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Abstract 12 

Natural soil pipes are found in peatlands but little is known about their hydrological role. This paper 13 

presents the most complete set of pipe discharge data to date from a deep blanket peatland in 14 

northern England. In a 17.4-ha catchment, there were 24 perennially-flowing and 60 ephemerally-15 

flowing pipe outlets. Eight pipe outlets along with the catchment outlet were continuously gauged 16 

over an 18-month period. The pipes in the catchment were estimated to produce around 13.7 % of 17 

annual streamflow with individual pipes often producing large peak flows (maximum peak of 3.8 L 18 

s
-1

). Almost all pipes whether ephemeral, perennially-flowing, shallow or deep (outlets > 1 m below 19 

the peat surface), showed increased discharge within a mean of 3 hours since rainfall 20 

commencement and were dominated by stormflow, indicating bypassing flow from the peatland 21 

surface to the pipes. However, almost all pipes had a longer time period between hydrograph peak 22 

and return to baseflow than the stream (mean of 23.9 hours for pipes, 19.7 hours for stream); as a 23 

result, the proportion of streamflow produced by the pipes at any given time increased at low flows 24 

and formed the most important component of stream discharge for the lowest 10 % of flows. Thus, 25 

a small number of perennially-flowing pipes became more important to the stream system under 26 

low flow conditions and probably received water via matrix flow during periods between storms. 27 

Given the importance of pipes to streamflow in blanket peatlands, further research is required into 28 

their wider role in influencing stream-water chemistry, water temperature and fluvial carbon fluxes, 29 

as well as their role in altering local hydrochemical cycling within the peat mass itself. Enhanced 30 

piping within peatlands caused by environmental change may lead to changes in streamflow regime 31 

with larger low flows and more prolonged drainage of the peat. 32 

 33 

Keywords: piping, pipeflow, tunnel erosion, peatlands, Environmental Change Network 34 

 35 

Introduction 36 
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Natural soil pipes are large macropores that act as conduits for water, solutes, dissolved gases and 37 

sediment. Natural piping, which often produces macropores many centimetres in diameter, is 38 

sometimes referred to as ‘tunnel erosion’ (Crouch et al., 1986; Zhu, 1997; Zhu, 2003), although the 39 

exact process of pipe formation may include faunal tunnelling (Holden and Gell, 2009), root 40 

penetration, which opens up a macropore, and crack formation during desiccation (Bryan and Jones, 41 

1997). Subsequent enlargement may take place through a combination of physical erosion of 42 

particulates or solutional denudation. The pipes or ‘tunnels’ can often be several hundred meters in 43 

length and typically form branching networks. Natural soil pipes have been reported in a range of 44 

environments such as tropical forest soils (Baillie, 1975; Chappell and Sherlock, 2005; Sayer et al., 45 

2006), loess (Verachtert et al., 2010; Zhu, 2003), high latitude forests (Roberge and Plamondon, 46 

1987), subarctic slopes (Carey and Woo, 2000), steep, temperate, humid hillslopes (Terajima et al., 47 

2000; Uchida et al., 1999; Uchida et al., 2005), and dispersive semi-arid soils, where severe gully 48 

erosion has often resulted from pipe development (Bryan and Jones, 1997; Crouch et al., 1986; 49 

Gutierrez et al., 1997).  50 

 51 

Macropores have been found to be important for infiltration and throughflow in peatlands (Baird, 52 

1997; Holden, 2009). Larger pipes have also been commonly reported in peatlands (e.g. Glaser, 53 

1998; Gunn, 2000; Holden, 2005a; Holden and Burt, 2002; Holden et al., 2004; Jones, 1981; Jones 54 

et al., 1997; Markov and Khoroshev, 1988; Norrstrom and Jacks, 1996; Price, 1992; Rapson et al., 55 

2006; Thorp and Glanville, 2003; Woo and DiCenzo, 1988). Soil conditions are generally too harsh 56 

for burrowing fauna in most peatlands, but peatlands may be conducive to piping because they are 57 

susceptible to rapid desiccation cracking.  Outside of drought periods, the plentiful supply of water 58 

combined with a highly variable range in hydraulic conductivity within the peat profile may also 59 

cause peatlands to be susceptible to piping (Holden and Burt, 2003a; Rosa and Larocque, 2008).  60 

 61 
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Natural pipes in peatlands have been most frequently reported in blanket peatlands (Holden, 2005a; 62 

Jones, 1981; Jones et al., 1997; McCaig, 1983; Price, 1992). Pipes may be important in the delivery 63 

of water to blanket peatland streams. Jones and Crane (1984) reported that 49 % of streamflow was 64 

produced by soil pipes in histic podzols in mid-Wales. It was suggested that the pipes transmit 65 

water to the stream from an area on the hillslope 10 to 20 times greater than would be the case if all 66 

stormwater were drained via surface and near surface flow (Jones, 1997). This shows the potential 67 

of pipes to deliver water, solutes, dissolved gases and sediment directly to the stream network from 68 

more remote areas of the peatland, which would be considered disconnected under the traditional 69 

view of peatland hydrology. There has only been one detailed study of pipeflow in a deep peat 70 

catchment where it was suggested that 10 % of streamflow moved through the pipe network 71 

