This is the author’s post-print version of an article published in the Proceedings of the London Mathematical Society

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/id/eprint/77023

Published article:

http://dx.doi.org/10.1112/plms/pdt032
COLOURED QUIVERS FOR RIGID OBJECTS AND PARTIAL TRIANGULATIONS: THE UNPUNCTURED CASE

ROBERT J. MARSH AND YANN PALU

Abstract. We associate a coloured quiver to a rigid object in a Hom-finite 2-Calabi–Yau triangulated category and to a partial triangulation on a marked (unpunctured) Riemann surface. We show that, in the case where the category is the generalised cluster category associated to a surface, the coloured quivers coincide. We also show that compatible notions of mutation can be defined and give an explicit description in the case of a disk. A partial description is given in the general 2-Calabi–Yau case. We show further that Iyama-Yoshino reduction can be interpreted as cutting along an arc in the surface.

INTRODUCTION

Let \((S, M)\) be a pair consisting of an oriented Riemann surface \(S\) with non-empty boundary and a set \(M\) of marked points on the boundary of \(S\), with at least one marked point on each component of the boundary. We further assume that \((S, M)\) has no component homeomorphic to a monogon, digon, or triangle. A partial triangulation \(\mathcal{R}\) of \((S, M)\) is a set of noncrossing simple arcs between the points in \(M\). We define a mutation of such triangulations, involving replacing an arc \(\alpha\) of \(\mathcal{R}\) with a new arc depending on the surface and the rest of the partial triangulation. This allows us to associate a coloured quiver to each partial triangulation of \(M\) in a natural way. The coloured quiver is a directed graph in which each edge has an associated colour which, in general, can be any integer.

Let \(\mathcal{C}\) be a Hom-finite, 2-Calabi–Yau, Krull-Schmidt triangulated category over a field \(k\). A rigid object in \(\mathcal{C}\) is an object \(R\) with no self-extensions, i.e. satisfying \(\text{Ext}^1_{\mathcal{C}}(R, R) = 0\). Rigid objects in \(\mathcal{C}\) can also be mutated. In this case the mutation involves replacing an indecomposable summand \(X\) of \(R\) with a new summand depending on the relationship between \(X\) and the rest of the summands of \(R\). As above, this allows us to associate a coloured quiver to each rigid object of \(\mathcal{C}\) in a natural way.

In [BZ] the authors study the generalised cluster category \(\mathcal{C}_{(S, M)}\) in the sense of Amiot [Ami09] associated to a surface \((S, M)\) as above. Such a category is triangulated and satisfies the above requirements. It is shown in [BZ] that, given a choice of (complete) triangulation of \((S, M)\), there is a bijection between the simple arcs in \((S, M)\) (joining two points in \(M\)), up to homotopy, and the isomorphism classes of rigid indecomposable objects in \(\mathcal{C}_{(S, M)}\). If \(X_\alpha\) denotes the object corresponding to an arc \(\alpha\) then \(\text{Ext}^1_{\mathcal{C}_{(S, M)}}(X_\alpha, X_\beta) = 0\) if and only if \(\alpha\) and \(\beta\) do not cross. It follows that there is a bijection between partial triangulations of \((S, M)\) and rigid objects.
in $\mathcal{C}_{(S,M)}$. Our main result is that the coloured quivers defined above coincide in this situation and that the two notions of mutation are compatible.

Suppose that α is a simple arc in (S,M) as above. Let X_{α} be the indecomposable rigid object corresponding to α. Iyama-Yoshino [IY08] have associated (in a more general context) a subquotient category $(\mathcal{C}_{(S,M)})_{X_{\alpha}}$ to X_{α} which we refer to as the Iyama-Yoshino reduction of $\mathcal{C}_{(S,M)}$ at X_{α}. The Iyama-Yoshino reduction is again triangulated. We show that $(\mathcal{C}_{(S,M)})_{X_{\alpha}}$ is equivalent to $\mathcal{C}_{(S,M)/\alpha}$ where $(S,M)/\alpha$ denotes the new marked surface obtained from (S,M) by cutting along α.

