItalian,n, αAsian,n〉.269

The specification used for the cooking indicators is somewhat different. In line with Daly et al.270

(2012a), we treat the responses to these three attitudinal questions using an ordered logit model271

specification (see also Bierlaire, 2008). The probability of observing a given value s for the kth272

indicator (with k = 1, 2, 3) for respondent n, with s = 1, . . . , 5, where s = 1 indicates a strong273

agreement with the statement and s = 5 indicates a strong disagreement, is now given by:274

P (Ik,n | αCooking,n) =
eψk,s−ζIkαCooking,n

1 + eψk,s−ζIkαCooking,n
− eψk,s−1−ζIkαCooking,n

1 + eψk,s−1−ζIkαCooking,n
(9)

where the estimated effect of the latent variable αCooking,n on this indicator is given by ζIk , and the275

probability of the actual observed response is then given by:276

L (Ik,n | αCooking,n) =
S∑
s=1

Ik,ns

[
eψk,s−ζIkαCooking,n

1 + eψk,s−ζIkαCooking,n
− eψk,s−1−ζIkαCooking,n

1 + eψk,s−1−ζIkαCooking,n

]
(10)

where Ik,n1 = 1 if respondent n gives level 1 as the answer to the kth attitudinal question, and zero277

otherwise. For normalisation, we set ψk,0 = −∞ and ψk,5 = +∞ and estimate the four intermediate278

thresholds, where ψk,s ≥ ψk,s−1. Finally, we set L (In | αCooking,n) =
∏3
k=1 L (Ik,n | αCooking,n).279

Our joint model now has three components in the likelihood function; a choice model, a mea-280

surement model for the ranking questions, and a measurement model for the three attitudinal281

questions. These are driven by structural equations for utilities and latent variables, respectively.282

The likelihood for the observed sequence of choices for respondent n is given by L (yn | β, δ, τ, αn),283

which is a product of logit probabilities, and a function of the parameters of the base choice model284

(grouped together into β), the τ parameters and the vector of seven latent variables α. The likeli-285

hood for the measurement model for the ranking question is given by L (Rn | µR, δ, α∗,n) which is286

a function of the first six latent variables as well as a set of constants and the mean ranking pa-287

rameters. Finally, the likelihood for the measurement model for the attitudinal questions is given288
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by L (In | ζI , ψ, αCooking,n), which is a function of the ζ terms, the threshold parameters ψ, and the289

seventh latent variable.290

In combination, the log-likelihood function is thus given by:291

LL (β, γ, τ, ζI , ψ, µR, δ) =
N∑
n=1

ln

∫
η
L (yn | ·)L (In | ·)L (Rn | ·) g (η) dη (11)

Equation 11 is dependent on the latent variables, which is shown by the integration over η, the292

random component of α, and the fact that the log-likelihood is a function of γ, which drives the293

deterministic part of α. Hence, in addition to the parameters estimated for the standard model,294

the estimation of this model entails the estimation of the vector of τ terms, the parameters of295

the various measurement equations, and the socio-demographic interaction terms γ. As previously296

mentioned, maximum simulated likelihood estimation was used for this model in the absence of a297

closed form solution for the log-likelihood function in Equation 11.298

The entire structure of the model is represented graphically in Figure 4. At the top of the graph,299

we have the indicators, Ik; “Calorie Ranking”, “Time Ranking”, “Food Type Ranking” and “Cook-300

ing Attitudes” (for which we have three indicator functions). These indicators are explained using301

the seven latent variables, which in turn are a function of socio-demographic variables (in addition302

to having a random component). The latent variables are then at the same time interacted with303

the coefficients of the choice model (β), which are possibly also interacted with socio-demographic304

indicators, and which, in interaction with the attribute levels, explain the choices observed in the305

data.306

Before proceeding with the discussion of results, it should of course be acknowledged that the307

use of ICLV leads to increased estimation cost and the need for datasets to contain additional308

indicators, but this is commonly the case. Additionally, there is the added demand for the analyst309

to specify structural equations for the latent variables and to make decisions relating to functional310

form, including for the measurement model. However, when done in a competent manner, the311

advantages can be very substantial, where, as explained previously, as key advantage of ICLV over312

more standard models (e.g. mixed logit and latent class) is its ability to use additional data to313

explain the heterogeneity across decision makers, and to provide further insights.314
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Fig. 4: ICLV model outline