(Holden and Burt, 2002); this study was over a limited (five-month) period so it is not known 72 

whether the results are atypical. We still know relatively little about the hydrological role and 73 

behaviour of pipes in peatlands. While some pipes form at the interface of soil horizons (Jones, 74 

1994; Jones and Crane, 1984), other pipe networks may occur at a variety of depths within the soil 75 

profile (Holden and Burt, 2002; Holden et al., 2002) and may, therefore, connect shallow and deep 76 

sources of water. In ombrotrophic peatlands, deeper peat layers have traditionally been assumed to 77 

be associated with little or no water movement, such that they have a minimal role in supplying 78 

streams with water. However, where pipes connect deep peats with streams, the hydrological 79 

behaviour of peatlands may be more complex than previously thought (Holden and Burt, 2003b; 80 

Morris et al., 2011). 81 

 82 

In the study reported here, the overall aim was to investigate whether the contribution of pipe flow 83 

from blanket peatland is an important component of streamflow. Our data represent the most 84 

extensive continuous record of pipe flows in a deep peat catchment to date. We also investigated 85 

how pipe discharge varies spatially and temporally (in response to storm events) in order to 86 
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characterise the hydrological function of the pipe network. The work builds upon a study showing 87 

that the pipe outlet morphology at our study site is highly dynamic (Holden et al., in review) and 88 

that the pipes act as important point sources for dissolved gases (Dinsmore et al., in review). 89 

 90 

Study site 91 

Cottage Hill Sike (54°41'N, 2°23'W) is a headwater of the River Tees on the Moor House National 92 

Nature Reserve in Cumbria, northern England (Figure 1). The catchment was chosen  (i) because of 93 

the availability of long-term data on water table, vegetation, meteorological conditions, and soil and 94 

stream chemistry which have been collected at the site since 1991 as part of the UK’s 95 

Environmental Change Network (ECN) (Sykes and Lane, 1996), and (ii) because the site had an 96 

existing stream gauging station forming part of the UK’s Centre for Ecology and Hydrology’s 97 

(CEH) carbon catchments programme (Billett et al., 2010).  The catchment area is 17.4 ha with an 98 

altitudinal range of 545 m to 580 m above mean sea level. Lower Carboniferous sequences of 99 

interbedded limestone, sandstone and shale provide a base for glacial till at the site (Johnson and 100 

Dunham, 1963). The till impedes drainage, which has allowed blanket peat to develop. Ninety-eight 101 

percent of the catchment is covered in blanket peat (Adamson et al., 1998; Miller et al., 2001) 102 

which is typically 3 to 4 m thick, although in places it reaches 8 m thick. Slopes within the 103 

catchment vary between 0 and 15
o
, with the majority of the catchment (>80%) having slopes 104 

between 0 and 5
o
. Catchment aspect is dominated by east to southeast facing slopes. Vegetation 105 

cover is most commonly Calluna vulgaris L. and Eriophorum vaginatum L. with some Empertrum 106 

nigrum L. and Sphagnum capillifolium (Ehrh.) Hedw..  107 

 108 

The climate at the site is sub-arctic oceanic (Manley, 1936; Manley, 1942). Holden and Rose (2011) 109 

produced a corrected and homogenised temperature record for the site for 1931 to 2006. The mean 110 

annual temperature at the site increased from 5.1
o
C (1961-1990) to 5.8

o
C (1991-2006). Mean 111 
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annual precipitation was 2012 mm (records from 1951-1980 and 1991-2006). Precipitation is only 112 

slightly seasonal with 57 % occurring in the winter half-year from October to March. Snow cover is 113 

sporadic and a typical winter season will see several complete accumulation and melt cycles. On 114 

average there were 41 days per year with snow lying on the catchment between 1994 and 2006 115 

(there were 69 days per year between 1952 and 1980).  116 

 117 

The streams across Moor House tend to be ‘flashy’ with rapid rising and falling limbs on 118 

hydrographs. Trout Beck (11.2 km
2
 catchment), into which Cottage Hill Sike drains, displays mean 119 

peak lag times of 2.8 hours between peak rainfall and peak discharge (Evans et al., 1999), and 120 

annual runoff coefficients of 70 to 80 %. Water tables at the ECN site (Figure 1) are within 5 cm of 121 

the surface for 83 % of the time and rarely fall to depths of greater than 20 cm. Overland flow and 122 

shallow throughflow in the upper few centimetres of the peat dominate runoff response and there 123 

appears to be little deeper flow through the peat matrix (Holden and Burt, 2003c), with low, but 124 

highly variable, hydraulic conductivities measured at depths greater than 5 cm (Holden and Burt, 125 

