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Can scale and coefficient heterogeneity be separated in

random coefficients models?

Stephane Hess∗ John M. Rose†

Abstract

There is growing interest in the notion that a significant component of
the heterogeneity retrieved in random coefficients models may actually relate
to variations in absolute sensitivities, a phenomenon referred to as scale het-
erogeneity. As a result, a number of authors have tried to explicitly model
such scale heterogeneity, which is shared across coefficients, and separate
it from heterogeneity in individual coefficients. This direction of work has
in part motivated the development of specialised modelling tools such as
the G-MNL model. While not disagreeing with the notion that scale het-
erogeneity across respondents exists, this paper argues that attempts in the
literature to disentangle scale heterogeneity from heterogeneity in individual
coefficients in discrete choice models are misguided. In particular, we show
how the various model specifications can in fact simply be seen as different
parameterisations, and that any gains in fit obtained in random scale mod-
els are the result of using more flexible distributions, rather than an ability
to capture scale heterogeneity. We illustrate our arguments through an em-
pirical example and show how the conclusions from past work are based on
misinterpretations of model results.

Keywords: random scale; discrete choice; taste heterogeneity; scale hetero-
geneity; mixed logit

1 Introduction

After several decades of empirical research, it has been conclusively shown that
even when faced with similar choice situations, two different decision makers
will often exhibit different preferences. Given that the vast majority of discrete
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choice studies rely on pooled data collected from multiple individuals, construct-
ing representative models accounting for such heterogeneous response behaviour
is important for several reasons. Most critically, parameter estimates from models
that fail to account for heterogeneous sensitivities may be biased which in turn
may impact upon other important outputs such as willingness to pay or elasticity
estimates.

In recent years, particular attention has been paid to how to adequately rep-
resent random variations across respondents, i.e. heterogeneity that cannot be
linked to measurable aspects of the decision makers (see for example the discus-
sions in Train, 2009; Hensher and Greene, 2003; Swait, 2006). In this context,
a number of researchers have openly questioned whether what is being captured
in random parameter models is actually not heterogeneity in individual sensitiv-
ities1, but at least in part differences in scale across choice tasks or respondents
(see e.g. Louviere et al., 1999, 2002; Louviere and Eagle, 2006; Louviere and
Meyer, 2008; Louviere et al., 2008).

As is well known (see e.g. Ben-Akiva and Lerman, 1985), scale is both con-
founded with the deterministic component of utility as well as being inversely
related to the error variance within the choice data. As such, the larger (smaller)
the error variance, the smaller (larger) the parameters of the deterministic compo-
nent of utility will be. Any observed differences in estimated parameters could be
the result of different marginal utilities, different error variances, or both. Taking
this argument further, this relationship therefore also has the potential to impact
upon how one might view heterogeneity of the sort obtained from using Mixed
Multinomial Logit (MMNL) models. In particular, it is possible that some of
what is being modelled is not heterogeneity in individual sensitivities, but rather
scale heterogeneity that would impact on all parameters in the same way. This
point is precisely the argument put forward by Louviere et al. (1999, 2002, 2008),
Louviere and Eagle (2006), and Louviere and Meyer (2008). Some authors have
gone as far as suggesting that homogeneity in relative sensitivities (which would
arise if all heterogeneity was caused by scale differences) may be more common
than previously thought and that differences in estimated utility parameters are
primarily the result of scale differences (see e.g. Swait and Bernardino, 2000;
Fiebig et al., 2010).

While acknowledging that scale heterogeneity may indeed play a role, the
present paper puts forward the argument that recent efforts to separately identify
random scale heterogeneity have been misguided. In particular, we base this
reasoning on the fact that, econometrically, a linear in parameters specification

1We focus on random scale heterogeneity alone in this paper, thus not looking at efforts to
link scale heterogeneity to characteristics of the respondent, the alternative, or the choice set.
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of the logit model perfectly confounds scale with taste sensitivity. A stochastic
treatment of scale thus implies a (perfectly correlated) stochastic treatment of
taste intensities. Similarly, a stochastic treatment of heterogeneity in individual
sensitivities means that a model also allows for scale heterogeneity.

The above reasoning implies that recent work aimed at providing separate and
uncorrelated stochastic treatments of ‘scale’ and ‘taste sensitivities’ (e.g. Fiebig
et al., 2010; Greene and Hensher, 2010; Hess and Rose, 2010) ignores the existence
of the the scale/taste sensitivity confound. We argue that, as a result, the existing
interpretation of results from these models is incorrect. Models estimated in this
manner simply allow for more flexible distributions, thus uncovering from the data
particular correlation structures within the heterogeneity that is being modelled
whilst maintaining the scale/taste sensitivity confound.

The remainder of this paper is organised as follows. The next section outlines
the theory behind our claims, which is followed in Section 3 by a discussion of
the implications for past and future work. Section 4 provides empirical support
to our claims, and Section 5 summarises the findings of the paper and presents
the conclusions of the research.

