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Abstract

The principal aim of this paper is to present the idea of a
'generalized frequency response' of a nonlinear input-output

map S . It is defined as /S J~' where Jis the usual isomorphism
from ¥° 1.2 (0,®) to 22, RealiZftion results are presented

pertaining to linear, bilinear and nonlinear systems.
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1. Introduction

The theory of linear systems has been developed from two points of view.- the
time-domain state-space theory and the frequency-domain transfer—function approach.
Each method has its advantages and disadvantages and, as is well-known, the
classical theory of control is developed mainly in the (complex) frequency
domain, while the theory of optimal control was initially developed in state
space. The two methods can, however, be regarded as equivalent since the Four ier
transform provides an isomorphism between the two representations of a system.
Thus it is not surprising that state-space methods have frequency-domain counter-

;

s 3 Lo
parts and vice-versa ; consider, for example, the recent H methods for

frequency~domain optimisation.

When we come to nonlinear systems, however, we are faced with what is essentially
a state-space theory since it does not appear to be sensible even to consider the
freqﬁency response of such a system, Nevertheless, there have been attempts in
the literature to define some kind of 'frequency domain' theory for nonlinear
systems (see [1] 5 Bﬂ). The method consists of finding a Volterra series expan-
sion of the input-output map of the system and assochting a sequence of transfer
functions Hk(sl""’sk , k21, each one being the multi-dimensionsl Laplace
transform of the corresponding Volterra series kernel. Setting si=jwi gives the
tfrequency response' of the kth kernel, namely Hk(jwl,...,jwk). However this
approach has two immediate difficulties; firstly, we obtain frequency spaces

of increasing dimension and secondly, it is not at all clear how the functions
Hk(jml,...,jmk) relate to the responses of the system to standard inputs (e.g.

complex exponentials),

In this paper we shall take a more pragmatic approach and define a 'generalized
frequency response' for a nonlinear system in terms of the way it responds to
any input in terms of the components of the input with respect to some 'standard
functions'. Thus we shll suppose that the input and output functions belong to
thb,maand take as standard functions some basis of this space (as a Hilbert

space). Using the induced isomorphism of L2[0,§ﬂ with 22 we obtain a 'generalized
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frequency response' which is just an analytic map s:& 2%,

Throughout the paper we shall discuss the method relative to linear, bilinear

and general nonlinear analytic systems. In particular, in the linear case we
shall show that the method reduces essentially to the classical frequency response
of a linear system in the sense that the map 5:22+12 is linear and has a block
diagonal matrix representation, each block being a 2 x 2 matrix which can be
decomposed into a rotation and di lation corresponding to the phase shift and
amplitude response of the system at the frequency of the corresponding basis

function.

In section 2 we shall specify some notation and in section 3 we shall present

a new input—output representation for a nonlinear analytic system. In section 4
we shall define the generalized frequency response of a nonlinear system and

in section 5 the realization of frequency response maps 5:22+22 will be

discussed,



2. Notation and terminology:

In this paper we shall use the following notation. An n-multi-index is an n-
tuple i=(il,...,in) of non-negative integers; its length (or order) is given by
|i|=i|+...+in- The sum of two multi-indices i and & is defined as i+&#=

(il+gl,...,in+£n). We say that igf if ikslk for k=1,...,n. When 1<% we define
. | i

-1 as (L. -i_,...,2 -1 ). We also define i! =1i_!...1 ! and X =x.—...x " £or
i 1 n n 1 n 1 n
T F i G i v
X = (xl,---,xn) Rn. 1(r) will denote the n-multi-index with 1 in the rth place
L 2 ’
and zero elsewhere, and 6% = d.l ...6,n where 8§, =1 if i = 2 and 6§, = o if
1 1y 1 i k k 1

i # ﬂk-

g ; n
For an analytic function h: R—R, Taylor's formula becomes

heo = 3 = (D (o)
[i|>0 il

-

where - .
; . i i
h(lll) (x)=‘a|1| h(x)/axl1 ...axn

n

Let 22 denote the standard Banach space of square summable sequenc es and let Ee

[2] denote the Banach space of sequences (un)n>o such that the sequence (an/n,}

> nzo
2 2
belongs to & . Define a norm on Re by
: o 2 1/2 2
ey Jl=ce %2 ) M2, ) e
n’ n3o - n e
nzo iy2 no
(i) -
Now consider the algebraic tensor product of n copies of Ee,:i;= ﬁn Re’ and let
|[.|] be any cross norm oncx;. For a simple tensor ¢ we have ¢= (¢i i ) =
1 n 1 n n k 2 L
(o, -.-0., ) = a' R...8¢ where a = (a, ). € 27, k=1 ...,n .
1 i i, 1,20 e 4
1 n o k K~
k
Then, ||¢|| =1;11 ||a ]le.
20 o 2 ;
The standard L {o,®] and %" spaces will also be used.
3. The Nonlinear Input-—Output map:
In this section we shall consider an analytic system of the form
x = f(x,u) ,x(o)=x0 (3.1)
= (3.2)