2003a). Cottage Hill Sike streamwater has a mean pH of 4.3 and a mean Ca concentration of 1.1 mg 126 

L
-1

 (1993-2007) indicating little base-rich groundwater influence. The stream is rich in dissolved 127 

organic carbon (mean concentration 18.8 mg L
-1

) with an average (1993 – 2007) annual flux of 23.4 128 

g C m
-2

 y
-1

 (Billett et al., 2010; Tipping et al., 2010) with highest fluxes occurring during the 129 

wettest years (Clark et al., 2007). 130 

 131 

Methods 132 

Pipe outlets were mapped throughout the whole catchment and were visible along the banks of the 133 

main stream channel and tributaries and along depressions in the peat surface. A total of 84 separate 134 

pipe outlets were identified. All pipe outlet positions were mapped using a differential global 135 

positioning system (dGPS) and visited under varying weather conditions to identify their individual 136 
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flow regime. From these surveys 24 pipes were identified as perennial (continuously-flowing) and 137 

60 as ephemeral (flow ceased under dry conditions). The distinction between perennial and 138 

ephemeral pipes is partly qualitative because during the driest conditions flow from many perennial 139 

pipes was barely detectable. Approximately 10 % of the pipes (eight) were chosen to provide a 140 

representative sample of the pipes within the catchment as a whole (based on size of outlet, depth 141 

and whether ephemeral or perennial) for continuous gauging (Table 1). These pipes are described 142 

herein using a numerical coding P1-P8 (Figure 1). Based on initial observation, if pipe flows from 143 

an outlet were expected to be large then v-notch weirs were fitted at the outlets; if they were small 144 

then tipping bucket flow gauges were attached to the pipe outlet. For the v-notch weirs, Trafag 145 

DL/N-type pressure transmitters with data loggers were installed within stilling wells. Stage was 146 

recorded at 15-minute intervals and represented an average of one-minute stage readings. Stage was 147 

converted to discharge using a manually-calibrated rating curve for each weir. Pipes with lower 148 

maximum discharges were fitted with Davis Rain Collector II tipping bucket rain gauges, with pipe 149 

water conducted to the bucket via plastic guttering. Tipping buckets were automatically logged 150 

using Novus LogBox DA dual input data loggers. Stream discharge at the Cottage Hill Sike 151 

catchment outlet was measured using a glass fibre flume with recording initiated in December 2007. 152 

Stage in the flume was measured using a non-vented In Situ Inc. Level TROLL 300 pressure 153 

transducer with atmospheric correction provided from an In-Situ Inc. BaroTroll sensor.  Water 154 

depth in the flume was converted to flow by a rating equation manually calibrated via dilution 155 

gauging. For very high flows this rating was further checked against a calibration with Trout Beck 156 

which is gauged only 400 m downstream from our site. Precipitation within the catchment was 157 

recorded using a tipping bucket gauge which recorded the timing of each tip containing 0.2 mm of 158 

rainfall. All pipeflow loggers were downloaded every two weeks between 24 April 2008 and 11 159 

November 2009. To avoid seasonal bias we report results for the 12 months from 24 April 2008 160 

unless otherwise stated. Since the logger for P1 malfunctioned for 46 % of the time we only used 161 
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the data from it for individual storm analysis; there were insufficient data to produce a complete 162 

annual flow budget for the pipe. 163 

 164 

Storm response variables including total storm discharge, start lag time (time from rainfall start to 165 

initial rise in flow), peak lag time (time from rainfall peak to flow peak), time to maximum flow 166 

(time from initial rise in flow to peak flow), peak flow, 6-hour recession rate (flow 6 hr after peak 167 

flow divided by peak flow), recession time (time from peak flow to pre-event discharge), and 168 

hydrograph intensity (peak flow divided by total storm discharge) were derived for each single 169 

peaked storm unaffected by snow melt in order to try to characterise pipeflow response. These were 170 

measured for each pipe and the stream outlet for as many individual storms as possible during the 171 

12 months from 24 April 2008.  172 

 173 

Because pipes do not have clear topographic catchment areas, Jones (1997) advocated deriving a 174 

surrogate basin area or ‘dynamic contributing area’ (DCA) for pipes using storm discharge and 175 

rainfall information. This was done by dividing the total storm discharge from each pipe by the total 176 

storm rainfall and assuming a storm runoff coefficient of 1 to derive the maximum DCA. The 177 

maximum DCA calculated for each pipe during the study was then determined. For some pipes we 178 

analysed over 100 storms and so the largest DCA is unlikely to be greatly underestimated. 179 

 180 

Water table data were provided by the ECN derived from a 5-cm diameter dipwell (Figure 1) fitted 181 

with a pressure sensor that measures levels every five seconds which are then averaged and 182 

recorded hourly. These readings were checked manually once every week. Holden (2000) reported 183 

a mean absolute difference between manual and logger readings of 1.1 cm at the site. 184 

