
This is a repository copy of Michell structure for a uniform load over multiple spans.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/77140/

Proceedings Paper:
Pichugin, A.V., Tyas, A. and Gilbert, M. (2011) Michell structure for a uniform load over 
multiple spans. In: 9th World Congress on Structural & Multidisciplinary Optimization. 9th 
World Congress on Structural and Multidisciplinary Optimization, June 13 - 17, 2011, 
Shizuoka, Japan. . 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


9th World Congress on Structural and Multidisciplinary Optimization

June 13 - 17, 2011, Shizuoka, Japan

Michell structure for a uniform load over multiple spans

Aleksey V. Pichugin1, Andrew Tyas2, Matthew Gilbert3

1 Brunel University, Uxbridge, UK, aleksey.pichugin@brunel.ac.uk
2 University of Sheffield, Sheffield, UK, a.tyas@sheffield.ac.uk

3 University of Sheffield, Sheffield, UK, m.gilbert@sheffield.ac.uk

Abstract

A new half-plane Michell structure capable of carrying a uniformly distributed load of infinite horizon-
tal extent over a series of equally-spaced pinned supports is presented. For the case of equal allowable
stresses in tension and compression a full kinematic description of the structure is provided. Although
formal proof of optimality of the solution presented is not yet available, the proposed analytical solution
is supported by available numerical evidence. Numerical solutions for cases of unequal allowable stresses
are also presented, and suggest the existence of a wider family of related, simple, and practically relevant
structures, which range in form from an arch with vertical hangers to a cable-stayed bridge.
Keywords: Michell structure, uniformly distributed loading.

1. Introduction

In his groundbreaking contribution to the field of structural optimization [11], A. G. M. Michell formulated
the criteria to be satisfied by all least-volume trusses with equal tensile and compressive yield stresses, see
also [6, 12]. In trusses satisfying these criteria the magnitudes of the tensile and/or compressive stresses
in load-carrying members must everywhere be at maximum allowable values and the virtual strains in
such members must not exceed these limiting values. The displacement field must remain continuous
throughout the design domain and satisfy the kinematic restrictions imposed on the solution.
Michell’s criteria can be satisfied in several different ways, implying that every optimal structure can be
split into one or several regions, distinguished by values of the member force components f ′ and f ′′:

T : f ′ < 0, f ′′ > 0, ε′ = −ϵ, ε′′ = ϵ ; (1)

RC : f ′ = 0 f ′′ < 0, |ε′| 6 ϵ, ε′′ = −ϵ ; (2)

RT : f ′ > 0, f ′′ = 0, ε′ = ϵ, |ε′′| 6 ϵ . (3)

Within (1)–(3), ε′ and ε′′ denote principal strains and ϵ is the positive infinitesimal. Optimal trusses
may also contain regions of uniform tension and/or uniform compression [15]. All trusses constructed
by Michell [11], as well as the majority of optimal trusses identified in the early literature, only feature
one or several regions of type T ; the term ‘Michell structure’ is therefore sometimes considered to be
synonymous with (1). However in this paper we use this term to describe any structure that satisfies the
Michell criteria, and any number of regions (1)–(3) can be present.
The deceptive simplicity of the specified criteria should not obscure the fact that there is no known
procedure for verifying whether a Michell structure exists for a given problem definition, or for determining
its form. Unsurprisingly, the number of Michell structures to have been identified to date is not large,
see e.g. [1, 2, 6, 8–11, 14]. Furthermore, whilst some notable exceptions exist [3, 7, 16, 17], the majority
of known Michell structures are designed to support only a single external point load.
In this paper, we present details of an apparently new Michell structure, for a problem which appears to
have been hitherto overlooked. The problem involves a uniformly distributed vertical load applied along a
horizontal line spanning across an infinite number of equally spaced pinned supports. The motivation for
this configuration originates from the (still unsolved) classical problem of finding the optimal half-plane
structure to transmit a uniformly distributed load along a line between two level pinned supports, to
these supports [3, 7]. In the case of equal allowable stresses and an infinite number of supports, the
resulting geometry of the Michell structure, and the mathematical solution for kinematic fields, all turn
out to be comparatively simple. Importantly, the volume per single span of the resulting structure is ap-
proximately 11.0% lower than that of the parabolic arch with vertical hangers and 7.86% lower than that
of the classical solution [7], which is known to be sub-optimal. We stop short of proving the optimality of
the proposed structure for the half-plane; however, results from numerical simulations presented in the
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Figure 1: The Michell half-wheel subjected to a uniformly distributed load.

paper appear to support our claim. We also present a number of numerical solutions for similar problems
with unequal allowable stresses, suggesting that a wider family of related, simple and practically relevant
structures exists.