y = g(x)
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where xgER , UER ; £ : R x RPR and g: R R are analytic functions. (Thus, we
are considering the single-input, single-output case for simplicity). We shall
assume that the solution of (3.1) exist for all time and for each x E_Rn, although
0
systems with finite escape times can be treated similarly (except that the
solutions x(t,xo) of (3.1) are not analytic in t for all t.).
We shall require the input-output map S:u+>y for the system (3.1), (3.2) which can

be obtained by using the method of Carleman Linearization [3]. (See also [5].

To obtain this map we introduce the functions
i i .
1 nfd 1
; 2 = e X 1 &=
T Rl N n X
1. n

Since f(x,.) is analytic we have

e

f(x’u) = j§0 EJ_ £ (Osj) (X,O)

]
0,] .t . . .
where ft ’J)denotes the Jth derivation of f(x,u) with respect to u. By the

analyticity of f withrespect to x, we have

f(x,u) = I Ei )X 1 f (Ill’J)(o,o)xl

jzo iU |i]z0 1t
where 1 = (ilz""in)'
Hence we have
; , = Zn i Xi_l(r) ®
ijeeei ;T r
and so
[ ] LA -
$. ; = T i 1) £_(x,u)
1m0 =1
i . .
= ,r i-1(r) . Ei_ 5 1 f ('EI’J)(O,D) <
r=1 isa 4% RIZO L!
(12],3)
n +
= ¢ o z i pX fr (0,0) i-1(x)+4
jzo  r=1 [2]z0 2131 o
T ‘ ( L ’J) :
S L=1(r)+
=3 o : iz 5 Ee (os0) 5. ) RXP
jzo r=1 2120 |pI30  2!3! P
We therefore have
b g =2 ooz a?(j) <P
1 jzo |p|>0

where



== 5 =
n i
. (p-i+1(x) |,) : :
T - L f 2 f p-1+ >
= o-Teity) 15T &y (0,0) if p-i+1(rxr)=0
cAPray=d
ai(J) )
. 0 otherwise
Finally, we have
8= A o+ L u A, 0 (3.3)
o A
izl

where ® is the tensor with components ¢i q and Aj is the tensor operator
1" "n ’

defined by

_ Prsy P _ P,.
(A.@)i I &i(J) X z ai{J) é >
|p|z0 |p|20

We can solve equation (3.3) by standard Picard iteration ;thus define

_ At
¥ (t) =e 2, , (3.4)
t ' :
y(t) = &£ | eA°(t“T) w(t) A, ¥ (1) drt k31
k . i k=l b
jzl o

Using methods developed in [3], it can be shown that the solution of (3.3) is
given by

o(t) = I V¥ (t)
k>o k

. ; : ; 2
where the series on the right hand side converges in 2e for bounded controls.

Explicitly we have

t Tk 2 ifo~i ik
¥)=3% ...z [ [..]~% (£,0. «vey0 ) U (0 ).
k ; k. 1 8 4 k
izl t>1 o o )
1 k :
i,
eood 5
Leo U (01) dol Oy (3.5)
where
Lgeeely ) Ao(t—Qk) A (ak—gé_l)
V. (to,---,O’)—e A. e A, LR ]
k T K Tk Te-1
48
0.
v Al e @o
From (3.2) we have
y = g(x)
= 7 glpl(o)‘ %P
Ip[30  p!
= G ¢

for some tensor operator G. Hence the input-output map of the system (3.1),

(3.2) is given by
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t o gp 1 eesl
y(t)= v (t) + I % evw B f fk. v f v 1 k(t,c,..vc )
= k1.1 21 izl ¢ ] k L k
i . 2151, izl o o )
k 1 e
u (ck)... u (01) dct‘.!_...aci12 (3.6)
when
vy(t) =G eAbt @
e f oty ° ioeedy
Vk (t’cl’...,ck) = Gvk (tsgl”“’o—k)
4. Spectral theory of Nonlinear Input-Output Maps:
Consider a System S given in terms of an input-output map
2 . 253
s : R x L5 [0,""1+ L. lo,=] : (4.1)
defined by y(t) = S(xo, u(s)) (t) (4.2)

. 2 ¢ n .
We assume that the input u and the output y belong to L [o,t”] s xoéR is the
initial state in some given state—space realization. Again for simplicity, we
have assumed scalar inputs and outputs, the multivariable case will be considered

in a future paper.

We have seen an example of such an input-output map in section 3, generated by
a nonlinear analytic differential equation. Two simple examples are given by

the linear-convolution systems and by the Volterra series of a bilinear system.