 185 
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Because we continuously gauged only eight of the 84 pipe outlets within the catchment it was 186 

necessary to upscale the results to produce an estimate of total pipeflow. This was calculated based 187 

on 24 perennial and 60 ephemeral pipes. The annual average flow from the gauged perennial pipes 188 

was multiplied by the total number of perennial pipes within the catchment to give an estimate of 189 

perennial pipe flow. The same procedure was applied to the ephemeral pipes. All estimated pipe 190 

flows were then summed to provide an estimate of the proportion of discharge from the catchment 191 

attributable to pipe flow.  192 

 193 

Results 194 

Precipitation for the 12 months from 24 April 2008, was 2105 mm. Total discharge at the catchment 195 

outlet was recorded as 305212 m
3
 giving a runoff to rainfall coefficient of 83.5%. Over the two year 196 

period from 1 Jan 2008 the runoff to rainfall ratio was 81.0 %. The maximum rainfall intensity 197 

during the entire 18-month pipeflow study period was 18 mm h
-1

 measured on 1 July 2009. 198 

Maximum daily rainfall (i.e. not affected by snowmelt in the gauge) was 73 mm recorded on 17 199 

July 2009. Peak discharge was 1375 L s
-1

 on 15 February 2009 associated with a snowmelt event.  200 

 201 

Maximum pipe discharges measured across all pipes during the study were found at P3 and P8 202 

where flows of 3.9 L s
-1

 (11 November 2008, P3) and 2.7 L s
 -1

 (3 December 2008, P8) were 203 

recorded, both probably associated with snowmelt events as air temperatures were just above 204 

freezing at the time. Deep and shallow pipes and ephemeral and perennial pipes all produced large 205 

discharges during storms (Table 1); the maximum total storm discharge delivered by P3 was 183 206 

m
3
, equivalent to 3.8% of the stream’s total storm discharge at the catchment outlet. There was little 207 

variability in estimated total annual runoff to rainfall ratio between pipes (23 to 29 %) based on the 208 

estimated maximum DCA. 209 

 210 
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Representative pipe and stream hydrographs (Figures 2 and 3) show that all gauged pipes responded 211 

rapidly to rainfall, producing steep rising and falling limbs. Two of the pipes (P2 and P7) had very 212 

steep falling limbs and responded very quickly to all rainfall events in comparison to other pipes. 213 

Flow from P8 switched on and off very quickly and thus had the most flashy hydrographs as 214 

measured by the hydrograph intensity index (Table 2). However, five pipes (P4 to P8) had a smaller 215 

mean storm hydrograph intensity index than the stream. Flow was initiated in all of the monitored 216 

pipes within three hours of rainfall commencing, except at P8 which had a mean start lag time 217 

longer than that of the stream (means of 4.4 and 3.5 hours respectively; Table 2). There was a wide 218 

range in peak lag times (time between peak rainfall and peak discharge), with P2, P4, P6, P7 and P8 219 

having shorter mean peak lag times than the stream and the other three pipes having longer mean 220 

peak lag times than the stream (4.5 hr). All of the pipes (with the exception of P8) had longer mean 221 

recession limbs than the stream (Trec, Table 2). However, mean recession rates over the first six 222 

hours of the recession (Kr, Table 2) were steeper than that of the stream for five pipes. 223 

 224 

Peak and total storm discharge both correlated strongly and positively with most storm event 225 

precipitation variables (Table 3). Total precipitation and precipitation intensity were strongly 226 

correlated with peak flows, whilst rainfall duration was the most important factor controlling the 227 

volume of water flowing through the pipes during storms. There is little correlation between storm 228 

event pipe flow characteristics and water-table depth. This lack of correlation appears to be because 229 

stream and pipe discharge are dominated by periods when the water table is within 5 cm of the 230 

surface (e.g. Figure 4). When examining the mean characteristics of the eight pipes and the stream 231 

there were no significant associations between maximum DCA and mean lag times, hydrograph 232 

intensity or hydrograph recession metrics. 233 

 234 



 11 

Between each month of the 18-month study the flow summed across all the gauged pipes 235 

contributed 1.3 to 3.9 % of streamflow although there were no clear seasonal trends. Over the 12 236 

months from 24 April 2008, when upscaled across the catchment, the total pipe flow was estimated 237 

to account for 13.7 % of stream flow. Perennial pipes were found to account for an estimated 12.2 238 

% of flow at the catchment outlet compared to 1.5 % for ephemeral pipes. The proportion of flow at 239 

the catchment outlet due to pipe flow varied over time and throughout rainfall events (Figure 5). 240 