2. An auxiliary problem

Before analysing our main problem, featuring an infinite number of equally-spaced supports, it is instruc-
tive to examine a simpler set-up. Consider a uniformly distributed load (w per unit length) that is applied
to a horizontal line segment of length L, and needs to be transmitted to a pinned support at the centre
of the segment. It is not difficult to verify that the suitable optimal solution for the upper half-plane is
a ‘half-wheel’, the structure comprising concentric semicircles and orthogonal radii, as shown on Fig. 1.
Very similar structures for problems involving external point loads have been considered in [6, 11].
The structure is conveniently mapped by the orthogonal curvilinear system (α, β), such that

α = r , β = θ , ϕ = β +
π

2
, A = 1 , B = α , (4)

where r, 0 6 r 6 L/2, is the linear distance from the support, θ, −π/2 6 θ 6 π/2, the polar angle
measured counter-clockwise from the vertical symmetry axis and ϕ the angle measured from the horizontal
line to the tangent of an α-line. Functions A and B are the components of the metric tensor. A suitable
strain field is given by

u = −ϵα , v = 2ϵαβ , ω = 2ϵβ , (5)

in which u and v denote displacements along α and β, respectively, and ω denotes the rotation.
If T ′ and T ′′ denote the end loads per unit coordinate difference in the α and β directions, then they
must satisfy the standard equilibrium equations in curvilinear coordinates:

∂T ′

∂α
= T ′′

∂ϕ

∂β
,

∂T ′′

∂β
= −T ′

∂ϕ

∂α
, (6)

see [6]. In our case ∂T ′′/∂β = 0, and the equilibrium of vertical components of forces acting along
the bottom of the structure requires that T ′′ = w. Equation (6)1 can now be integrated, yielding
T ′ = wα+ t′(β). One needs to add another boundary condition to fully specify the force field within the
structure. For example, if T ′ is required to vanish along the outer rim of the structure, then t′(β) = −wL/2
and T ′ = w(α − L/2), hence, completing the solution. The volume of the resulting structure is easily
found from the virtual work of external forces, which in our particular case yields

Waux =
2

σϵ

∫ L/2

0

−wv|β=−π/2 dα =
π

4

wL2

σ
. (7)

3. The virtual displacement field

Strain field (4) may be trivially extended to cover the entire half-plane, thus signalling the global optimal-
ity of the solution obtained in Section 2. Perhaps unsurprisingly it cannot be as easily applied to problems
featuring multiple supports. Indeed, if we were to consider two level supports, and attempt to match two
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copies of field (5), expanding from each of the supports, then this would be found to be impossible due to
the monotonic variation of each local u and v as functions of local α. Motivated by this observation, we
consider an extension of the structure from Section 2, a half-span as shown in Fig. 2 (we assume that the
other half is obtained by reflecting the structure about the vertical Oy). The original half-wheel, shaded
in the new drawing, is expanded to the radius L/

√
2 and then cut along the vertical lines originating

from points x = ±L/2 in the global Cartesian coordinate system Oxy. Tensile circumferential members
of the original half-wheel are then continued tangentially, as straight ties that connect the points along
the cuts to horizontal compression members at L/2 6 |x| 6 L. These concentrated members are needed
to rotate the tie forces and equilibrate the portions of external load that are uniformly distributed along
L/2 6 |x| 6 L.

O

α1
β1

α2

β2

L/2 L/2

x

y

region T1

region RT
2

θ0

Figure 2: Half-span of the proposed structure.