By studying the combinatorics, we are able to give an explicit description of the effect of mutation on coloured quivers associated to a disk with n marked points. The corresponding cluster category in this case was introduced independently in [CCS06] (in geometric terms) and in [BMR*06] as the cluster category associated to a Dynkin quiver of type A_{n-3}. We also give a partial explicit description of coloured quiver mutation in the general (2-Calabi–Yau) case, together with a categorical proof. In general, there are quite interesting phenomena: we give an example to show that infinitely many colours can occur in one quiver, and also show that zero-coloured 2-cycles can occur (in contrast to the situation in [BT09]).

We remark that in the case of a cluster tilting object T in an acyclic cluster category the categorical mutation we define coincides with that considered in [BMR*06]; also with that in the 2-Calabi-Yau case considered in [BIRSc09, Pa09]. It also coincides in the maximal rigid case considered in [GLS06, BIRSc09, IY08]. In this case, the coloured quiver we consider here encodes the same information as the matrix associated to T in [BMV10] provided there are no zero-coloured two-cycles. With this restriction, the mutation of this matrix coincides [BMV10, 1.1] with the mutation [FZ02] arising in the theory of cluster algebras. We note also that this fact for the cluster tilting case was shown in [BIRSc09] under the assumption that there are no two-cycles or loops (1-cycles) in the quiver of the endomorphism algebra; the cluster category case was considered in [BMR08] and the stable module category over a preprojective algebra was considered in [GLS06]. See also [BIRSm] and [KY11], where mutation of quivers with potential [DWZ08] has been studied in a categorical context. There has been a lot of work on this subject: see the survey [Kel10] for more details.

The geometric mutation of partial triangulations mentioned above specialises to the usual flip of an arc in the triangulation case (see [FST08, Defn. 3.5]). Coloured quivers similar to those considered here have been associated to m-cluster tilting objects in an $(m+1)$-Calabi-Yau category in [BT09] (in this case, the number of colours is fixed at $m+1$). The geometric mutation we define here should also be compared with the geometric mutation for m-allowable arcs in a disk [BT09, Sect. 11]; see also the geometric model of the m-cluster category of type A in [BM08].

We also note that the 2-Calabi-Yau tilting theorem of Keller-Reiten [KR07, Prop. 2.1] (see also Koenig-Zhu [KZ08, Cor. 4.4] and Iyama-Yoshino [IY08, Prop. 6.2]) was recently generalised [BM] to the general rigid object case, using Gabriel-Zisman localisation. This result suggests that the mutation of general rigid objects should be considered.

We note that some of our definitions and results could be generalised to the punctured case, except for that fact that we rely on results in [BZ] which apply only to the unpunctured case and are not yet known in full generality (see the recent [CIL-F]). Hence we restrict here to the unpunctured case.

The paper is organised as follows. In Section 1 we set up notation and recall the results we need. In Section 2 we define the mutation and the coloured quiver of a rigid object in a triangulated category. In Section 3 we define mutation and the coloured quiver of a partial triangulation in a marked surface. In Section 4 we show
that cutting along an arc corresponds categorically to Iyama-Yoshino reduction. In particular, the coloured quiver after cutting along an arc in a partial triangulation can be obtained from the coloured quiver of the partial triangulation by deleting a vertex. In Section 5 we show that, for a partial triangulation of a surface and the corresponding rigid object in the cluster category of the surface, the two notions of coloured quiver coincide. In Section 6 we show that mutation in the type A case can be described purely in terms of the coloured quiver and give an explicit description. We also give the example mentioned above in which the associated coloured quiver contains infinitely many colours. Finally, in Section 7, we give a partial explicit description and categorical interpretation of coloured quiver mutation. This last result holds in any Hom-finite, Krull-Schmidt, 2-Calabi–Yau triangulated category.

Acknowledgements Robert Marsh would like to thank Aslak Bakke Buan for some helpful discussions. Both authors would like to thank the referee for helpful comments which improved an earlier version of this article.