During periods of low streamflow the proportion of discharge at the catchment outlet contributed by 241 

the monitored pipes was greater than during rainfall events. For the periods when streamflow was 242 

less than 0.4 L s
-1

 (i.e. lowest 10 % of flows), flows from the gauged pipes were estimated to 243 

contribute 20 % to streamflow. When upscaled to all detected pipes, pipe discharge was actually 244 

greater than the total stream runoff. Only at P8 was there an increase in the proportion of stream 245 

runoff delivered by the pipe outlet during rainfall events; this pipe only flowed during large storm 246 

flow events. Figure 5 also reveals spikes in the proportion of flow provided by some of the pipes at 247 

the beginning of rainfall events indicating that these pipes respond more quickly to rainfall than the 248 

stream.  249 

 250 

The flow exceedance curves are shown in Figure 6. Over 58% of the total stream discharge from the 251 

site occurred during only 10% of the time. In comparison only 0.34 % of total discharge from the 252 

site occurred during the 10 % of time that the flow was at its lowest. The different behaviour of 253 

flows from P8 compared to the other pipes is evident from the plot. Pipe P8 produced over 89 % of 254 

its discharge during 10 % of the time. The other three ephemerally-flowing pipes had flow 255 

exceedance curves with a similar shape to each other and also similar to the stream. The three 256 

perennially-flowing pipes have similar flow exceedance curves to each other. Pipes P3 and P7 257 

produced over 72 and 76 % respectively of their discharge during only 10 % of the time. P6 had a 258 
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sustained baseflow during the study and had the least steep flow exceedance curve at the site, and 259 

produced only 43 % of its discharge during the wettest 10 % of the time.  260 

 261 

Discussion and conclusions 262 

Pipeflow was an important component of stream hydrology in Cottage Hill Sike with flow from the 263 

gauged pipe outlets alone accounting for around 2.2 % of streamflow during the study period. If 264 

these gauged pipe outlets were a representative sample of the pipes within the catchment, we 265 

estimate that 13.7 % of streamflow was produced from the pipe system. Perennially-flowing pipes 266 

were of greater hydrological importance to annual streamflow compared to ephemeral pipes. While 267 

other pipes within the catchment could behave differently from the monitored pipes, there did 268 

appear to be consistency in hydrological behaviour within perennial pipe types and within 269 

ephemeral pipe types, with the exception of P8 (see below). Furthermore, there are likely to be 270 

pipes within the catchment that are undetected meaning our value of 13.7 % will be an under-271 

estimate of the total pipeflow contributions to stream flow.  272 

 273 

The substantial contribution of pipeflow to streamflow in Cottage Hill Sike is a very important 274 

finding. Earlier work on pipeflow in blanket peat had suggested that it could be important (e.g. 275 

accounting for 10 % of streamflow in Little Dodgen Pot Sike; Holden and Burt, 2002) and so the 276 

results from Cottage Hill Sike provide strong evidence that this proportion of pipeflow 277 

contributions is typical, at least locally (Little Dodgen Pot Sike is 3 km from Cottage Hill Sike). It 278 

should also be noted that our present study was much more comprehensive than that undertaken by 279 

Holden and Burt (2002) (e.g. ~100 storms analysed versus 14 in the earlier paper; 18 months of 280 

continuous data compared to 5). Jones and Crane (1984) reported that 49 % of streamflow was 281 

produced by soil pipes in histic podzols (i.e. not deep peat) at a site in Wales and so our results for 282 

the role of pipeflow are not unusual in that context. However, our results are clearly important 283 
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because they have implications in terms of the wider understanding of how blanket peatlands 284 

function hydrologically. 285 

 286 

There was a large range (320-fold) in maximum discharge recorded from individual pipes. The 287 

overall maximum flow recorded from any of the pipes was similar to those reported elsewhere. 288 

Values include 8.5 L s
-1

 from an ephemeral pipe in Casper Creek, California (Zeimer and Albreight, 289 

1987), and 1.1 L s
-1

 in a sandy till in Quebec (Roberge and Plamondon, 1987). In peatlands, peak 290 

flow rates from individual pipes have been reported of 0.7 L s
-1

 from the James Bay Lowlands 291 

(Woo and DiCenzo, 1988), 1.0 L s
-1

 from a peaty podzol in southwest England (Weyman, 1970), 292 

2.0 L s
-1

 from a shallow peat in Wales (Gilman and Newson, 1980), and 4.6 L s
-1

 in deep blanket 293 

peat (Holden and Burt, 2002). Over an 18 month period, Chapman (1994) recorded flow from an 294 

ephemeral pipe outlet in a shallow peat in mid-Wales during 66 storms and maximum flows ranged 295 

between 0.9 and 9.88 L s
-1

: 78% of storms had a maximum pipe flow rate of < 4 L s
-1

 and rates > 6 296 

L s
-1

 were rare and associated with very intense rain that generally occurred in the summer. The 297 

large range in total storm discharge between the Cottage Hill Sike pipes (Table 1) was similar to 298 

that observed in the Maesnant catchment (mid-Wales) by Jones (2004). 299 

 300 

The ephemeral hydrological behaviour of P8 was somewhat different from that of the other three 301 

ephemeral pipes monitored in terms of storm response and flow exceedance curves. P8 behaved like 302 

an ‘overflow pipe’ which switched on and off rapidly and was only activated during the highest 303 

flows. Nevertheless when flow did occur rates were high. We did not include P8 in our calculations 304 

to determine the wider role of ephemeral pipes within the catchment and classified this as a separate 305 