Example 1: Linear Systems

Consider the Linear system

X = Ax 4+ Bu , x(0) = %
° (4.3)

y = Cx

then the input-output map is given by

At £ A-
y(t) = Ce X + f C e ™ (t) dt (4.4)
o
In this case
S(x,, ul+)) (£) =g _(t) + (gru) (t) (4.5)

where

At At
go(t) = Ce X s g(t) =Ce B

and

* denotes the convolution operator.



Example 2: Bilinear Systems

Consider the bilinear system
Ax + uNx + Bu, x(0) = x

}‘( -
{ ‘ (4.6)
Ly Cx _

where A, N, B, C are constant matrices of suitable dimensions. ‘hen the input-

n

"

output map is given by [4]:

o

- ] 2
= + % v.(t - .
y(t) Ce X 5 f j( 30, ,Gj)

1

At
/
izl o

>—Q

i il . ...dg, +
u(ol) u (UJ) dcl UJ

t aj g,
3 _E f f... f wj(thl""’cj)°
izl o o o
N
2 ] A .) do_...doc. 4
u (01} u(aJ) 01 doJ 4.7
where
- A(t-o._)
vl(t}dl) =Ce 1° B
vj(t)ql,...,qj) = cég(t'cj) Ne A(Ujboj—l) . P
LN 2O g s
and
_ A(t=o_)
wl(tlcl) = Ce 1 R
w.(tJul, ce50.) =C e_A(t Uj) N AL J_Uj—l) Neowoo
Ao
wow N A(GZ 01) N e 1 x 5 J>1
80 y(t) = S(xo, u(«)) (t).
Returning to (4-1), for each fixed initial state xo, we have a map
A 2 2 “
S = 5(x a'): L [0,00]_, L’\Dsw.\ (4'8)
Xq o) ,
Let {e.} be a basis of Lz[o,ml and let j denote
jzo
the usual isomorphism
" 2 - 1 2
j : L [o,«ﬂ*&
given by
JE) = £}
S P
where

£e1%fo,0), £= 3 £, e,

The SX induces a map

Q 2 2

s :: 2 > 2
X
o



such that the diagram S
X
27 ; 2 Y
L [0,00]"'—‘-*9 L [o,m]
¥ - ) (4.9)
S _
22 %5 22
—_—
commutes. 36MQ¢&LLZQA
We shall call - the k frequency response of Sx (with respect to the basis
5 7% o
{e,} ). Explicitly s 1is given by
k. X
Jzo. °
s. u } ) = {<s (L u,e,), e>} (4.10)
*o ¥ k>o * iz ke k>o

. 2
where <. , .> denotes a scalar product in L (0,%),.

As an example consider the linear system in example 1 above. The map S, and
; X
o
hence the map s, » 18 affine and is linear if X =0. s has a matrix represen-
5 %
o o

tation given by

s ({u, } ) =w, + £ G, .. u.
%o k k=0 ¢ t jzo gJ J A
where
= <C eAt e >
Yo R |

In order to see the relationship to the familiar frequency response consider the
input and output functions over [0,1] for fixed T>0 . Let x =0 and introduce

the basis

B = {-1*&-} \J {J% cos 2 Il'ITt/T} W {\/%‘ sin 2 I'lTI‘t/T}

n>1 nz1

2 . . ’
of L [o,Tl. Then, as is well-known from linear systems theory we can write g#u

in the form

t
(gwu) (£) = [ g(1) u(t-t) dt
8]

. -iw 't
and so if u(t) = e - , where w_ = 2mn/T we have
it - o iw t -iw T
(g*u) (t) = e al" fg(T) e T dr- e " T g(t) e ™dr

. o t (4.11)

A 1Wnt

= g G(iw ) + E (t)

n n

for t € [p,T]. Here, En(t) is called the transient term. Of course, this is

just the familiar expression for the frequency response&ﬂwn)(i.e., the Fourier



transform of the impulse response). If we order the basis B in the following

way:
2 2 .
1/ff ’VAf cosm(2mt/T) ’V&f sin (2wt/T),

? O
/% cos (47t/T), J%: sin (47t/T). ...
then the commutative diagram (4.9) induces by the map j a one-to—one corresp-

ondence of this basis with the basis
2
CL0 05 aw)s €010, 50e)y L0 LoByiii) psss BE B,
From (4.10), we therefore see that the matrix representation of the linear

2 2 ; . s i
operator sx ¢ +4 for the linear system above, with respect to the basis given
o

Y 0
Iy + 40
I
O v (4.12)

is

(assuming the system is stable). Here

N = g(t) dt

C

is just the gain of the system, Tk (1gk<=) is a 2 % 2 matrix given by
Re G(iw, ) ~ImG(iw, )
i = ( K NEEW
k ; .
I'n%.G(lwk) R?.G(lwk)

and A is the matrix representation of the isomorphic image of the transient term
v R
in ¢ .