2 Theory

2.1 Background

Random utility models decompose utility into a deterministic component and a
random component, or error term. The scale of the model is inversely propor-
tional to the variance of this error term; if the variance of the error term goes up,
the scale of the model goes down and vice versa. The confounding issue arises as
such scale differences can also be accommodated by increasing or decreasing the
parameters in the deterministic utility.

To illustrate this point, denote the deterministic component of utility for
alternative i of person n in choice situation t as Vint = β′xint, where xint is a
vector of attributes describing alternative i as well as decision maker n in choice
situation t, and β is a vector of parameters to be estimated. We define α to be the
scale parameter of the extreme value distribution that is assumed for the error
term in the Multinomial Logit (MNL), giving us the following choice probabilities:

Pint (α, β) =
eαVint∑Jnt
j=1 e

αVjnt
. (1)

It is immediately clear that changes in model scale can be accommodated both
through changes in β and changes in α, meaning that the model is overspecified;
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the two components α and β are not separately identified, and what is in fact
estimated is θ ≡ αβ. It is sometimes stated that the normalisation α = 1 is
placed on the model, but this statement is just an alternative way of saying that
only the product αβ is actually identified and estimated.

2.2 Random coefficients models and the role of correlation

Recent interest in scale heterogeneity has focussed on random variations across
respondents. In a random parameters model, such as the MMNL model, we allow
θ ≡ αβ to vary across respondents. Working on the basis of intra-respondent
homogeneity, the probability of the observed sequence of T choices for respondent
n is given by:

Pn (Ω) =

∫
θ

T∏
t=1

Picnt (θ) f (θ | Ω) dθ, (2)

where icnt is the alternative chosen by respondent n in choice situation t, and
where the choice probabilities are obtained through integration of MNL probabil-
ities (as in Equation 1) over the assumed distribution of the vector of θ, f (θ | Ω),
where Ω represents the parameters of this distribution.

This random coefficients framework is, of course, equivalent to one specified
in terms of separate random α and β components, as long as a correlated dis-
tribution is used for the vector θ (since, when separately estimated, the scalar α
multiplies all elements of the vector β). As we will see, it is this requirement to
use correlated distributions which avoids the need to explicitly multiply the dis-
tribution of individual coefficients by a distribution of a random scale parameter.

Three possible scenarios arise. If all random heterogeneity across respondents
is in individual sensitivities, then the model will be able to capture such hetero-
geneity alongside any correlation in the heterogeneity for different coefficients. If
on the other hand, there is only scale heterogeneity, then this will be captured
through perfect correlation amongst individual coefficients. In practice, a mix-
ture of the two is likely to arise, with some heterogeneity being in individual
coefficients, and some heterogeneity being shared across coefficients, i.e. scale
heterogeneity, with the latter being captured through increasing the correlation
between individual coefficients. This observation also explains apparently coun-
terintuitive results showing for example positive correlation between time and
cost coefficients.

To demonstrate the issue of correlation further, consider the case where some
heterogeneity is coefficient-specific, while a remaining part is shared across coeffi-
cients. The multiplication of a common scale, α, across all elements in β must by
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definition induce a particular correlation structure in the marginal utilities, which
are given by θ = αβ. Now, let us contrast two separate approaches. The first
approach makes use of the specification from Equation 2 and estimates the distri-
bution of θ. The second approach separately estimates the two components, α∗

and β∗, where ∗ denotes the separate estimation. If the first model makes use of
a correlated distribution for θ, then it is structurally equivalent to a model that
separately estimates α∗ and β∗, provided that the directly estimated θ follows
the same distributional form as α∗β∗. Any MMNL model that allows for cor-
related random parameters thus uncovers not just correlated taste sensitivities,
but also simultaneously allows for random scale heterogeneity, conditional on all
parameters being included in this multivariate distribution. Counter to this, a
model that assumes uncorrelated random parameters in θ also assumes that scale
is homogenous within the sampled distribution (i.e., the variance of α is zero.)
In the presence of a non-trivial amount of scale heterogeneity, such a model is
likely to overstate the degree of heterogeneity in individual (and hence relative)
sensitivities, as it can only capture scale heterogeneity through increased vari-
ance without being able to accommodate the fact that such variation is perfectly
correlated across individual coefficients.

The above discussion has highlighted the key role played by an analyst’s as-
sumptions relating to correlation in random coefficients models. It also implies
that all coefficients of the model should be treated as random, including any al-
ternative specific constants (ASC). Indeed, if any coefficient or ASC is treated
as being fixed, then that coefficient cannot by definition be correlated with any
of the remaining coefficients, and this is equivalent to imposing the assumption
of homogenous scale within the sampled population. It should be acknowledged
that such a specification can be difficult to estimate in practice, given limited
information content in the data. The same however also applies to any specifica-
tion with θ = α∗β∗, as even with some fixed or independent elements in β∗, all
elements in θ will be random.

2.3 Disentangling sources of heterogeneity

The aim of recent work in this area has been to disentangle heterogeneity in
individual coefficients from scale heterogeneity. At least in part, these efforts
were motivated by concerns that any scale differences between respondents that
were not properly accounted for may lead to bias not only in the heterogeneity
levels for individual coefficients, but also in the estimated correlation between
marginal utility coefficients.