‘overland flow’ pipe type. If there were other such overflow pipes within the catchment then we 306 

may have underestimated the role of ephemeral pipes in streamflow and the overall role of pipes in 307 

streamflow within the catchment. 308 
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 309 

All gauged pipes responded rapidly to rainfall events and had a flashy flow regime, including those 310 

whose outlets were more than a metre below the peat surface. It is known that pipe networks 311 

undulate throughout a peat profile along their course, so it may be that pipes are close to the surface 312 

in some places and very deep (>>  1m) in others (Holden, 2004). The rapid response of pipes to 313 

rainfall and the dominance of stormflow in peatland pipe systems, suggests that surface and near-314 

surface runoff rapidly entered the pipe networks. This is likely to have a major influence on the 315 

chemistry and solute load of the water exported from the pipes. However, the lag times were longer 316 

for the blanket peat pipes studied in Cottage Hill Sike than those reported in histic podzols at 317 

Plynlimon, where ephemeral pipe flow responded within 20 to 30 minutes of rainfall starting 318 

(Muscutt, 1991). 319 

 320 

The majority of discharge generated in both pipes and the stream occurred when the water table at 321 

the ECN monitoring site was within 5 cm of the peat surface. Peak flow from the pipes usually 322 

coincided with times when the water table was at the peatland surface. However, care must be taken 323 

when drawing conclusions from these results because water table levels were measured at just one 324 

location in the catchment, and water tables in the vicinity of pipes may have differed from those at 325 

the single location. Further research is needed to elucidate water-table effects on pipeflow in 326 

peatland catchments because many ephemeral pipes show little or no flow for long periods even 327 

though the water table appears to be well above the pipe outlets. Parts of pipe networks could act as 328 

air-filled voids below the water table within peatlands for part of the time. Such air-filled voids may 329 

be important for biogeochemical cycling in peatlands. 330 

 331 

Despite the flashy response of pipe outlets to rainfall, the gauged pipes tended to have more 332 

subdued hydrograph recessions (although not over the first 6 hours of the recession) than the stream 333 
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at the catchment outlet. Indeed the hydrograph intensity index for five of the pipes was less than 334 

that of the stream. Given that individual pipe catchments should be very small in comparison to the 335 

stream catchment area and therefore have more flashy hydrographs (and hence a larger hydrograph 336 

intensity), this shows an important distinction between pipeflow and streamflow regimes. These 337 

results are probably indicative of the dominant role of saturation-excess overland flow during storm 338 

events in blanket peat systems and the relatively slower route for water through pipe networks when 339 

compared to overland flow. Overland flow is known to account for 81.5 % of runoff from the peat 340 

at Moor House (not including pipes) while 17. 7 % of the flow is produced by the upper 5 cm of the 341 

peat (Holden and Burt, 2003c). However, while there have been comprehensive studies of water 342 

flow travel times in peatland overland flow (e.g. Holden et al., 2008) the studies that examine deep 343 

peat pipeflow travel times are less comprehensive (e.g. Holden, 2004) and the latter requires further 344 

research. 345 

 346 

The proportion of pipeflow contributing to streamflow at any given time was greatest at low stream 347 

flows. Jones (1990), working in the Maesnant catchment in Wales, also observed that the 348 

contribution of pipe water to streamflow decreased when the catchment was very wet even though 349 

the absolute quantity of pipeflow continued to increase. Our measurements suggest that pipeflows 350 

are largely responsible for maintaining inter-storm flows at Cottage Hill Sike. Without pipes, the 351 

streamflow in blanket peat catchments may be even flashier than for a blanket peat system with 352 

pipes. However, the errors in low flow gauging with v-notch weirs may be large when compared to 353 

the recorded discharge. When flow in the stream is only 400 mL s
-1

, flow from most individual 354 

pipes tends to be < 2 mL s
-1

 which is probably smaller than the reliable measurement range for the 355 

v-notch weirs. Hence, the exact low flow values and percent contributions to flow that are reported 356 

here should be treated with caution and taken only as indicators of the relative importance of 357 

pipeflow during low flow periods. Furthermore, during low-flow periods it was often observed that 358 
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pipeflow would be occurring, albeit very slowly, and yet there was no flow in the headwaters of the 359 

stream. This observation suggests that during low flows pipes may emit discharge which then 360 

infiltrates into the peat near the pipe outlet rather than going directly into the stream. 361 

Notwithstanding these issues, the indications are that pipeflow is important for maintaining stream 362 

flow during low-flow periods in blanket peatland and could, therefore, strongly influence 363 

streamwater chemistry, water temperature and carbon fluxes. Further work is required to investigate 364 

pipeflow chemistry and carbon fluxes and their influence on stream chemistry and carbon fluxes.  365 