3 Results315

3.1 Base model results316

The results for the two base models are summarised in Table 3. Looking first at the model without317

socio-demographic interactions, we can see that the coefficients for low calories (βLowCal) is positive318

and significant while the coefficient for high time (βHighTime) is negative and significant. This319

indicates that low levels of calories are preferred to medium levels of calories, while medium time320

is preferred to high time. The signs for the coefficients for high calories (βHighCal) and low time321

(βLowTime) are not in line with this, but the coefficients are not statistically significant, making322

the sign irrelevant and showing that there is no difference from the sensitivity for the medium323

level in these cases; at the aggregate level, the respondents are not distinguishing between high324

calories and the base level medium calories, or between low time and the base level of medium325
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Tab. 3: Base MNL model and MNL with age and gender effects

Base MNL MNL with age and gender

est. rob. t-rat. est. rob. t-rat.
βLowCal;Base 0.2468 4.74 0.5050 4.97
∆LowCal;Male - - -0.1970 -2.00
∆LowCal;Under 35 - - -0.3231 -2.66
∆LowCal;Over 50 - - -0.1652 -1.36

βHighCal;Base 0.0341 0.69 0.0341 0.35
∆HighCal;Male - - 0.0310 0.33
∆HighCal;Under 35 - - 0.1261 1.08
∆HighCal;Over 50 - - -0.1826 -1.56

βLowTime;Base -0.0142 -0.34 0.1048 1.22
∆LowTime;Male - - -0.0061 -0.07
∆LowTime;Under 35 - - -0.1402 -1.28
∆LowTime;Over 50 - - -0.2086 -2.00

βHighTime;Base -0.2197 -6.52 -0.1220 -1.57
∆HighTime;Male - - -0.0319 -0.45
∆HighTime;Under 35 - - -0.2219 -2.42
∆HighTime;Over 50 - - -0.0182 -0.21

βItalian;Base -0.0599 -1.20 0.1852 2.00
∆Italian;Male - - -0.0357 -0.37
∆Italian;Under 35 - - -0.2900 -2.57
∆Italian;Over 50 - - -0.4213 -3.34

βAsian;Base -0.3275 -6.65 -0.0888 -0.95
∆Asian;Male - - 0.0247 0.26
∆Asian;Under 35 - - -0.5272 -4.62
∆Asian;Over 50 - - -0.2605 -2.12

βCost -0.0493 -7.92 -0.0504 -8.07
δDK -3.8274 -20.87 -3.8540 -20.97

LL -5,192.85 -5,141.8

time. We can also see that, as expected, the coefficients for Italian (βItalian) and Asian (βAsian) food326

are negative, meaning that respondents prefer the base of Local food to these alternatives, albeit327

that the difference with Italian food is not statistically significant. The cost coefficient (βCost)328

has the expected negative estimate, while the strong negative estimate for the constant for the329

“Don’t know” alternative (δDK) reflects the low rate of respondents indicating indecision between330

alternatives.331

Turning to the model incorporating socio-demographic interactions, using a likelihood ratio332

test, we obtain an improvement in log-likelihood by 51.85 units over the base model at the cost333

of 18 additional parameters - this is highly significant giving a likelihood-ratio test value of 103.7334
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compared to a χ2
18 critical value of 34.81 at the 99% level. While we note a significant negative335

shift in preferences towards low calories for males, we do not find significant differences between336

males and females for any of the other attributes, a finding which is contrary to much of the food337

preference literature. On the other hand, we observe a number of significant age interactions.338

Notably, we observe a lower preference for low calorie levels for respondents under the age of 35,339

along with reduced preferences (or increased dislike) of high time as well as Italian and Asian food.340