If we write T, = (detrk)llg('cosek _Sln@k)

k
sin cos0
k @k Kk
then I'’ represents a rotation and a dilation corresponding to the phase shift

k

and the amplitude response of the system.

To illustrate the expression (4.10) for the bilinear input-output map (4.7) let

{ei} be a basis of Lz[o,w] and define

@ ) = e iy
o (]
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and for j>1

v ; o Uj 02
1 v & gl = - e T
fhppeesky (®) = [ 1 [T vie0 o) o (@) g (@),
== ¥ 1 ] (4.13)
.dor1 43 daj :
t Uj ?2 -
W. (e) = [7... w.(t O, ,.0.50.) e (0.)...e, (0.).
P ¢ » ’
_]k.ls ’ j G o o ] 27 ] k]. 1 Ij
.do_...do,
1 ]
then, if u= I ue ;' u € Lz fo,él

o kK
the input-output map (4.7) becomes

y(t) =w (t) + Z L+ u o ...u V, (t) +
2 21 k30 k.30 ky ky gk .- ok
J: (4.14)
£ B, ZE ... B u ...u W, (t)
>l klao ijO kl kj Jkl...kj
and so
<y(t) , e » =<w (t) , e,> + L T i B U, oe.U, o
4 © 331 k30 k.20 1 K
]
s &V (t) e > +
— ?
Jkl : L
¥ E z I ou u  <W, (t), e,>
jzl klzo kjao k1 kj Jk1 k] e
Hence
y =w + I z E L3 S Vv +
PO 1 agze ke M1 Ky Tyt
* £ T I u u W, -
i31 k.30 ijO kl kJ Jkl kJQ
where y(t) = I Yy egtt), Wo(t) = I L eg(t)
120 : 2z0 .
v, (t) = = V, e (t), W. (t) = T W, e (t)
on ek, ek, 8 — R %
Jkl ] 220 Jkl kjg ¢ Jkl h| 230 Jkl ]
. o E . 2 2
Tt follows that the diegtam (479) indyces the map s, :27>4" given by
o
s ((u ,U_yeee )), = w + by T —-
*o L & ok j=1 k,=zo0 k.0
1 j
u ...u .V, L AT (4.15)
ky kj Jkl"'kji jxl k.o kjao
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We shall require the generalization of the Taylor's forﬁula of an analytic function
£: R™R to an a;alytic function'€:£2+R defined on the infinite-dimensional space
22. From the general theory of higher~order derivatives of functions defined on
an_infinite-dimensional space [i] and from the familiar finite-dimensional formula,

5 ; p 2 :
we can write an analytic function f:¢ +R in the form

4] ;
£ . (a) ul

fluy, vy wypeee) = T (4.16)
|i]z0
where
u=(u,u,u ...)622
a® LY TR
i= (io, il’ iz,...) with only a finite number of non—-zero terms.
ut = u10 u%l u12
0. Yy Uy e
il = = L -
il 1 i i,
|1|== ) 1
Lz0
o = (o0, 0, 0,00.)
and
. i :
i a f(o
fl l(C)) frect i (i) i e
‘ (o} 13 2
‘Buo bul u, e
2
Define the map s j :2 R in the usual way by
OJ
SX . ((uo-)uls'--)) = (SX ((uo)ula'“’“)))j
0,1 0
then, comparing (4.14) with (4.16) we obtain
w = 5_ ,((0,05...))
ol "x{ (4.17)
i ( )
v + W. T s ({00, 5 )
5 P [ PR P P x & ¥
J 3
1 _]Q, 1 JE ?Uolau 1 O

1
where Py is the number of terms in the sequence kl,...,kj equal to r (note that

E Pr=J)-
r>0

¥t follows that in the 'frequency domain' representation a bilinear system is just

' T 2 2
an analytic map from 22 to 22 (or if we vary the initial value from R x2 to £).