The description of this structure requires the use of several curvilinear coordinate systems. The part of
the structure for −L/2 6 x 6 L/2, termed region T1, can be fully described using the same coordinate
system as in Section 2. Thus, we assume that α1, β1, ϕ1, A1, B1, u1, v1 and ω1 are defined precisely as
in (4) and (6)∗. The only difference concerns the ranges of variation of the coordinates; since the verticals
x = ±L/2 are described within region T1 by equation α1 = L/2| sinβ1|, therefore, −π/2 6 β1 6 π/2 (as
before) and 0 6 α1 6 min{L/

√
2, L/2| sinβ1|}. In particular, the curvilinear displacements and rotation

are given along the boundary with region RT
2

by

u1 =
ϵL

2 sinβ1

, v1 = − ϵβ1L

sinβ1

, ω1 = 2ϵβ1 , at x =
L

2
. (8)

The curvilinear coordinate system appropriate for describing the strain field within region RT
2

is harder
to formulate. The systems of straight, non-intersecting ties are associated with regions described by (3);
the mathematical formalism describing such regions is presented in [6, Sect. 4.2]. We begin by defining
coordinate β2 as the same polar angle as the one used within region T1. The bottom left corner of RT

2

corresponds to β2 = −π/2, whereas the uppermost tie corresponds to β2 = −π/4. More generally, all
ties within RT

2
belong to the family of straight lines parametrised by β2:

2x− 2y cotβ2 − L(1 + cot2 β2) = 0 . (9)

It is possible to show that these lines envelop an evolute with the equation

y2 + 2Lx− L2 = 0 . (10)

In an orthogonal coordinate system with α2 defined as the distance from a fixed involute, equation (10)
may be alternatively written as α2 +F (β2) = 0. Here F (β2) is an arc length measured along the evolute
from the point where α2 = 0. Since evolute (10) touches the bottom left corner of RT

2
, it is convenient

∗ The numeric subscripts indicate which specific region a given quantity relates to.
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to use the involute passing through this point as the coordinate axis. We can now integrate along the
evolute to obtain the full description of our curvilinear coordinates in the form

ϕ2 = β2 +
π

2
, A2 = 1 , B2 = α2 + F (β2) , where F (β2) =

L

2
(cotβ2 cscβ2 − ln[cotβ2 − cscβ2]) , (11)

see also [6]. The Cartesian description of coordinate lines in (α2, β2) is obtained by computing

x + iy =
L

2
+ α2eiβ2 + i

∫

−π/4

−π/2

eiξF (ξ) dξ , (12)

which leads to the explicit formulae

x = (α2 − L ln[cotβ2 − cscβ2]/2) cosβ2 + L/2 , (13)

y = (α2 − L ln[cotβ2 − cscβ2]/2) sinβ2 − L cotβ2/2 . (14)

An additional test of the validity of these equations may be performed by directly computing the metric
tensor components from (13) and (14). The resulting expressions match equations (11) exactly. Table 1
presents some useful relationships between coordinates of various lines and points within the global
Cartesian and the local curvilinear coordinate systems.

Table 1: Significant lines and points within the coordinate system (α2, β2).

Cartesian Curvilinear Significance

x = L/2 α2 = L ln(cotβ2 − cscβ2)/2 the boundary between T1 and RT
2

y = 0 α2 = L (cotβ2 cscβ2 + ln[cotβ2 − cscβ2]) /2 the bottom of RT
2

y = L− x β2 = −π/4 the top tie of RT
2

(L/2, 0) (0,−π/2) the bottom left corner of RT
2

(L/2, L/2) (L ln(
√

2 − 1)/2,−π/4) the top left corner of RT
2

(L, 0) (L[
√

2 + ln(
√

2 − 1)]/2,−π/4) the right corner of RT
2

Given orthogonal coordinates (11), we can formulate the system of partial differential equations describing
principal and shear strains, as well as the rotation, in the form:

∂u2

∂α2

= ϵ , v2 = ω2(α2 + F (β2)) +
∂u2

∂β2

, (15)

ω2 =
∂v2
∂α2

, ε′′
2

= (α2 + F (β2))−1

(

∂v2
∂β2

+ u2

)

. (16)

Equation (15)1 implies that u2 = ϵ(α2 + G(β2)), with G(β2) chosen to ensure the continuity along the
line x = L/2. Since β1 and β2 denote the same angle, the continuity with circumferential displacements
requires u2|β2=β1

= −v1|β1=β2
, so that a reference to (8)2 leads to the full definition

u2 = ϵ(α2 + G(β2)) , G(β2) = F (β2) + L(2β2 − cotβ2) cscβ2/2 . (17)

The rotation is fixed along α2-lines within RT
2

; therefore, the continuity of rotation along x = L/2 and
equation (8)3 give ω2 = 2ϵβ2. This enables us to compute u2 directly from (15)2, with the result

v2 = ϵ(2β2[α2 + F (β2)] − L[2β2 cotβ2 − 1] cscβ2/2) . (18)

The substitution of displacement (18) into (16)1 again gives ω2 = 2ϵβ2, as it should. By substituting
the value for α2 associated with x = L/2 from Table 1 into (18), it is also possible to verify that
v2|β2=β1

= u1|β1=β2
. The only remaining equation (16)2 provides a direct mean for computing the strain

along β2-lines, which is found to be

ε′′
2

= 2ϵ

(

2 − L cotβ2 cscβ2

α2 + F (β2)

)

− ϵ . (19)
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Figure 3: A single span of the proposed optimum structure.