For respondents over 50 years of age, we note a significant negative shift in preferences for low time,341

as well as once again Italian and Asian food.342

3.2 Integrated Choice and Latent Variable (ICLV) model results343

The specification for our latent variable model made use of the base specification from the MNL344

model without socio-demographic interactions, given that these are now dealt with in the latent345

variable specification.346

In the choice model, the first six latent variables were interacted with the associated parameter,347

e.g. the latent variable for low calories was interacted with the β parameter for low calories. The348

latent variable for general cooking attitude was interacted with all non-cost coefficients in the choice349

model, with the exception of high time where no meaningful effect was retrieved. With this in mind,350

we have that the utilities for the first three alternatives are now given as:351

Vint = βLowCalLowCalint + ταLowCal,βLowCal
αLowCal,n + ταCooking,βLowCal

αCooking,n

+ βHighCalHighCalint + ταHighCal,βHighCal
αHighCal,n + ταCooking,βHighCal

αCooking,n

+ βLowTimeLowTimeint + ταLowTime,βLowTime
αLowTime,n + ταCooking,βLowTime

αCooking,n

+ βHighTimeHighTimeint + ταHighTime,βHighTime
αHighTime,n

+ βItalianItalianint + ταItalian,βItalianαItalian,n + ταCooking,βItalianαCooking,n

+ βAsianAsianint + ταAsian,βAsian
αAsian,n + ταCooking,βAsian

αCooking,n

+ βCostCostint (12)

while the utility for alternative 4 remains the same as in the MNL models.352
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Tab. 4: Estimation results for choice model component

est. rob. t-rat.
βLowCal 0.4103 4.57
βHighCal -0.2388 -2.79
βLowTime 0.0258 0.42
βHighTime -0.2444 -6.38
βItalian 0.0444 0.55
βAsian -0.3197 -3.19
βCost -0.0532 -7.55
δDK -3.9231 -20.61

ταLowCal,βLowCal
0.6740 7.50

ταHighCal,βHighCal
0.3783 2.78

ταLowTime,βLowTime
0.6065 7.78

ταHighTime,βHighTime
0.0303 0.75

ταItalian,βItalian 0.3187 5.53
ταAsian,βAsian

0.6476 6.80
ταCooking,βLowCal

-0.2089 -3.04

ταCooking,βHighCal
0.0779 1.21

ταCooking,βLowTime
-0.0519 -1.17

ταCooking,βItalian -0.0707 -1.21

ταCooking,βAsian
-0.0080 -0.12

Choice component LL -5,044.01
Overall LL -10,666.60

The specification of the measurement equations is as discussed in Section 2.3. The means353

of the latent variables were set to zero, and an extensive amount of testing was conducted to354

establish significant socio-demographic interactions, focussing on age and gender, where only the355

most significant interactions were retained, as discussed later in this section.356

The estimation results for the choice model component, as outlined in Equation 12 above, are357

shown in Table 4. The overall fit for the hybrid model, also shown in Table 4, cannot be directly358

compared to that for the MNL model as it jointly models the choices and responses to attitudinal359

and ranking questions (c.f. Equation 11). However, it is possible to factor out the component of360

the log-likelihood relating to the choice model, conditional on the other components. This gives361

us a log-likelihood of −5, 044.01, which shows that the model offers a better statistical fit for the362

choice data compared to the two base models, but no formal statistical tests are conducted, given363

the conditioning on other model components. Extensive discussions on this issue are given in Vij364

and Walker (forthcoming).365
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Tab. 5: Estimation results for structural equation model for latent attitudes

Latent variable Estimated parameter est. rob. t-rat.

αLowCal γLowCal<35 -0.2594 -1.95

αHighCal
γHighCalMale

0.5171 2.08
γHighCal<35

0.5011 3.03

αLowTime γLowTime50+ -0.2595 -1.85

αHighTime γHighTimeMale
0.5171 2.56

αItalian

γItalianMale
0.3186 1.76

γItalian<35 -0.5442 -2.54
γItalian50+ -0.9269 -4.24

αAsian

γAsianMale
0.2087 1.39

γAsian<35 -0.5072 -2.99
γAsian50+ -0.3310 -1.86

αCooking

γCookingMale
0.6713 5.98

γCooking<35
0.5018 3.67

γCooking50+ 0.2534 1.80

We first observe that βHighCal has changed in sign and has also become significant compared366

with the base model. This is in line with the preferences found above in Figure 2. Two additional367