Consider, finally, the general non-linear analytic system (3.1), (3.2) and its

input—-output map (3.6). As before let u= I wu,e..
o
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since (3.6) involves ul(U), we consider ul(g) = t U, e, (o) where
j2o *
.. =< ul, e. >
1] J
we have
i=-1 i=1
U.. =<u I ue ;, e, >= LI u <u e, e, >
14 Seian k'k K30 k k2]
i-1 -
= z u <Uu e e.>
k>0 k *Tkoj
let Bip = <ee., e > (4.18)
then U = I u -<ul_l BJ >
13 kse k ,p>o kg p
i
= £ u B . Fo
k>0 pzo ¥ kp<u ’ ep>
that 1is ;
U = I I u B U.
Hoamo pyo FOFPOITLP (4.19)
U = <l,e,>
therefore 0O ] ) o b 4
J P, 1=l ..
., = 3 L oasw O i3 u B u BTl ...un, B
k0 pi30 k30 pyzo ky kyPy kp Koy Ky kgPy 0P
K. vonik,
= ...z vl t w ety
k120 kJZO ] 1 i
where
- ; i
v k1 i, g..3 g B?l Fi-1
i3 B o k.p. k.p, " Pk,p, op
Thus (3.6) becomes
*jl.” Jk
y(e) = v, (t) + I b s, B T . L U L Vk i : (t)
k2l izl i3l jp2e 30 91 ke Btttk
where :
%2 .
JE' ] to o] 1 ol
'k N k 2. 1 k
V. Loo(t) = £ e g v, (t,0, .,ﬁgejk(ck)e..ejl(dl)dcl...dok
kodyeeedy (4.20)
ie.j
y(t) = vd(t) + I ¥ ens B b X wain B
k21 ilal ikal jlzo igze s L, 5 %
0 ) 2»9 1~ Ts 1
L] Z a ° 9 Z 1Ti1 ;J._-l’llllﬂ gl,ll-k Lk,ik
L. .3 L. .0 %131 NIk ’
1,1k lk,lk



-— 13 p
o 2
Fy 4 5 6.7
1 k
-uﬁl e - u21 ; ...ug1 ; es Uy Vkil"'ik ()
o1y 157 an" ’, Tk
Hence
Y, =W _» * T . I swes X I was z cos
J Jook3l ilao 1k?0 21’%?0 Jlil,ilao
21 a n.ﬂi i ...21 g Fw {5 i
iy - w o1 171 Y ',k
B g0 L 5 20 kg Loymim vy, ’
oy kK _
(4.21)
w, . u - .ou . a 3
l‘i.lli LLI‘,L a . U.E_ ) -, SK ((uoiut,...,))'
| iy L O © J
-k ki
where v, = <y(t), e.>
J J
w ., = <v (t), e,>
0] 0
~and
L. . ssz Ks viv ol etaiil . 2 S
l,i, -+ T - 4, i i 1,1 i
W, i o H | B - WER_ g ox oy vl
17 M j.z0  j.zo t1l1
TR,
v l,lk lk’lk . oo sy s
1k3k kll 1k J

5. Realization theory.

In this section we shall consider the problem of the realizability and the state
space realization of an analytic map s:£2+22, which defines a generalized frequency
response. We shall again study the problem in the linear, bilinear and general
nonlinear situations and the results will be expressed in the form of conditions

on the multi-dimensional Laplace“transforms of various kernel functions associated

with 9.

5A: Linear Systems.

Theorem 1:

A necessary and sufficient condition for a sequence {G _,} of numbers to be
J £,j20

the 'generalized freguency response’ of a linear system with zero initial

e ; : : 2 L
condition (with respect to a given basis {ek} kso OF L [0, J)is that there

exists a strictly proper rational function G(s) such that

L G . E (8) =G(s) E.(s) (5.1)
% ]
Lz0
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for all jzo. G(s) is then the transfer function of the linear system.

Proof:

In section 4, we derived the 'generalized frequency respomse’' s  of linear
X
o
systems. Taking X = o, this reduces to

where

y(t) = I y, e/ (£), 1€ fo,»)

and >0 o

- A=) :

I ¢6.e(t)= fCe T Be.(1) drt

250 g 2 ]
o (8}

Taking Laplace transform, we obtain

1 Ez(s) = C(sI - A)-l B. E,(s)
2z0 4 J
that 1is

E Gﬂ,, E,Q,(S) = G(S) E.(S) e

5.B: Bilinear Systems:

h
Let Ek(s) have only simple poles akk jk=l,...ﬂrk. The corresponding residues

are denoted Eéf, kzo.

Theorem 2:

A necessary and sufficient condition for a sequence

1 77 j>¥ki,,.kj£20 of numbers to be the 'generalized

=

s 3 5 s e e . e ;
frequency response of a bilinear system with zero initial conditiom (with respect

to a given basis {ek} of Lz[o,@}) is that there exist four matrices Go(s),
7 kzo
Gl(s), Gz(s), Gg(s) with dimensions respectively 1x1, lxm, mxm mxl of strictly

proper rational functions such that
(1) DY B (s) = GO(SJ E_ (s) (5.2)