A simple model explicitly aiming to incorporate a random scale component
can be specified as follows. Making use once more of the ∗ notation, let us
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assume that the scale parameter α∗ follows a random distribution h (α∗ | Ωα∗)
across respondents, where Ωα∗ is a vector of parameters. Similarly, denote the
distribution of β∗ by f (β∗ | Ωβ∗), with parameter vector Ωβ∗ . We then have:

Pn (Ωα∗ ,Ωβ∗) =

∫
α∗

∫
β∗

T∏
t=1

Picnt (α∗, β∗)h (α∗ | Ωα∗) f (β∗ | Ωβ∗) dα∗dβ∗, (3)

with Picnt (α∗, β∗) being defined once again as in Equation 1, and where it is
important to note that the scale parameter α∗ and the vector β∗ are distributed
independently of one another. The scale parameter α∗ is positive by definition,
leading to the requirement of a constraint on its distribution (or an appropriate
transform). Additionally, since only the distribution (i.e., moments) of θ = αβ
are identified, some normalisation is required when the distributions of α∗ and
β∗ are estimated separately. A convenient normalisation for the means is to
set E(α∗) = 1 or E(β∗k) = 1 for some element k. Other normalisations are
specification-specific. For example, if α∗ is lognormal and β∗ is jointly lognormal,
then the variance of α∗ or one element of β∗ must be normalised to a fixed value,
since the product of lognormals is itself lognormal.

The estimation of the model in Equation 3 can lead to four possible outcomes,
as follows:

1. the model results do not show significant variance in either α∗ or β∗;

2. the model results show significant variance only in α∗;

3. the model results show significant variance only in β∗; and

4. the model results show significant variance in both α∗ and β∗.

If the first outcome arises, the model collapses back to a simple MNL specification.
The analyst may reach the conclusion that any heterogeneity has already been
explained in the deterministic component of the utility. However, in practice,
this outcome will be extremely rare, and may be the result of overly restrictive
distributional assumptions.

If the second outcome arises, an analyst may reach the conclusion that any
heterogeneity across respondents is solely due to differences in scale. This con-
clusion may again be misguided, as the variation captured in α∗ may to a certain
(or even large) extent be caused by heterogeneity in β∗ that the distributions
imposed by the analyst fail to capture.

If the third outcome arises, the analyst may take this as an indication of an
absence of scale heterogeneity. However, this could once again be a misguided
conclusion as any scale heterogeneity present in the data could have been captured
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in the correlation structure for the multivariate distribution of β∗, hence making
the additional α∗ component redundant. We will return to this issue below, in
the context of the empirical example.

The fourth outcome is in many ways the one sought by an analyst inter-
ested in disentangling the two components of heterogeneity. However, the risk
of misguided conclusions remains. Indeed, by using V = α∗β∗x, we obtain a
specification with V = θx, where it is possible (or even likely) that the correlated
multivariate distribution of θ, which is the product of two separate distributions,
may be more flexible than those distributions typically used in “simple” MMNL
specifications, i.e. θ in Equation 2. As a result, any improvements in model fit
obtained by using the specification in Equation 3 instead of the specification in
Equation 2 may simply be due to the fact that this more flexible distribution
better explains the behaviour in the data.

Conclusions as to the presence of scale heterogeneity can thus not be drawn
when the distribution of α∗β∗ in Equation 3 is different from the distribution of
θ in Equation 2. Conversely, as highlighted in the empirical application, when
the distribution of θ is equivalent to the distribution of α∗β∗, the specification in
Equation 3 is identical to that in Equation 2, and it is once again not possible to
disentangle the two components of heterogeneity.

3 Implications for past and future work

In this section, we highlight the implications of the earlier discussions for past and
future work. We first note the equivalence between a number of commonly used
specifications before focussing on past work aiming to disentangle the various
components of random heterogeneity.

3.1 Equivalence of common specifications

Three common departures from a “standard” specification of the MMNL model
have been discussed in the context of random scale heterogeneity. Alongside
the simple model discussed in Section 2.3, special attention needs to be given
to the generalised multinomial logit (G-MNL) model and models estimated in
willingness to pay (WTP) space.

The G-MNL model, first proposed by Keane (2006) and operationalised by
Fiebig et al. (2010) and Greene and Hensher (2010), allows for separate impacts
of α upon the mean and standard deviation parameters of the MMNL model. As
an example, when working with independent normally distributed elements in β,
each coefficient can be represented as its mean plus its standard deviation times
a standard normal term: i.e., βk = µk +σkηn,k where ηn,k is iid standard normal.