For the field within RT
2

to satisfy the Michell criteria (3), we must ensure that |ε′′
2
| 6 ϵ. It is worth

reminding ourselves that the denominator within (19) is an equation of the evolute. It can only vanish
in a single point of region RT

2
, where the evolute touches the bottom left corner, see (10). However, due

to the cancellation of terms, one has everywhere along the bottom boundary of RT
2

:

ε′′
2
|y=0 = ϵ , (20)

see (19) and Table 1. Simultaneously, everywhere along the boundary between regions T1 and RT
2

,

ε′′
2
|x=L/2 = −ϵ . (21)

Keeping in mind that, for every fixed β2, ε′′
2

is a monotonously increasing function of α2, see (19), that
changes from −ϵ at x = L/2 to ϵ at y = 0, we come to the sought-for conclusion that RT

2
is a valid

Michell region of type RT , see (3).
Having constructed a consistent strain field for a single half-span does not yet solve the original problem,
featuring infinite sequence of equally-spaced level supports. A full span of length 2L can be obtained by
reflecting the constructed fields with respect to Oy. In addition, we can use equations (17), (18) and
Table 1 to write ux

2
, the horizontal component of displacement along y = 0, in the form

ux
2
|y=0 ≡ u2|y=0 sinϕ2 + v2|y=0 cosϕ2 = −ϵ

L cos 2β2

2 sin2 β2

. (22)

Clearly, this vanishes when β2 = −π/4, i.e. when x = L. This means that we can also reflect the resulting
structure with respect to the vertical line x = L. Therefore, it is now possible to produce a structure
that, via a series of simple reflections, spans across an infinite sequence of level supports placed 2L apart
along Ox. An illustration of a single span of such a structure is given in Fig. 3.
It has already been mentioned that regions of type T , i.e. the regions that satisfy the Michell criteria and
conditions (1), are often perceived to be synonymous with all Michell structures. Since these regions fea-
ture systems of mutually orthogonal members, the requirement of member orthogonality often presumed
for general Michell structures. This requirement is, evidently, violated at the bottom boundary of region
RT

2
. Nevertheless, Rozvany [13] shows that the orthogonality requirement can be relaxed along bound-

aries between RC and RT regions. Thus, we can resolve the contradiction by interpreting the compression
bar along the bottom of RT

2
as a degenerate region RC

3
, which satisfies all of the conditions (2).

The presence of a compressive concentrated member RC
3

also resolves what may appear to be a strain
discontinuity at Cartesian point (L/2, 0). Without RC

3
, the horizontal strain along the bottom of T1

would be compressive, whereas the normal strain along the bottom of RT
2

, which becomes horizontal at
x = L/2, would be tensile, see (20). Thus, the compressive member RC

3
ensures the continuity of the

strain field at y = 0.
Although we have now obtained a continuous virtual displacement field that satisfies all of our kinematic
requirements, this does not constitute a proof of global optimality for our solution. Such a proof would
require constructing a continuous virtual displacement field that covers the entire half-space. The deriva-
tion of such a field is beyond the scope of the present paper.
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4. The volume of the structure

The volume of a single span of the proposed structure can be computed by calculating the work done
by the external forces and dividing it by ϵσ. The work WI done by the distributed load acting along
−L/2 6 x 6 L/2 has already been computed in (7): WI ≡ ϵσWaux = ϵπwL2/4. In order to determine
the work WII , done by the distributed load acting along L/2 6 |x| 6 L, one needs to find the vertical
displacement uy

2
along the bottom boundary of RT

2
. Using equations (17), (18) and Table 1, we obtain

uy
2
|y=0 ≡ −u2|y=0 cosϕ2 + v2|y=0 sinϕ2 = ϵL(β2 csc2 β2 + cotβ2) . (23)