parameters, namely βLowTime and βItalian, also undergo sign changes, but the coefficients remain368

insignificant. For the first six latent variable effects, we can see that, in line with expectations, a369

higher value for the underlying attribute sensitivity leads to a more positive parameter in the choice370

model, albeit that this is not statistically significant for high time. For the final latent variable, i.e.371

the general cooking attitude, only one effect is significant, indicating that a higher value for the372

latent attitude equates to a less positive value for the associated low calorie coefficient. As we will373

see later, this latent variable in fact equates to an anti-cooking attitude, meaning that respondents374

who have a more positive attitude towards cooking also prefer cooking lower calorie meals.375

As a next step, we look at the structural equations for the seven latent variables, as outlined376

above in Equation 4, with estimates summarised in Table 5. These results show that male respon-377

dents have a more positive value for the latent variables for high calories, high time and Italian and378

Asian food types. The result for high time may seem counter-intuitive, but a possible explanation379

could be that whilst they would prefer to have meals that take longer to cook, they do not neces-380

sarily want to be responsible for creating the meal. We also see that male respondents have a more381

positive value for the general latent cooking attitude, where it is important to remember that this382

is in fact an anti-cooking attitude, which explains the sign. The same applies for the low and high383
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Tab. 6: Estimation results for measurement models for rankings of attributes; Calories, Cooking
Time and Food Type

est. rob. t-rat.
Calories: αLowCal and αHighCal

µR,LowCal -0.7629 -5.54
µR,HighCal -4.0481 -15.30
δR,DK Most Cal -0.1595 -1.65
δR,DK Least Cal 3.5868 17.00

Cooking Time: αLowTime and αHighTime

µR,LowTime -0.5965 -4.73
µR,HighTime -4.2649 -16.80
δR,DK Most Time -0.7959 -7.30
δR,DK Least Time 3.3050 14.61

Food Type: αItalian and αAsian

µR,Italian -0.9207 -4.91
µR,Asian -2.1267 -10.59
δR,DK Most Type -1.9328 -12.79
δR,DK Least Type 2.0953 13.74

age groups. In addition, being under the age of 35 has a negative effect on the latent variable for384

low calories, as well as for Italian and Asian food types, but a positive affect on the latent variable385

for high calories. Lastly, respondents aged over 50 have a less positive value for the latent variable386

for low time, as well as non-local food.387

As discussed in Section 2.3, the measurement component explains the observed attribute rank-388

ings (c.f. Equations 6 and 7) in addition to the answers for the cooking attitudinal questions (c.f.389

Equation 9). The results for the measurement model for attribute rankings are summarised in Ta-390

ble 6, whereas the results for the three attitudinal questions are shown in Table 7. We will discuss391

each of these in turn below.392

Concerning Table 6, the negative signs for the six mean ranking parameters are a reflection of393

the fact that, across attributes, the middle level tended to be ranked highest by respondents. The394

signs for the “Don’t know” constants reflect the low rates for choosing “Don’t know” in response395

to the best level question, and the high rate for choosing it in response to the worst level question.396

This is an indication that respondents find it harder to evaluate their least preferred option and as397

a result, are more inclined to state “Don’t know”.398

We finally turn to the results for the measurement model for the three attitudinal questions,399

which are shown in Table 7. We can see that the thresholds are all increasing in magnitude, as400
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Tab. 7: Estimation results for measurement model for latent attitude to Cooking, αCooking

est. rob. t-rat.
Cooking is not much fun

ζCooking 1 3.1146 7.13
Threshold 1: ψ1,1 -2.2387 -4.84
Threshold 2: ψ1,2 1.3287 2.88
Threshold 3: ψ1,3 4.7295 7.00
Threshold 4: ψ1,4 8.3355 8.82

Compared with other daily decisions,
my food choices are not very important

ζCooking 2 1.6174 8.51
Threshold 1: ψ2,1 -2.1674 -8.41
Threshold 2: ψ2,2 0.2199 0.88
Threshold 3: ψ2,3 3.4837 9.70
Threshold 4: ψ2,4 5.6278 12.32