7



In the simpler version of the G-MNL, the marginal utility for attribute k is given
as

θn,k = αnµk + αnσkηn,k (4)

with the normalization E(α) = 1. The role of αn is the same as described above,
representing scale. The more general form of the model allows the person-specific
part of βk to enter in two ways: with one part multiplied by αn and one part not
multiplied by αn, with weighting for the two parts. In particular:

θn,k = αnµk + γσkηn,k + (1− γ)αnσkηn,k (5)

The weighting parameter γ is bounded between 0 and 1 and reflects the extent
to which αn operates on the person-specific component of βk, i.e. the variance
across respondents in βk, given by σkηn,k. When γ > 0, αn no longer represents
scale in its traditional form, since not all elements in θn,k are multiplied by αn. In
applications, α has been assumed to be lognormally distributed with its expected
value normalised to 1. It can be seen that this is not in fact a different model
from the one in Equation 2, but rather a different parameterisation, and that
with appropriate distributional assumptions, they become equivalent.

In a WTP space specification, denote the element that represents cost as
k = c and specify its distribution to have support only over strictly negative
numbers, such that the cost coefficient is negative for all n as required for WTP
calculations. In most applications, this assumption is implemented by entering
cost as the negative of cost and placing a lognormal distribution on its coefficient.
In accordance with this practice, let θn,c be the coefficient of the negative of cost,
such that θn,c > 0. For all k 6= c, the WTP for marginal changes in the attribute
is λn,k = θn,k/θn,c. The marginal utility for attribute k 6= c is then, by definition:

θn,k = θn,cλn,k (6)

The model is completed by specifying the distribution of the vector of WTP’s,
i.e., the λn,k’s. This approach allows the analyst to specify and estimate the
distribution of WTP’s directly, rather than deriving the distribution of WTP’s
from the estimated distribution of θn.

For this parameterisation in WTP space, it is sometimes stated that −βn,c
is normalised to 1, such that θn,c = αn and each λn,k is multiplied by the scale
αn. However, the more accurate statement is that θn,c is the product of αn and
−βn,c, such that each λn,k, k 6= c is multiplied by −αnβn,c. The only restriction
of the specification is that the cost coefficient is assumed to be negative for all n,
which is a requirement for economically meaningful WTP’s.
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It should also be noted that it was in the context of working in WTP space that
some of the early discussions on scale heterogeneity took place, with Scarpa et al.
(2008, page 996) noting confounding between scale and preference heterogeneity,
by observing that:

If the scale parameter varies and [the relative sensitivities] are fixed,
then the utility coefficients vary with perfect correlation. If the utility
coefficients have correlation less than unity, then [the relative sensi-
tivities] are necessarily varying in addition to, or instead of, the scale
parameter. Finally, even if [the scale parameter] does not vary over
[respondents] ..., utility coefficients can be correlated simply due to
correlations among tastes for various attributes. (Scarpa et al., 2008,
page 996)

This discussion has shown that all three parameterisations are equivalent; a given
specification for one parameterisation can be replicated with another one by mak-
ing appropriate distributional assumptions. The same also applies for the “base”
model in Equation 2. This observation shows us that none of these specifications
is more flexible, or more able to disentangle scale heterogeneity and heterogeneity
in relative sensitivities then the others. With an appropriate correlated distri-
bution for the coefficients, each specification captures scale heterogeneity as well
as heterogeneity in relative sensitivities, but the two cannot be separately identi-
fied. Any gains in fit by one specification over the other are simply the result of
more flexible distributional assumptions; as such, the differences between models
arise in the ease in which given distributional shapes can be accommodated, with
advantages for different specifications in different settings.

3.2 Re-interpretation of past results

The discussions in the early parts of this paper have no bearing on past work
making use of a deterministic treatment of scale heterogeneity, i.e. where the
scale parameter is parameterised on the basis of measurable information relating
to the respondent or the choice environment, using a Heteroscedastic Multino-
mial Logit (HMNL) model (see e.g. Caussade et al., 2005; Dellaert et al., 1999;
Hensher et al., 1998; Louviere et al., 2000; Swait and Adamowicz, 2001; Swait and
Louviere, 1993). Nevertheless, care is required to avoid a situation in which this
specification confounds such heterogeneity with unaccounted for heterogeneity in
the β parameters. Separate identification of random heterogeneity in scale and
individual coefficients should also be possible in work where the estimation of the
distribution of α draws on additional model components, such as the work of Hess
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and Stathopoulos (2011) where α is used jointly in the choice model component
and a separate measurement equations component.

Early work by Breffle and Morey (2000) proposed a model allowing for ran-
dom scale heterogeneity while maintaining homogeneity in the relative sensitiv-
ities. The shortcoming of this approach, as shown in Section 4, is that it is
impossible to establish whether the heterogeneity retrieved for α is in fact scale
heterogeneity, as any heterogeneity that exists in β may well be captured in α,
given the homogeneity assumption imposed on the former.

Recently, there has been growing interest in the use of the the G-MNL model.
In line with our own discussions, Fiebig et al. (2010) concede that an alternative
interpretation of the G-MNL model, at least in so far as derived conditional
individual level parameter distributions are concerned, is that the model provides
for more flexible distributions. We argue that this is in fact the only correct
interpretation, and is contrary to e.g. Greene and Hensher (2010) who interpret
the outputs as separately identified scale and taste intensity heterogeneity. This
claim is underlined by noting that both Fiebig et al. (2010) and Greene and
Hensher (2010) use a G-MNL specification where a lognormal α is multiplied by
a normal β, and contrast this with a MMNL specification using a normal β.