Given the potentially large role for pipes in streamwater chemistry it will be important to determine 366 

the mechanisms and routes by which water enters pipes during low flow, especially because our 367 

knowledge of blanket peat saturated hydraulic conductivity suggests that values will be low in all 368 

but the near-surface layers. It may be that oxidisation around pipe walls increases local saturated 369 

hydraulic conductivity and encourages lateral inflow. However, if this were the case then we will 370 

need to determine why there are differences in the processes operating around perennially- and 371 

ephemerally-flowing pipes. When all of the pipes across the catchment were examined, the 372 

ephemerally-flowing pipe outlets were significantly deeper in the peat than perennially-flowing 373 

pipe outlets (Holden et al., in review) and so it may be that perennial flow is largely maintained by 374 

drainage of more near-surface peat around pipes rather than deep lateral inflow. 375 

 376 

It has been shown that land management (e.g. drainage, more Calluna cover, bare peat) can lead to 377 

enhanced pipe development in blanket peatland systems (Holden, 2005a; Holden, 2005b). It is 378 

unlikely that changes to streamflow during storms would be evident under increased piping. 379 

However, given our findings it would be expected that increased piping would alter the streamflow 380 

regime providing larger baseflows and greater loss of peatland water  between storm events. 381 

Enhanced piping may also have a large impact on streamwater chemistry and carbon fluxes. 382 

 383 

 384 
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Table 1. Pipe and stream flow characteristics for 12 months from 24 April 2008. 

 
 General characteristics Storm analysis 

Site 

Pipe 

flow 

type 

Pipe 

entrance 

diameter 

(cm) 

Depth of 

pipe from 

peat 

surface 

(cm) 

Maximum 

discharge 

(L s
-1

) 

Minimum 

discharge 

(L s
-1

) 

Total 

number of 

storm 

events 

recorded 

Range of 

rainfall 

events (mm) 

Range of 

total storm 

discharge 

(m
3
) 

Total storm 

discharge as 

% of stream 

discharge 

Estimated 

maximum 

DCA (m
2
) (% 

of catchment 

in brackets) 

Annual runoff 

coefficient 

based on 

maximum 

DCA  

P1 E 10 47 0.016 0 31 3.0 – 85.4 0.03 – 1.22 0.005 – 0.055 178 (0.10) 0.25
+
 

P2 E 3 75 0.016 0 55 2.8 – 40.8 0.05 – 0.93 0.002 – 0.048 100 (0.06) 0.27 

P3 P 30 25 3.850 2 x 10
-6

 100 2.2 – 85.4 2.60 – 183.00 0.120 – 3.770 6151 (3.54) 0.22 

P4 E 3 60 0.012 0 79 2.8 – 85.4 0.010 – 1.93 0.001 – 0.059 82 (0.05) 0.23 

P5 E 1 100 0.016 0 62 3.0 – 40.8 0.02 – 0.94 0.004 – 0.046 78 (0.04) 0.27 

P6 P 15 100 0.290 5 x 10
-3

 104 2.6 – 85.4 0.90 – 32.04 0.043 – 2.254 2711 (1.56) 0.23 

P7 P 6 30 0.370 6 x 10
-4

 104 2.8 – 85.4 0.47 – 28.35 0.026 – 0.389 838 (0.48) 0.26 

P8 E 10 160 2.700 0 109 2.2 – 85.4 0.03 – 138.86 0.003 – 2.344 3243 (1.87) 0.29 

Stream P   264 2 x 10
-2

 102 2.2 – 85.4 278 – 17754  173600
* 

0.84 
*
Total measured catchment area. 

+
Mean of 31 storm events as there is insufficient data to provide an annual runoff coefficient. 
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Table 2. Mean hydrograph response variables determined from single-peaked storms over the 12 month 

period from 24 April 2008. 

 

Site (n) 

Time to 

max flow 

(hr) 

Start lag 

(hr) 

Storm 

discharge 

(m
3
) 

Peak 

lag 

(hr) 

Hydrograph 

intensity 

index (s
-1

) 

Kr  Trec (hr) 

P1 (18) 6.5 2.8 0.50 5.3 30.7 0.52 22.1 

P2 (20) 4.8 2.3 0.33 

 

2.6 24.4 0.48 30.6 

P3 (73) 6.4 2.6 16.40 4.6 24.9 0.53 26.7 

P4 (37) 6.2 2.5 0.26 4.2 24.3 0.61 23.1 

P5 (23) 7.2 2.7 0.38 5.1 19.9 0.70 30.6 

P6 (57) 4.4 2.3 4.18 

 

2.6 23.5 0.65 24.6 

P7 (43) 3.6 2.2 2.67 1.9 39.2 0.34 24.8 

P8 (58) 3.5 4.4 14.18 3.8 50.0 0.26 8.8 

Stream 

(65) 

5.6 3.5 1848 4.5 28.1 0.56 19.7 

Time to max flow = time from initiation of the storm response in the pipe or stream to peak flow. 