20 1 kl
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rkj rﬁz
(ii) Y K k.2 ER(S) =, Z
g0 35177 g =1 g =1
k. k
] 2
JlkJ sz ikj
E -
K Ek Gl(s) Gz(s mk,)"
i 2
gkj Rk3 ikj 2k2
“""GZ(S_%k. a0 ) GB(S*u =eeamay )
2] 3 2
Ekj sz
E (s~a v, . ,~a %)
Kl kj kz
for all k. ,...,k,.30, j>1.
1 ]
Proof:
For x = 0, s given in (4.15) reduces to
o X
y, = % Z E u, o, v
Y551 k30 k20 ky uk] Jky
where
y(t) = Ly, e (t)
456 2 £
and V., (t) = I W, e (t)
¢ s co k.,
JkyoeeXy 830 351 3Pt
but (4.7) and (4.13) yield
} A(t—c?
v (t) = | Ce B e (o.)dag
lkl 5 kl 14
and O
- Oy A(t-o,) A(o,-o,_
v, (vy=[ fAl... [ce ITne 11
Jk,eeok, :
1 q o © o]
Al(o,~a_)
. .Ne &1 Be (0.)...e
k1 1
.dcl...dcj s 3l

Taking the Laplace transform of (5.4) we obtain

I YV E (s) =V,
e o K —
250 Jkl }i 2 Jkl :

whereas the Laplace transform of (5.5) yield:

-
vlkl(s) = C{sI~-A} 'B. Ekl(s)

that is

k.

(0.)-
]

(573)

(5.4)

£ 0}

(5.6)

5.7}
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LV E ,(s) =G (s) E_ (s) 5.8}
%30 1k12 2 o kl

where GO(S) = C{SI“A}_lB (5.9)

In order to find the Laplace transform of (5.6) we are going to write it in a

different form more suitable to the introduction of the multidimensional Laplace

J

transform [5]. Consider the change of variables:

01 =t “Yl ,.nnsdj = & wrj
we obtain, A
@ o o e, A(t. _-t.) At ~t.)
V. () =[fooofee Ime 3P Iy we 7o,
dk, e oak,
1 3 oo o
t= e =Ts I (W o ‘ B
ekl( Tl) ekj(t 13)6_1(TJ_1 TJ) 6»_1('r}L 12) (5.10)
ax, seatdr,
T TJ
where 6_1 is the unit step, and the ek's being zero for negative arguments. We
shall introduce functions V. (t.5...5t.) defined by
Jkl«.uk. 1 i
N oo ?a: Az, A(T._l“T.)
v, o Aot on J B A Ha T I
3kl..c ; 1 ]
J A(Tl—Tz) @ e
.se N & B.e (t.~1t.)....e, (£.-T)),
k 1 1 k. 3 1
L J
né_i (rj_lﬂrj) .,.6_1(T1~T2). dTI,.,drj {5.11)

Then, taking the j-dimensional Laplace transform we obtain

A

vjklit.k.(sl"°°’5j) = ‘j(sl"'i.’sj) Ek (Sl)°"Ek.(Sj) (5.12)
J 1 3
where
. o0 o AT . A(T._I_T,)
Vole sooested = [ s foe dga 3 dy,
e ] = .
Alt,~1,)
1 2 __ ~
. Ne B Snl(ijl' ?j).nﬂﬁml(Tl Tz)n
e L il SjTj)dfl....de (5.13)
and
. o - LR “(Sltl+..n+s.tn)
v (S, ,:00s58,) = f.. f v, (t_, £ B
siwaiis K,
Jkl kj 1 5 S Jkl 2 1 i

. dt ,o.dtj (5.14)
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We need the following lemma ([6]):

lemma 1:

The following relation holds between ij

(s ,-..,sj)

i
¥, L ()= —— ! U Ve oocke, (578770785108
i

1“n j (sz)J" I:ipnu p._l“ipﬂw 17773

1352’

_— Sj—l) dsj—1° 4 .ds1 _ (5.15)

In the following, we shall be concerned with the evaluation of ij x (s).

From (5.8) we obtain
® Ao, Ao, Ag

_V“_.(S 9"'95.) - f s8e f Ce ] N e j"]. N...Ne 1B=
i1 k| 0

- tooot0, |+ s, o Fe ..t +o..t 8.0,
. {51[01' UJ] 5,19, cj] sjoj}

i dg_veedo,
1 ]
Therefore

<i
)

- _ =1 e =
w(sla-“' ssj} = C{(Sl"‘-..‘i‘sj)I A} N‘[(Sl"'...'i'sj_l):[ A}

N...N{s I - N (5.16)

Now let N = Nl . Nz where Nl is nxm and NZ is mxn, and define Gl(s), GQ(S)’

G3(s) by

clst - A} L

N, {sI - Ai%lle (5.17)
] =]

Nz{sI - A} E

Gl(S)

It

Gz(s)

Ga(s)

{5.11) becomes

?j(sl,.,.,sj) =G (51+...+S.) G2(51+u.,+s. e

i1 (5.18)
G2(31+52) G (s )
hence (5.7) and (5.10) yield
. pl}lm ‘pj}}-"}‘lm
V. (8) = ———m—, Py G,(s) G .{s~s. _)=
Ik, oas.K, o)™ 1 : P -
Jkl kJ (Zﬂl)J Prﬂlm Pj—IUlm 1 2 j=1
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N

i 1). GB(S"‘Sfetl'-—S )..