1. Preliminaries

1.1. Riemann surfaces. In this section, we recall some definitions and results from [FST08] and [LF09].

We consider a pair (S, M) consisting of an oriented Riemann surface with boundary S and a finite set M of marked points on the boundary of S, with at least one marked point on each boundary component. We refer to such a pair as a *marked surface*. We fix, once and for all, an orientation of S, inducing the clockwise orientation on each boundary component.

Note that:

- We do not assume the surface to be connected.
- We only consider unpunctured marked surfaces.

We will always assume that (S, M) does not have any component homeomorphic to a monogon, a digon or a triangle.

Up to homeomorphism, each component of (S, M) is determined by the following data:

- the genus g,
- the number of boundary components b and
- the number of marked points on each boundary component $\{n_1, \ldots, n_b\}$.

An arc γ in (S, M) is (the isotopy class relative to endpoints of) a curve in S whose endpoints belong to M, which does not intersect itself (except possibly at endpoints) and which is not contractible to a point. The marked points on a boundary component divide it into segments, and we say that an arc isotopic to an arc along one of these segments is a *boundary arc*. The term *arc* will usually refer to a non-boundary arc.

The set of all (non-boundary) arcs in (S, M) is denoted by $A^0(S, M)$. Two arcs are said to be *non-crossing* if their isotopy classes contain representatives which do not cross, i.e. their crossing number is zero. If \mathcal{R} is a collection of non-crossing arcs in (S, M), we will denote by $A^0_{\mathcal{R}}(S, M)$ the set of arcs in (S, M) which do not cross any arc in \mathcal{R} and which do not belong to \mathcal{R}.

A partial triangulation of (S, M) is a collection of non-crossing arcs. A maximal collection of non-crossing arcs is called a *triangulation*. The number n of arcs in any triangulation of a connected marked surface is given by the formula:

$$n = 6g + 3b + c - 6,$$

where c is the number of marked points in M (see e.g. [FST08, Prop. 2.10]).
Let \mathcal{T} be a triangulation. By [FST08, Sect. 4] and [LF09, Sect. 3] a quiver $Q = Q_S$, together with a potential (a linear combination of cycles in Q_S up to cyclic permutation) W_S can be associated to \mathcal{T} as follows. The vertices of Q are the arcs of the triangulation. There is an arrow from γ to γ' for each triangle in which γ' follows γ with respect to the orientation of S, and the potential W_S is the sum of all the 3-cycles; see Figure 1, where part of a triangulated surface is shown.

For an arrow $a \in Q_1$, the cyclic derivative ∂_a sends a cycle $a_1 \cdots a_d$ to the sum $\sum_{k=1}^d \delta_{a_k a} a_{k+1} \cdots a_{d} a_1 \cdots a_{k-1}$. It is extended to potentials by linearity. The Jacobian algebra of the quiver with potential (Q_S, W_S) is the quotient of the complete path algebra $\hat{k}Q_S$ by the closure of the ideal generated by the cyclic derivatives $\partial_a W_S$, for all $a \in Q_1$. We note that, by [CIL-F, Thm. 5.7], the Jacobian algebra can, in this case, be taken to be the quotient of the path algebra kQ_S by the ideal generated by the corresponding cyclic derivatives in kQ_S.

Theorem: Let \mathcal{T} be a triangulation of a marked surface (S, M), and let \mathcal{T}' be the triangulation obtained by flipping \mathcal{T} at an arc γ. Then:

(a) [LF09, Thm. 36] The Jacobian algebra $J(Q_S, W_S)$ is finite dimensional.

(b) [ABCJP10, Thm. 2.7] The Jacobian algebra $J(Q_S, W_S)$ is gentle and Gorenstein of Gorenstein dimension 1.

(c) [FST08, Prop. 4.8] The quiver Q_S, is given by the Fomin–Zelevinsky mutation of Q_S at the vertex corresponding to γ.