I enjoy cooking for others and myself
ζCooking 3 -2.8201 -8.87
Threshold 1: ψ3,1 -6.2423 -9.38
Threshold 2: ψ3,2 -4.6090 -8.10
Threshold 3: ψ3,3 -0.8788 -2.21
Threshold 4: ψ3,4 2.6166 5.76

is required by the model. Additionally, we see positive estimates for the effect in the first two401

equations, and a negative effect in the third model. This means that a more positive value for402

the seventh latent variable leads to stronger agreement with the statements that “Cooking is not403

much fun” and “Compared with other daily decisions, my food choices are not very important”,404

but increased disagreement with the statement that “I enjoy cooking for others and myself”. This405

is in line with an interpretation of this latent variable as an anti-cooking attitude, which explains406

the role of this latent variable in the choice model as well as the signs of the socio-demographic407

interactions in its structural equation.408

3.3 WTP / Marginal Rates of Substitution409

As a final step, we turn our attention to implied willingness to pay (WTP) patterns and other410

marginal rates of substitution.411

We first look at the WTP patterns from our base MNL model without socio-demographic412

interactions, shown in Table 8(a). The context of the survey was a study of home-cooked meal413

options, namely respondents’ preferences for a typical evening meal that they would share with414
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their partner at home. Consequently, the cost element of this represented the total cost for all of415

the ingredients needed to produce this evening meal which would feed them both. We can thus416

interpret the willingness to pay (WTP) measures as the extra cost that the respondent would be417

willing to pay for the evening meal to be shifted away from the middle (base) level (or have to418

obtain in price reductions to accept such a change). In these results, negative WTP measures419

reflect the fact that some attribute levels are undesirable when compared to the middle level. For420

the base model, we note a positive WTP for moving from middle calorie to low calorie meals, while421

cost reductions are required at the aggregate level to accept a move to high time or Asian food.422

The remaining WTP measures relate to parameters that were not statistically significant.423

Table 8(b) and Table 8(c) show the corresponding results for the MNL model with gender and424

age interactions as well as for the ICLV model. In both cases, we now have variation across respon-425

dents, where the variation in the MNL model is purely deterministic, as a result of incorporating426

socio-demographics in the model, while the variation in the ICLV models is driven by both the427

socio-demographic and random components in the structural equations for the latent variables. In428

both models, we summarise the heterogeneity by presenting the values for a number of points on429

the sample level distribution, in the form of percentiles. While the signs and size of the mean430

WTP measures remain in line with the simple MNL results, most WTP measures now show tails431

of opposite signs - for example, in Table 8(b) we see that the proportion of people who would have432

a negative WTP for moving from middle calorie to low calorie meals contains between 10-25% of433

the sample. This reflects the high degree of heterogeneity in the data, where, for the ICLV model,434

it is also important to acknowledge the potential impact of the Normal distribution on results. We435

see that the tails from the distributions in the ICLV model are very long and suggest some very436

high WTP measures for a small share of respondents. It is important to recognise that the Normal437

distribution is unbounded and this clearly plays a role in these tails. Of further key importance is438

the strong retrieved impact that the latent attitudes have on sensitivities, with several of the esti-439

mated τ parameters exceeding the associated coefficient in absolute value, leading to the resulting440

high level of heterogeneity. It is worth mentioning in this context that we found no evidence of441

fully lexicographic behaviour in the data.442

For other marginal rates of substitution, we focus on a shift from medium calories to low443

calories, and in particular respondents’ willingness to accept a move to high time (from medium444
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time) or Asian food (from local food) in return for such a change. For the simple MNL model,445

Table 9(a) shows that the desire to shift to low calories is stronger than the desire to avoid a shift446

from medium time to high time, but is not as strong as the desire to avoid a shift from local food447

to Asian food. For the model with socio-demographic interactions (cf. Table 9(b)), we see strong448

heterogeneity, where sign changes are a result of some segments disliking low calories or having a449

positive preference for High Time or Asian food. While the mean is greater than 1 for both marginal450

rates of substitution, the medians are both lower than 1. This implies that while some respondents451

have a very strong preference for a move to low calories, the relative preference for avoiding a move452

to high time or Asian food is stronger for over fifty percent of respondents. This is also reflected in453

the results for the ICLV model (cf. Table 9(c)), where the use of the Normal distribution implies454

that means and standard deviations for the marginal rates of substitution cannot be calculated455