3—-1

Ekl(s—slﬂ...~sj_1) Ekz(sl)"° Ekj(sj_l).

ds. . .«..ds

therefore

V. ...k.(s) = G (s) i eeo gz(tj—l)'°°g2(t2)g3(t1)ek (to)°

Jkl ; 1 5 1
+ic +1
P} 1 p}”l 1
- 1_ a8 @ :
C S I R —iw E, (8.)..E (s, )exp-[ﬁs—s_m Tk,

(2ni)d " PPTE™ PigTM TRy kgl el o
e - PR - F(8=8_=.;.8, +
+ (s s, sj_,l)t2 (s 8 J__1) t1
+(smsl—...—sj_1) ta:] dsj_l..,.dsl} dtj—1'°°dto

Thus
0o

ijlv.ﬂk.(s) = Gl(s) f - f gz(tj—1)°‘°gz(t2)g3(t1)°
i o o

p,tie P +ico
e, ik J =t fl jJnl E (s.)...E (s, )
j-1 4 . e ., -
ki 0T oy p, i b, _y-i ky o1 LT b

. . t. i SR . .
exp[?J_l( 5-1 to) + sJ_2 (t3~2

+ + + + - P .
rsy (et b+ e ) + s (e )] - s.}

. = . PR . e
exp [ s(tJ_1 +t0)] dtJ_l t

Applying residue theory this will yield,

0

= T PN ¢ - £ s
Vi v, ) =60 [ v [ gy (e )enig, (Beq(E))
i 3j 0 o
Tk "k, 'gj ", ij
e (td){ by ) b ) Ek Ek. exp[dk_ (t 1+...+to)+
1 L =1 L. =1 *j 2 j
k. k
g, © 2

2

% ivc:zk.2f~ (£ 40 ) = s(tg_g+...0¢ )|} de, o ....dt

hence we obtain (5.3).

Remark 1:

E

(5.19)

(5.20)

(5:21)

(5.22)

To obtain the actual matrices involved in the bilinear representation we proceed

as follows [é].' Consider the matrix



-

6 (s) Gl(S)
G(s) = ( o (5.23)
G3(s) GZ(S)

Since all the elements in G(s) are proper rational functions, G(s) may be
considered as the transfer function of a constant linear system of finite order
with m+l outputs and m+l inputs. Therefore there exist three matrices A, R, S
respectively nxn, nx(m+l), (m +1) x n such that

s {sI - A} 1 R = a(s) (5.24)

By partitioning S and R in the form

S1
8 =( )s B = (Rl R.) (5.25)
S 2
2
where S1 is a lxn matrix and R1 an . nxl matrix we obtain
G (s) =S {sI-A} 'R
o 1 1
6.(s) =S. {sI - A} 'R
1 1 2
~ (5.26)
Gl(s) = 32 {sI - A} R2
c.s) =5, {sT-a} 'R
3 2 1

» B =R, , N=R_S_.

Now substitute GO(S),..., G3(s) in (5.2) and (5.3), and let C=S1 1 oS5

{A, N, B, C} will constitute the bilinear realization.

© Remark 2:

If we assume further that the basis functions have only single simple poles and
that f

1 1 1
£ ¥, E(s)/E .... .. E E (s=a ...- )
byo Jkp-rkR ks , ky 1k “kz
TV E (s)/E, . (s)
e Bt ARy

are independent of kl, kf;o, we can obtain another characterization of a bilinear

realization. For this, consider G(s) = IV E (s)/E, (s)
k.2 & k
>0 1 1:
and
= , 1 1 1 .
V. e, (840 g i
K. oo K@ > Kogewesy ki )= IV, Kk E (s)/E E- .E_(s- (5.27)
2 k| 2 3 430 Jkl--- jE 2 kKooos kz 1
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- ~ ' _ 1 A
For fixed s ,6say s, as kz"""kj ranges from O to m)vk2 . k.(s) akig-.fka.)

; e O I .
constitute an infinite sequence of complex numbers in C = P (C) (the Riermann

-

sphere). Therefore it converges to v.(s 8. ,...,8.). Here s = lim o EC.
i 22 i Kk o K
P
p
Corollary:
A necessary and sufficient cond*tion for a sequence {ij1'°-kj£} 331, kl---kaao

of numbers to be the 'generalized frequency response' of a bilinear system with

; T o e i : : : 2 ;
zero initial condition (with respect to a given basis {ek} of L [o,m]) is that
k2o

~

(i) v(s) is a strictly rational function

g 1ot v ; —at
(1i1) vj(s?sg_gz,...,sj Sj—l s S sj)

is a strictly proper rational recognizable function in s )sé s 35 G 55 such that

~

s 1 | U = v -
vj(st3 52,..., Sj Sjél’ s sj)
_ 1 1 v .
= Gl(s)Gz(sj)...Gz(s3) G3(52), 352 (5.28)

where Gl(s), Gz(s), G3(s) are matrices with dimensions respectively lxm, mxm, mxl.