Start lag = time to start of flow increase from the initiation of rainfall. 

Peak lag = time to maximum flow from peak rainfall. 

Kr = flow 6 hrs after max flow/max flow. 

Hydrograph intensity index = (max flow/total storm discharge) x 10
6
 . 

Trec = Time from hydrograph peak to return to pre-event discharge. 

n = Number of rainfall events used in analysis 
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Table 3. Correlation coefficients for flow and precipitation characteristics. 

 

Site (n) 
Discharge 

factor 

Total 

rainfall  

Rainfall 

duration  

Storm mean 

rainfall 

intensity  

Storm 

maximum 5 

min rainfall  

Water-table 

depth  

Peak  0.181 -0.053 0.203 0.041 *0.483 
P1 (18) 

Total 0.377 0.208 0.073 0.170 0.461 

Peak *0.678 0.324 *0.555 *0.725 *-0.603 
P2 (20) 

Total *0.562 0.434 0.289 0.435 *-0.782 

Peak *0.759 *0.286 *0.503 *0.679 0.124 
P3 (73) 

Total  *0.815 *0.362 *0.487 *0.593 0.197 

Peak *0.833 *0.563 *0.527 *0.714 -0.012 
P4 (37) 

Total *0.830 *0.690 *0.428 *0.583 -0.060 

Peak *0.824 *0.520 *0.576 *0.786 -0.153 
P5 (23) 

Total *0.801 *0.802 0.251 *0.419 -0.094 

Peak *0.766 0.084 *0.567 *0.787 -0.180 
P6 (57) 

Total *0.515 *0.391 0.220 *0.319 -0.071 

Peak *0.842 0.106 *0.653 *0.790 0.065 
P7 (43) 

Total *0.789 0.128 *0.555 *0.634 0.088 

Peak *0.884 *0.368 *0.618 *0.779 0.099 
P8 (58) 

Total *0.878 *0.515 *0.484 *0.663 0.042 

Peak *0.887 *0.358 *0.629 *0.748 *0.301 
Flume (65) 

Total *0.897 *0.464 *0.553 *0.593 *0.307 

*correlation coefficient significant at the p ≤ 0.05 level 
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Figure captions 

 

Figure 1. Map showing the location of Cottage Hill Sike within the Moor House National Nature 

Reserve, UK, and location of sampled pipes.  

 

Figure 2. Hydrographs and precipitation for the sampled pipes and stream in the Cottage Hill Sike 

catchment for the period 25 April 2008 to 04 May 2008. 

 

Figure 3. Hydrographs and precipitation for the sampled pipes and stream in the Cottage Hill Sike 

catchment for an example storm starting on 30 April 2008. 

 

Figure 4. Water-table depth and discharge for P2 and the stream for the period spring to early summer 

2008. 

 

Figure 5. The proportion of discharge in the stream contributed by each of the sampled pipes between 24 

April 2008 and 10 May 2008. 

 

Figure 6. Flow exceedance curves for the stream and the pipes in Cottage Hill Sike for the 12 months 

from 24 April 2008. 
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Figure 1. Map showing the location of Cottage Hill Sike within the Moor House National Nature 

Reserve, UK, and location of sampled pipes.  
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Figure 2. Hydrographs and precipitation for the sampled pipes and stream in the Cottage Hill Sike 

catchment for the period 25 April 2008 to 04 May 2008.  Note the difference in the y-axis scales. 

 

 



 28 

 

 

 

 

 

 

 

 
 

 

 

Figure 3. Hydrographs and precipitation for the sampled pipes and stream in the Cottage Hill Sike 

catchment for an example storm starting on 30 April 2008. Note the difference in the y-axis scales. 

 



 29 

 

 

 

 

 

-40

-30

-20

-10

0

24/0
4/2

008

01/0
5/2

008

08/0
5/2

008

15/0
5/2

008

22/0
5/2

008

29/0
5/2

008

05/0
6/2

008

12/0
6/2

008

19/0
6/2

008

W
a

te
r 

ta
b

le
 d

e
p

th
 (

cm
)

 

0.000

0.005

0.010

0.015

0.020

P
2

 d
is

ch
a

rg
e

 (
L 

s-1
)

0

10

20

30

40

50

60

70

80

S
tr

e
a

m
 d

is
ch

a
rg

e
 (

L 
s-1

)

P2

stream

 
 

 

Figure 4. Water-table depth and discharge for P2 and the stream for the period spring to early summer 

2008 
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Figure 5. The proportion of discharge in the stream delivered by each of the sampled pipes between 24 

April 2008 and 10 May 2008 
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Figure 6. Flow exceedance curves for the stream and the pipes in Cottage Hill Sike for the 12 months 

from 24 April 2008.  
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