Other work concerned with scale includes the multiplicative error model of
Fosgerau and Bierlaire (2009), but this is based on a non-random scale parameter.
Error components or models with random alternative specific constants have also
been used to accommodate scale differences (see e.g. Walker, 2001; Brownstone
et al., 2000), but the main interest has generally been on heteroscedasticity across
alternatives, and even if the scale heterogeneity treatment could be limited to be
across respondents, such an approach works in a linearly additive manner, thus
not incorporating an interaction with the explanatory variables used in the model.

4 Empirical example

We now present a brief empirical example, making use of stated choice data
collected for the DATIV study carried out in Denmark in 2004 (cf. Burge and
Rohr, 2004). A binary unlabelled route choice experiment was used, with two
attributes, namely travel time (TT) and travel cost (TC), describing the alterna-
tives. The final sample used in our analysis contains 17, 020 observations collected
from 2, 197 respondents, with up to 8 choice situations per respondent. The var-
ious models were coded in Ox 6.2 (Doornik, 2001), using 500 Halton draws (cf.
Halton, 1960; Bhat, 2001).

Table 1 first shows a simple MNL model alongside a scale heterogeneity model
with homogeneity in relative sensitivities, where this latter model is referred to
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Table 1: Estimation results for empirical example: part I

MNL S-MNL

Final LL -11,378.70 -10,257.30
par. 2 3

adj. ρ2 0.0353 0.1303

est. t-rat. est. t-rat.

θTT -0.0365 -14.67 n/aa

θTC -0.0578 -22.77 n/aa

β∗TT n/ab -0.0078 -7.80
β∗TC n/ab -0.0544 -7.96

σln(α∗) n/ab -3.7590 -21.57

cvθTT
0 1,170.33

cvθTC
0 1,170.33

cvβ∗TT
n/ab 0

cvβ∗TC
n/ab 0

a separate components estimated

b no separate components estimated

as S-MNL. In the MNL model, we estimate fixed time (θTT) and cost (θTC) co-
efficients. In the S-MNL model, we estimate separate β∗ and α∗ components,
where the random scale parameter α∗ follows a lognormal distribution, i.e. using
a normal distribution for ln (α∗). This specification ensures positive signs only,
where the mean for the underlying normal distribution was set to zero for identi-
fication (giving a median of 1 for α∗), with σln(α∗) giving the standard deviation
for the underlying normal distribution. No heterogeneity is estimated for θ in the
MNL model, and while we make a homogeneity assumption for β∗ in the S-MNL
model, the heterogeneity in α∗ leads to heterogeneity in θ in this model.

The results show very significant gains in model fit for S-MNL over MNL,
with an increase in log-likelihood (LL) by 1, 121.4 units for one additional pa-
rameter. With the S-MNL model not allowing for additional heterogeneity in β∗,
it is conceivable that part of the heterogeneity captured by α∗ is in fact caused
by heterogeneity in individual sensitivities. No reliable conclusions in relation
to scale heterogeneity can thus be drawn from this model. Indeed, the use of
a randomly distributed scalar α∗ with a fixed vector β∗ imposes (rather than
reveals) perfectly correlated random elements in θ. It is also conceivable that the
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Table 2: Estimation results for empirical example: part II

MMNLUC S-MMNLUC MMNLC S-MMNLC

Final LL -9663.57 -9367.48 -9653.97 -9347.30
par. 4 5 5 6

adj. ρ2 0.1805 0.2055 0.1813 0.2072

est. t-rat. est. t-rat. est. t-rat. est. t-rat.

µθTT
-0.1094 -12.48 n/aa -0.1059 -11.06 n/aa

µθTC
-0.3183 -23.92 n/aa -0.3064 -22.48 n/aa

s11,θ 0.2855 28.73 n/aa 0.3204 24.18 n/aa

s21,θ 0 - n/aa 0.0557 4.53 n/aa

s22,θ -0.2418 -22.82 n/aa -0.2316 -21.35 n/aa

µβ∗TT
n/ab -0.1610 -15.52 n/ab -0.1558 -10.54

µβ∗TC
n/ab -0.4037 -16.81 n/ab -0.4205 -11.25

s11,β∗ n/ab 0.2743 17.01 n/ab 0.1991 11.42
s21,β∗ n/ab 0 - n/ab -0.1499 -9.50
s22,β∗ n/ab -0.2349 -16.20 n/ab -0.1412 -11.75
σln(α∗) n/ab 1.9102 20.23 n/ab -2.0843 -20.60

cvθTT
2.61 406.87 3.02 461.47

cvθTC
0.76 19.93 0.78 20.25

cvβ∗TT
n/ab 1.70 n/ab 1.28

cvβ∗TC
n/ab 0.58 n/ab 0.49

a separate components estimated

b no separate components estimated

excessively long tails obtained with this S-MNL model (see the coefficient of vari-
ation for θ) are the result of this assumption; when imposing perfect correlation
between coefficients, the true degree of heterogeneity is overstated. Finally, it is
interesting to note a disproportionally large impact on β∗TT in the S-MNL model,
where the value of time drops from 37.91DKK/hr to just 8.65DKK/hr.