(d) [LF09, Thm. 30] The quiver with potential $(Q_{S'}, W_{S'})$ is given by the QP mutation (see [DWZ08, Sect. 5]) of (Q_S, W_S) at the vertex corresponding to γ.

1.2. Cluster categories associated with Riemann surfaces. Let K be a field. If \mathcal{C} is a triangulated category, we will usually denote its shift functor by Σ. All the triangulated K-categories under consideration in this paper are assumed to be Krull–Schmidt, Hom-finite (all morphism spaces are finite-dimensional K-vector spaces) and admit non-zero rigid objects (objects R such that $\mathcal{C}(R, \Sigma R) = 0$). All rigid objects will be assumed basic (their summands are pairwise non-isomorphic).

We will assume moreover that the triangulated categories are 2-Calabi–Yau, so that there are bifunctorial isomorphisms $\mathcal{C}(X, \Sigma Y) \simeq D\mathcal{C}(Y, \Sigma X)$ for all objects X, Y, where D is the vector space duality $D = \text{Hom}_K(-, K)$. A rigid object T is called a cluster tilting object if, in addition, for all objects X in \mathcal{C}, $\mathcal{C}(X, \Sigma T) = 0 = \mathcal{C}(T, \Sigma X)$ implies that X belongs to add T.

The main examples of such categories that we consider are the (generalised) cluster categories associated with marked surfaces, the definition of which is recalled in the following sections.
1.2.1. Ginzburg dg algebras. Let \((Q, W)\) be a quiver with potential (i.e. a QP). In this paper, we are mostly interested in QPs arising from triangulations of marked surfaces.

The Ginzburg dg-algebra \(\Gamma(Q, W)\) is defined as follows: First define a graded quiver \(\overline{Q}\). The vertices of \(\overline{Q}\) are the vertices of \(Q\), and the arrows are given as follows:

- the arrows of \(Q\), of degree 0;
- for each arrow \(\alpha\) in \(Q\) from \(i\) to \(j\), an arrow \(\alpha^*\) from \(j\) to \(i\), of degree \(-1\);
- for each vertex \(i\) in \(Q\), a loop \(e_i^*\) at \(i\), of degree \(-2\).

The underlying graded algebra of \(\Gamma(Q, W)\) is the path algebra of the graded quiver \(\overline{Q}\). It is equipped with the unique differential \(d\) sending

- the arrows of degree 0 and each \(e_i\) to 0;
- the arrow \(\alpha^*\) to \(\partial\alpha W\), for each \(\alpha \in Q_1\), and
- the loop \(e_i^*\) to \(e_i (\sum_\alpha [\alpha^*, \alpha]) e_i\), for \(i \in Q_0\).

The cohomology of \(\Gamma(Q, W)\) in degree zero is the Jacobian algebra \(J(Q, W)\).

1.2.2. Generalised cluster categories. The cluster categories associated with acyclic quivers were introduced in [CCS06] in the \(A_n\) case and in [BMR+06] in the acyclic case. Amiot defined, in [Ami09], the generalised cluster categories, associated with quivers with potentials whose Jacobian algebra is finite dimensional.

Let \((Q, W)\) be a quiver with potential such that the Jacobian algebra \(J(Q, W)\) is finite dimensional, and let \(\Gamma = \Gamma(Q, W)\) be the associated Ginzburg dg algebra. Let \(D\Gamma\) be the derived category of \(\Gamma\), and let \(D^b\Gamma\) be the bounded derived category. The perfect derived category \(\text{per}\,\Gamma\) is the smallest triangulated subcategory of \(D\Gamma\) containing \(\Gamma\) and stable under taking direct summands.

Theorem [Kel09, Sect. 6]: The Ginzburg dg algebra \(\Gamma\) is homologically smooth and 3-Calabi–Yau as a bimodule. In particular, there is an inclusion \(D^b\Gamma \subset \text{per}\,\Gamma\).

Definition [Ami09, Sect. 3]: The (generalised) cluster category \(\mathcal{C}(Q, W)\) associated with the quiver with potential \((Q, W)\) is the Verdier localisation \(\text{per}\,\Gamma/\text{D}^b\Gamma\).