(c.f. Daly et al., 2012b). The use of the Normal distribution is in this case an inherent component456

of the ICLV structure. Nevertheless, while moments cannot be calculated, we can of course still457

report medians and other percentiles, as we do.458

4 Discussion459

In this paper, we have highlighted the potential benefit of using advanced choice models for studying460

consumers’ food choices. In particular, we have considered the impact that attitudes and underlying461

preferences can have on the decision making process through the use of a latent variable approach.462

We started with a simple MNL model which revealed that most of the estimates were in line with463

expectation, and those that were not were found not to be significant. We also estimated a MNL464

model with variation in sensitivities by age and gender, producing interesting findings, not least in465

part due to the significant preference differences found between the age groups used.466

As a next step, we illustrated how further differences can be accommodated in a latent variable467

based hybrid model structure which allows us to make use of additional subjective data on attribute468

rankings and attitudinal questions. Crucially, this model allows us to use such data without risk469

of measurement error or endogeneity bias. We formulated a model with seven latent variables and470

showed how this model provides us with important further insights into behaviour. The latent471

variables are used to explain both differences in sensitivities in the choice model as well as the472
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responses to attribute ranking questions and attitudinal questions. In this context, a number of473

interesting socio-demographic interactions were also retrieved.474

Some potential limitations in this study must be acknowledged. Firstly, our dataset may have475

been subject to some endogeneity issues between cost and quality, that has been previously found476

in other food studies (Richards and Padilla, 2009)6. In addition, at an earlier stage of this work,477

feedback from our survey interviewers indicated that people were associating low cooking time with478

low quality food, whereas people were associating a lengthy cooking time with high inconvenience,479

which may help to explain the counter-intuitive finding of the preferred cooking time being between480

31 and 60 minutes. Further, a recent paper by Grisoĺıa et al. (2012) mentions an important481

element in general food choices; the issue of experienced utility vs. expected utility. This could482

also be an important confounder in our survey, where the types of foods that the respondents had483

bought and cooked at home previously could have had a bearing on their current food preferences.484

Finally, the use of the MNL model without socio-demographic variables inside the ICLV model is a485

simplification. We took this decision primarily with a view to avoiding using the same limited set486

of socio-demographic variables in two components of the model (utility specification and structural487

equations for the latent variable) where we were concerned with confounding.488

The ICLV model has the key advantage of being a very flexible model, allowing the use of a489

wide set of different indicators. Future work could make use of other factors such as those related490

to health risk aversion and weight control problems, which unfortunately were not included in the491

present survey7. We believe that there is wide scope for ICLV applications in a food choices context.492

Indeed, it is well known that preferences vary extensively across consumers and it is conceivable that493

a large extent of such heterogeneity relates to underlying convictions, preferences and attitudes.494

Examples for future areas of application include a focus on topics such as health and diet, ethical495

food sources, organic food, as well as locally sourced food. A further key advantage of the model is in496

forecasting. Indeed, once the latent variables have been calibrated with the help of the measurement497

model, this component of the model becomes redundant in forecasting, meaning that indicators are498

no longer needed, and only choices are predicted. With a sufficiently detailed specification for the499

structural equations, this would also allow forecasting under hypothetical changes to the make-up500

6 We thank an anonymous referee for conveying this to us.
7 We are grateful to an anonymous referee for having pointed out these and many other things to us.
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of the population of consumers, for example in relation to age and income.501
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Grisoĺıa, J. M., López, F., Ortúzar, J. D. D., 2012. Sea urchin: From plague to market opportunity.568

Food Quality and Preference 25 (1), 46–56.569

Hensher, D. A., Rose, J. M., 2012. The influence of alternative acceptability, attribute thresh-570

olds and choice response certainty on automobile purchase preferences. Journal of Transport571

Economics and Policy, 46 (3), 451–468.572

Hess, S., Beharry-Borg, N., 2012. Accounting for latent attitudes in willingness to pay studies: the573

case of coastal water quality improvements in Tobago. Environmental and Resource Economics574

52 (1), 109–131.575
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