As a next step, we make use of normally distributed coefficients for the time
and cost sensitivities. This specification is commonly used in the literature de-
spite extensive discussions about its inappropriateness from a micro-economic
perspective (see e.g. Hess et al., 2005) while also causing issues in the computa-
tion of willingness to pay measures (cf. Daly et al., 2011). Here, we include it as
an illustration of the issues highlighted in Section 2.3. Specifically, we use both
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uncorrelated (UC) as well as correlated (C) specifications for the distribution of
θ, with the resulting models referred to as MMNLUC and MMNLC respectively.
We also estimate models which separate out α∗ and β∗, once again using a log-
normal distribution for α∗, with models referred to as S-MMNLUC (uncorrelated)
and S-MMNLC (correlated) respectively.

The results for these models are summarised in Table 2. Looking at the
notation for the MMNL models, µθTT

and µθTC
give the mean parameters, with

s11,θ and s22,θ giving the diagonal elements in the Cholesky matrix, and s21,θ
giving the off-diagonal element2. A corresponding notation is used in the other
models.

The two MMNL models obtain highly significant gains in model fit over their
MNL counterpart, with the same applying when comparing the two S-MMNL
models to their S-MNL counterpart. Looking first at the models with uncor-
related distributions, we see substantial gains in model fit for the S-MMNLUC

model over the MMNLUC model (296 units for one additional parameter) as a
result of separating out α∗. While the degree of heterogeneity in β∗ is lower
in the S-MMNLUC model than was the case for the heterogeneity in θ in the
MMNLUC model, the overall heterogeneity in θ is increased substantially in the
S-MMNLUC model. This result is a reflection of the fact that the distribution
of θ = α∗β∗ in the S-MMNLUC model is different from that in the MMNLUC

model. This difference in flexibility also accounts for at least part of the gains in
fit (and the split in heterogeneity between α∗ and β∗), making it impossible to
make inferences about the retrieval of scale heterogeneity.

Using a correlated distribution for θTT and θTC in the MMNLC model leads to
a small but significant gain in fit (MMNLC vs. MMNLUC), while also suggesting
positive correlation between the two marginal utility coefficients (note that the
product between s11,θ and s21,θ is positive). This observation could be seen as a
direct result of this model capturing some of the scale heterogeneity in the data.
Turning to the S-MMNLC model, we see that separate estimation of α∗ and β∗

once again leads to substantial gains in model fit (306.7 units for one additional
parameter). Just as in the uncorrelated models, the degree of heterogeneity in β∗

is lower in the S-MMNLC model than was the case for the heterogeneity in θ in
the MMNLC model, and we also note a reversal of the sign of the correlation in
that distribution. However, the heterogeneity in the overall distribution θ is once
again increased and the correlation between the elements in θ is again positive
(noting that σln(α) dominates in the covariance between θTT and θTC).

2With ξ1 and ξ2 being independent standard normal variates, draws from the distribution of
θTT are obtained as µθTT + s11 (θ) ξ1, while draws from the distribution of θTC are obtained as
µθTC + s21 (θ) ξ1 + s22 (θ) ξ2. Correlation is allowed for as ξ1 is used for both coefficients, with
the covariance between θTT and θTC being given by s21 (θ) s11,θ.
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In past work, the results from this example would have been used as evidence
that a) there exists significant scale heterogeneity in the data, and b) the model
at hand is able to disentangle the two components of heterogeneity. However,
two issues arise. Firstly, the specification used for the distribution of the two
marginal utility coefficients is inappropriate in the present context, as it would
imply a substantial share of respondents with incorrectly signed time and cost
coefficients. Secondly, the distribution used for θ = α∗β∗ in the S-MMNLUC

and S-MMNLC models is now a product between a lognormal distribution and
a normal distribution. The resulting distribution, known as the normal lognor-
mal mixture (NLNM) distribution, is commonly used in the financial time series
literature, and has well defined mathematical properties (see e.g. Clark, 1973;
Yang, 2008). The NLNM distribution is more flexible than the typically assumed
normal or lognormal distributions used when estimating MMNL models, in that
the distribution (depending on the moments of the two underlying distributions)
is non-symmetrical, being leptokurtic with negative skew, and not bounded at
zero. From this perspective, the gains in fit (and the different patterns of hetero-
geneity) obtained by incorporating a random α are arguably at least in part due
to this gain in flexibility. In the MMNLUC vs. S-MMNLUC comparison, the ad-
ditional issue arises that while the distribution of θ in the former is uncorrelated,
the multiplication of uncorrelated β∗ distributions by a common α∗ distribution
leads to correlation in θ = α∗β∗.