Proof:

(i) immediate

(i1) We have
5 1 1\ _ 1
Vk e .k. (S, U.k ,--u,ak. ) = G]_(S) GZ(S ak.).
2 i 2 j j

4 1 1 1 :
-0 ~eaa—0 - = e e s >
"'GZ(S o o ) G3(s o o ) for jz2
5 3 j 2
For fixed s, say s, as k2""’kj ranges from o to = ,the right and left side

constitute sequences in C, therefore they converge respectively to,

~

vj(s, Sgreees sj) and Gl(s)Gz(s-sj)...Gz(s—sj—...—s3y

)

.G3(s-sj—...-s2

hence

2 (B8 5reesm,) = G (8)G (5~8.) s +x B (B=3,~4ss=5. )
g g j 1 ) 2 3 2 3 3 (5:29)
.G3(s—sj—...—sz)
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since s was arbitrary,

vj(st

2,...,sj) = Gl(s) Gz(s-sj)...Gz(s-sj-...-s ).

4 (5.30)

’ GB(S"Sj-. . -"52)

Therefore we have (5.28).

Remark3:

Theorem 2 cannot, however, be extended to general non—linear system as the one
given in (3.1) and (3.2) since we assumed the initial condition to be zero,
whereas in (3.5) the initial tensor ¢0 is never the zero tensor even if the

initial condition in the original system (3.1) and (3.2) is zero.

A similar result can be obtained however for bilinear systems when the initial
state is arbitrary. The proof follows the same lines as the one given for the
zero initial condition and shall be omitted. One remark can be made, however;

there is a term involving t in the integrand, one can take it out and consider

the Laplace tramsform of the product of two time functions, that is the frequency

convolution of their Laplace transforms.

For simplicity we state the theorem for the case B = 0. The general case can

be obtained‘LmMgﬁ_LquQ\U L:j Qo\mhiﬂlmj Hae ‘S’““Dm'\'mj theorem
vaddy &\RD\-Q,M g

Theorem 3:

Jk1

of numbers, to be the 'generalizad frequency response’ of a bilinear system with

A necessary and sufficient condition for a sequence {W, K 2?j>1 klt..kjﬁzo
ek, Bl
]

g Soe . . . 2
non—zero initial condition (with respect to a given basis {ek}k>o of L [o,m])

is that there exist four matrices Gé(s), Gl(s), Gz(s), Gé(s) with dimensions

respectively 1xl, lxm, mxm, mxl of strictly proper rational functions such that

(1) T WyE,(s) = G)(s) (5.31)
220



k, K, 2kj 2kl
(ii) L W. E (s) = b . LB Ss¢ E°
Kk ...k, 208 g = 8.~ . k
- J ks k=33 1
le gkl JZ’kj"-l
.Gl(s) GZ(S_Gki ) - Gz(s-cxk —eeemo )
1 J-1
Ekl ij
' . e o
G3(s akl cen akj ) (5.22)

5.C: Non—-linear Systems:

Now, we can state a corollary for the general nonlinear system (3.1) and (3.2).

Corollary:

O M TTTL IPIRTYL
) ¢ i kY
A necessary condition for a sequence {wki * . K 7 k‘k}

1...ikJ

of numbers to be the 'generalized frequency response' of a general system of the

form (3.1) and (3.2) (with respect to a given basis {ek} of szo,wj)is that
k2o

there exist a tensor Go(s) and three sequences of infinite k-dimensional tensors

le(s), G2k(s), G3k(s) whose components are analytic at infinity such that the

following conditions hold for all indices:

I W,E(s) =¢C (s)
o] ] o

izo
) )
11 1,1 11 11
sow Sl rh k MR g o(s) =
3 R, TP T
. r v, ! SR ik
jy%0 e Mt Tedi
r Fa o
k,3¢ dsd P P k, k
7 ek § R Ejk Ejl Gli J(s) G21 é—gj})
Bl Py K L t
kyooky P1 Peor, K77k Py Py
G (s-a,, =...-a.. ,) G (s=0..=.u=0,.)
2k i Neig Iy Ik

6. Conclusions:

In this paper we have introduced a generalized frequency response for a nonlinear

system in terms of the response of the system to a set of standard inputs which
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form a basis bf Lz[o,w]. The theory has been illustrated in the linear, bilinear
and general nonlinear cases. A realization theory has been presented in terms of
the multidimensional Laplace transform. The method may be developed in a variety
of ways and, in particular, we are now considering the application of these ideas

in the design of nonlinear filters.
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