This definition is motivated by the following:

Theorem [Ami09, Sect. 3]: The cluster category \(\mathcal{C}(Q, W)\) is Hom-finite and 2-Calabi–Yau. Moreover, the image of \(\Gamma\) in \(\mathcal{C}(Q, W)\) is a cluster tilting object whose endomorphism algebra is isomorphic to the Jacobian algebra \(J(Q, W)\). If \(Q\) is acyclic, then \(W = 0\) and the triangulated category \(\mathcal{C}(Q, 0)\) is equivalent to the acyclic cluster category \(\mathcal{C}_Q = D^b(Q)/\tau^{-1}[1]\) introduced in [BMR+06].

We also recall the 2-Calabi-Yau tilting theorem which applies in this context:

Theorem [KR07, Prop. 2.1] Let \(\mathcal{C}\) be a triangulated Hom-finite Krull-Schmidt 2-Calabi-Yau category over a field \(K\). If \(T\) is a cluster tilting object in \(\mathcal{C}\), then the functor \(\mathcal{C}(T, \Sigma -)\) induces an equivalence between the category \(\mathcal{C}/T\) and the category of finite dimensional \(\text{End}_{\mathcal{C}}(T)\)-modules.

Note that the assumption in the paper that \(K\) be algebraically closed is not required for this result. We also note that this result has been generalised (see [IY08, Prop. 6.2], [KZ08, Sect. 5.1]).

1.2.3. Cluster categories from surfaces. Let \((S, M)\) be a marked surface, and let \(\mathcal{T}\) be a triangulation of \((S, M)\). Let \((Q, W)\) be the quiver with potential associated with \(\mathcal{T}\). The following particular case of a theorem of Keller–Yang shows that the cluster category \(\mathcal{C}(Q, W)\) does not depend on the choice of a triangulation. Let \(\mathcal{T}'\)
be a triangulation of \((S, M)\) obtained from \(\mathcal{T}\) by a flip. Denote by \((Q', W')\) the associated quiver with potential.

Theorem [KY11]: There is a triangle equivalence \(\mathcal{C}_{(Q', W')} \simeq \mathcal{C}_{(Q, W)}\).

Since any two triangulations of \((S, M)\) are related by a sequence of flips, the theorem above shows that the cluster category \(\mathcal{C}_{(Q, W)}\) is independent of the choice of the triangulation \(\mathcal{T}\). The resulting category is denoted \(\mathcal{C}_{(S, M)}\) and is called the cluster category associated with the marked surface \((S, M)\). (We refer also to [BIRS\textsc{m}, Theorem 5.1]).

These categories have been studied by Brüstle–Zhang in [BZ]. We now recall those of their main results which will be used in the article.

Fix a triangulation \(\mathcal{T} = \{\gamma_1, \ldots, \gamma_m\}\) of \((S, M)\) with associated quiver with potential \((Q, W)\). Let \(T = T_1 \oplus \cdots \oplus T_m\) be the image of \(\Gamma(Q, W)\) under per \(\Gamma(Q, W) \rightarrow \mathcal{C}_{(Q, W)} \simeq \mathcal{C}_{(S, M)}\). Note that \(T\) is a cluster tilting object.

With each arc \(\gamma\) not in \(\mathcal{T}\) is associated [ABCJP10, Proposition 4.2] an indecomposable \(J(Q, W)\)-module \(I(\gamma)\). Let \(X_\gamma\) be the unique (up to isomorphism) indecomposable object in \(\mathcal{C}_{(S, M)}\) such that \(\mathcal{C}_{(S, M)}(T, \Sigma X_\gamma) \simeq I(\gamma)\). Define \(X_{\gamma_k} = T_k\), for \(k = 1, \ldots, m\).