Informed by these discussions, we now make use of distributional assumptions
that will a) ensure meaningful results from a micro-economic theory perspective
and b) allow us to avoid issues with differences in flexibility between θ in the
MMNL model and θ = α∗β∗ in the S-MMNL model. This double aim is achieved
by making use of a lognormal distribution for θ in the MMNL model, and log-
normal distributions for both α∗ and β∗ in the S-MMNL model, ensuring that
the resulting θ = α∗β∗ distribution will similarly be lognormal.

The results are summarised in Table 3, using much the same notation as
before, where all estimates now relate to the normal distributions of the loga-
rithms of coefficients. We once again see significant improvement of the MMNL
and S-MMNL models over their MNL and S-MNL counterparts in Table 1, while
the fit (in terms of adjusted ρ2) is for each model also superior to that of the
corresponding model from Table 2.

In the discussion of these four models, we first focus on the two MMNL models.
We see an improvement in model fit by 136 units for one additional parameter
(the off-diagonal Cholesky term) when comparing MMNLC to MMNLUC. This
observation highlights the importance of allowing for the correlation between the
individual elements in θ, where in the present case, we observe positive correlation
(the product between s11,ln(θ) and s21,ln(θ) is positive), along with substantial
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Table 3: Estimation results for empirical example: part III

MMNLUC S-MMNLUC MMNLC S-MMNLC

Final LL -9,462.84 -9,326.45 -9,326.70 -9,323.86
par. 4 5 5 6

adj. ρ2 0.1975 0.2090 0.2090 0.2092

est. t-rat. est. t-rat. est. t-rat. est. t-rat.

µln(θTT) -2.2203 -35.58 n/aa -1.7688 -26.81 n/aa

µln(θTC) -1.1830 -23.03 n/aa -0.9430 -14.98 n/aa

s11,ln(θ) 1.1842 28.89 n/aa -1.8876 -18.99 n/aa

s21,ln(θ) 0 - n/aa -1.7371 -17.99 n/aa

s22,ln(θ) 1.6605 32.34 n/aa 1.5415 60.53 n/aa

µln(β∗TT) n/ab -1.7498 -27.54 n/ab -1.7353 -26.23

µln(β∗TC) n/ab -0.9205 -14.90 n/ab -0.9238 -13.95

s11,ln(β∗) n/ab 0.4127 19.49 n/ab 1.9004 18.91

s21,ln(β∗) n/ab 0 - n/ab 1.8105 18.44

s22,ln(β∗) n/ab 1.4721 63.32 n/ab 1.5296 49.52

σln(α∗) n/ab 1.8556 18.40 n/ab -0.1169 -0.37

cvθTT
1.75 6.01 5.85 6.04

cvθTC
3.84 16.50 14.80 16.67

cvβ∗TT
1.75 0.43 5.85 6.00

cvβ∗TC
3.84 2.78 14.80 16.56

a separate components estimated

b no separate components estimated

increases in the degree of heterogeneity. This result is in line with the comparison
between MMNLC to MMNLUC in the normal case (cf. Table 2).

We now proceed to the discussion of the two S-MMNL models. In both
models, the coefficients used to multiply the attributes in the utility functions
are given by θ = α∗β∗. The multiplication of two lognormals produces another
lognormal distribution, where, independently of whether β∗ is uncorrelated or
correlated, the resulting distribution for θ will be correlated. With the exception
of MMNLUC, the various specifications in Table 3 are thus formally equivalent, as
reflected in the results, up to differences caused by simulation error. Furthermore,
it can be noted that the S-MMNLC model is in fact over-specified; there are
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multiple solutions for s11,ln(β∗), s21,ln(β∗), s22,ln(β∗) and σln(α∗) that give the same
covariance for θ, a conclusion that can be reached by noting that only three values
are needed to specify the covariance matrix between two coefficients3. This issue
would always arise when the distribution of θ = α∗β∗ in a model of the type
in Equation 3 is consistent with the distribution of a directly estimated θ in a
model of the type in Equation 2. This point illustrates that when satisfying
the condition that the distribution used for θ in the base model is of the same
degree of flexibility as that used for θ = α∗β∗ in the S-MMNL model, efforts to
disentangle scale heterogeneity from heterogeneity in relative sensitivities are in
vain. Conversely, if the distribution for θ in the simple MMNL model differs in
flexibility from that of θ = α∗β∗ in the S-MMNL model, it is impossible to say
whether any gains in fit are the result of more flexible distributional assumptions
or a sign of an ability to retrieve scale heterogeneity.

5 Summary and conclusions

There has been growing interest of late in the possibility that a large share of
the heterogeneity retrieved in random coefficients models relates to variations in
absolute sensitivities, i.e. scale heterogeneity, rather than variations in relative
sensitivities.

This paper has not set out to discredit the possibility that scale heterogeneity
across respondents exists. Our focus has rather been on attempts in the literature
to disentangle the two components of heterogeneity, i.e. scale heterogeneity and
heterogeneity in individual sensitivities. While the ability to separately identify
the two components might be regarded as interesting from a behavioural analysis
perspective, we argue that this is not in fact possible in a random heterogeneity
context.