With the help of (23), the work integral is computed as

WII = 2

∫ L

L/2

−wuy
2
|y=0 dx = 2wL

∫

−π/4

−π/2

uy
2
|y=0(cot2 β2 + 1) cotβ2 dβ2 = ϵ

(

4

3
+

π

4

)

wL2 . (24)

It is now self-evident that

Wmin =
WI + WII

ϵσ
=

(

4

3
+

π

2

)

wL2

σ
≈ 2.90413

wL2

σ
. (25)

Therefore, the volume of a single span of the described structure is 11.0% lower than the volume of a
simple parabolic arch with vertical hangers, and 7.86% lower than that of the classical solution obtained
by Hemp [7], which is known to be sub-optimal (see also [3]).
The solutions for force fields within regions T1, RT

2
and RC

3
can be computed without much difficulty and

are omitted here for the sake of brevity. We used these solutions to compute the volume of the structure
directly, and to verify formula (25). The volumes obtained via primal and dual formulations matched,
therefore providing further confirmation of the correctness of the reported result.

5. Numerical solutions

In order to verify the optimality of the structure described in previous sections, a numerical solution has
also been obtained using an efficient numerical layout optimisation procedure [5]. The same procedure
was recently used to provide compelling numerical evidence that the parabolic arch is not an optimal
structure to transfer a uniformly distributed transmissible load to two pinned supports [4]; see also
subsequent formal proof of this [17].
The numerical solutions presented in this paper were computed for several combinations of allowable
stresses, using numerical discretizations comprising 61 nodal points in the x direction and 41 nodal
points in the y direction, therefore optimising over 3,126,250 potential members. The computations, in
each of the cases, took around 30 seconds of CPU time on a modern PC. The plots of resulting solutions
are grouped together in Fig. 4. Note that the solutions are plotted using a perspective projection, which
makes the upper parts of structures appear narrower than they are.
Let σT and σC be the tensile and compressive yield stresses, respectively. The structure obtained in
the case when σC = σT and shown (twice) at the top of Fig. 4, displays a remarkable similarity to the
analytical solution shown in Fig. 3. However, a slight mismatch in the positions of nodes at the top
of Region 2 leads to the appearance of an additional (feint) fan region, comprising straight lines and
concentric circles. Supplementary runs were performed to ensure that this vanishes as the numerical
discretization is refined.
Interestingly, the numerical solutions for unequal allowable stresses indicate that our solution, although
seemingly unusual, is closely related to two well known classes of structure, widely used in engineering
practice. In particular, the left hand side of Fig. 4 presents structures dominated by compression (σC >
σT ). As σC/σT increases, the fans around the supports shrink in size, with the overall structure tending
towards a simple arch with vertical hangers. In the case of structures dominated by tension (σC < σT ),
shown on the right hand side of Fig. 4, the solutions metamorphose into a cable stayed bridge structure,
with the fans shrinking to become stocky, near-vertical, towers.
Closer inspection of the optimal structures dominated by tension enables fairly accurate determination
of numerical values of the abscissas at which half-wheel fields are replaced by systems of straight tension
members. This allows us to formulate a conjecture about the structures of this type. If X denotes an
abscissa where the described transition takes place, it appears that

X =
σC

σC + σT
L . (26)
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σT = 0.1σC

σT = 0.3σC

σT = 0.75σC

σT = 0.9σC

σT = σC

σT = 10σC

σT = 5σC

σT = 2σC

σT = 1.1σC

σT = σC

Figure 4: The numerical solutions that illustrate the effects of having unequal allowable stresses.

In particular, in the case when σC = σT , (26) yields X = L/2, precisely the same as assumed in our
earlier derivations. Expression (26) can also be reformulated in terms of slope θ0 of the top tie within
region RT

2
, see Fig. 2. A simple geometric argument leads then to the following conclusion

θ0 = arctan

√

σC

σT
, (27)

which is precisely the same condition as the one previously obtained for the parabolic funicular loaded
by a transmissible, uniformly distributed load, see [4, 18].

6. Conclusions

Details of a new half-plane Michell structure capable of carrying a uniformly distributed load of infinite
horizontal extent over a series of equally-spaced pinned supports have been presented. Although formal
proof of optimality of the structure has not yet been demonstrated, the proposed analytical solution is
supported by available numerical evidence. Numerical solutions also suggest the existence of a wider fam-
ily of related, simple, and practically relevant structures, which range in form from an arch with vertical
hangers to a cable-stayed bridge, depending on the specified ratio of limiting compressive to tensile stress.
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