Our reasoning is based on two key principles. Firstly, an appropriately spec-
ified “standard” Mixed Logit model, in particular one making use of correlated

3In the MMNLC model, draws from θTT are obtained as e
µln(θTT)+s11,ln(θ)ξ1 , with draws

from βTC being obtained as e
µln(θTC)+s21,ln(θ)ξ1+s22,ln(θ)ξ2 , with ξ1 and ξ2 once again giving

independent standard normal variates. In the S-MMNLC model, draws from α∗ are obtained
as eσln(α∗)ξ3 , where ξ3 is an additional standard normal variate. The draws for θTT = α∗β∗TT

are thus given by e
µ
ln(β∗TT)

+s11,ln(β∗)ξ1+σln(α∗)ξ3
, while the draws for θTC = α∗β∗TC are given

by e
µ
ln(β∗TC)

+s21,ln(β∗)ξ1+s22,ln(β∗)ξ2+σln(α∗)ξ3
. Working on the basis of the underlying normal

distribution, we can see that the variance of ln (θTT) is equal to s11,ln(β∗)
2 + σln(α∗)

2, while,
for ln (θTC), the variance is given by s21,ln(β∗)

2 + s22,ln(β∗)
2 + σln(α∗)

2. Finally, the covariance
between ln (θTT) and ln (θTC) is given by s21,ln(β∗)s11,ln(β∗) +σln(α∗)

2. However, the exact same
covariance matrix can be obtained on the basis of a correlated θ alone, as in the MMNLC model,
with one less parameter, meaning that the S-MMNLC model is indeed over-specified.
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distributions, is by definition capable of capturing scale heterogeneity alongside
heterogeneity in individual coefficients. Secondly, attempts to disentangle the
two have been based on making use of models where the marginal utility is given
by a product of two random terms, one of which is shared across attributes. This
specification leads to a more flexible distributional form, and any gains in fit may
be the result of that flexibility in shape rather than an ability to capture scale
heterogeneity. In summary, this means that while some of the heterogeneity cap-
tured in the “scale” parameter in such models (α in our notation) may indeed
relate to scale heterogeneity, there is no way for the analyst to determine whether
that is indeed the case, or what share of the heterogeneity that may be.

The observations in this paper apply not just to work on random scale het-
erogeneity, but also work on WTP space estimation. Such models differ from
preference space models only in terms of the ease by which standard distributions
can be used within each specification and how the parameters are interpreted. If
a model estimated in WTP space fits better on a given data set, this is simply
a reflection that the resulting distributional assumptions better match the data
being modelled. The same argument applies to comparisons between say the
G-MNL model and a model not attempting to include a multiplicative random
term shared across coefficients. The G-MNL model (or any model multiplying
two random parameters) simply has a greater candidate set of distributions for
the marginal utility coefficients. That is to say that all such models are strictly
nested and that what is being examined in such comparisons are simply alter-
native distributional assumptions and the ease by which each parameterisation
can accommodate the assumptions. This observation also relates to discussions
in McFadden and Train (2000).

As a direction for future research, we encourage analysts interested in scale
heterogeneity to attempt to explain such heterogeneity through exogenous means
(e.g. Caussade et al., 2005; Dellaert et al., 1999; Hensher et al., 1998; Louviere
et al., 2000; Swait and Adamowicz, 2001; Swait and Louviere, 1993) or by mak-
ing use of additional model components to quantify the role scale parameter (e.g.
Hess and Stathopoulos, 2011). Furthermore, it is possible to break the linear
correlation and hence unconfound β and α by using a model with utility be-
ing non-linear in β; this is however done extremely rarely. With any of these
approaches, special care is still required, and, as with any treatment of hetero-
geneity, there is always a risk that what is captured relates in part to phenomena
other than those targeted by the analyst.

17



6 Acknowledgements

The first author acknowledges the financial support by the Leverhulme Trust, in
the form of a Leverhulme Early Career Fellowship. The majority of this work
was carried out during a visit by the first author to the Institute of Transport
and Logistics Studies at the University of Sydney, which was made possible by a
Faculty of Economics and Business Visiting Scholar Grant. The authors would
like to thank Kenneth Train and Thijs Dekker for valuable feedback on an earlier
version of this paper.

References

Ben-Akiva, M., Lerman, S. R., 1985. Discrete Choice Analysis: Theory and Ap-
plication to Travel Demand. MIT Press, Cambridge, MA.

Bhat, C. R., 2001. Quasi-random maximum simulated likelihood estimation of
the mixed multinomial Logit model. Transportation Research Part B 35 (7),
677–693.

Breffle, W. S., Morey, E. R., 2000. Investigating preference heterogeneity in a
repeated discrete-choice recreation demand model of atlantic salmon fishing.
Marine Resource Economics 15, 1–20.

Brownstone, D., Bunch, D. S., Train, K., 2000. Joint Mixed Logit models of stated
and revealed preferences for alternative-fuel vehicles. Transportation Research
Part B 34 (5), 315–338.

Burge, P., Rohr, C., 2004. DATIV: SP Design: Proposed approach for pilot
survey. Tetra-Plan in cooperation with RAND Europe and Gallup A/S.
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