Theorem [BZ]:

- The map \(\gamma \mapsto X_\gamma\) is a bijection between the arcs of \((S, M)\) and the (isomorphism classes of) exceptional (i.e. indecomposable rigid) objects of \(\mathcal{C}_{(S, M)}\).
- For any two exceptional objects \(X_\alpha\) and \(X_\beta\), we have \(\operatorname{Ext}^1_{\mathcal{C}_{(S, M)}}(X_\alpha, X_\beta) = 0\) if and only if the arcs \(\alpha\) and \(\beta\) do not cross.
- The shift functor of \(\mathcal{C}_{(S, M)}\) acts on the arcs of \((S, M)\) by moving both endpoints clockwise along the boundary to the next marked points.

Note that a bijection with these properties is not unique in general.

We note that our choice of an orientation of the Riemann surface differs from that of [BZ], but coincides with that of [BT09, Section 1].

We extend the bijection in the first part of the previous Theorem to a bijection between partial triangulations of \((S, M)\) and rigid objects in \(\mathcal{C}_{(S, M)}\) in the obvious way.

1.3. Iyama–Yoshino reduction

For an object \(X\) in a triangulated category \(\mathcal{C}\), we write \(\perp X\) for the full subcategory of \(\mathcal{C}\) whose objects are those objects \(Y\) of \(\mathcal{C}\) such that \(\operatorname{Hom}_\mathcal{C}(Y, X) = 0\). The subcategory \(X^\perp\) is similarly defined. For an additive subcategory \(\mathcal{D}\) of \(\mathcal{C}\), we write \(\mathcal{C}/[\mathcal{D}]\) for the quotient category whose objects are the same as the objects of \(\mathcal{C}\) with morphisms given by the morphisms of \(\mathcal{C}\) modulo those morphisms factoring through \(\mathcal{D}\). If \(\mathcal{D}\) is the additive closure of an object \(X\) in \(\mathcal{C}\) then we just write \(\mathcal{C}/X\) for \(\mathcal{C}/[\mathcal{D}]\).

Theorem: [IY08, 4.2, 4.7] Let \(\mathcal{C}\) be a 2-Calabi-Yau triangulated category and \(R\) a rigid object in \(\mathcal{C}\). Then the subfactor category \(\perp(\Sigma R)/R\) of \(\mathcal{C}\) is again a 2-Calabi-Yau triangulated category.

We refer to the subfactor category \(\perp(\Sigma R)/R\) as the Iyama-Yoshino reduction of \(\mathcal{C}\) at \(R\) and denote it \(\mathcal{C}_{R}\). We denote its shift by \(\Sigma R\) and the quotient functor \(\perp(\Sigma R) \rightarrow \mathcal{C}_{R}\) by \(\pi_\mathcal{R}\). See also [BIRS\textsc{c}, II.2.1].

We recall a result of Keller:

Theorem: [Kel09, 7.4] Let \(Q, W\) be a quiver with potential whose Jacobian algebra is finite dimensional. Let \(i\) be a vertex of \(Q\) and let \(P_i^Q\) be the image of the indecomposable projective module over \(\Gamma(Q, W)\) corresponding to \(i\), under the quotient functor \(\Pi : \operatorname{per}(\Gamma(Q, W)) \rightarrow \mathcal{C}_{Q,W}\). Then the Iyama-Yoshino reduction of \(\mathcal{C}_{(Q,W)}\)
at $\overline{\mathbf{1}}_i$ is triangle equivalent to $C(Q_i, W')$, where Q' is Q with vertex i (and all incident arrows) removed, and W' is W with all cycles passing through i deleted.

2. Coloured quivers for rigid objects

2.1. Mutation and coloured quivers of rigid objects. Let K be a field. Let C be a K-linear Hom-finite, Krull–Schmidt, 2-Calabi–Yau triangulated K-category. Let $R = R_1 \oplus \cdots \oplus R_m$ be a basic rigid object in C and let X be an indecomposable rigid object in C Ext-orthogonal to R, i.e. such that $C(X, \Sigma R) = 0 = C(R, \Sigma X)$.

For $c \in \mathbb{Z}$, consider triangles

$$X^{(c)} \xrightarrow{f^c} B^{(c)} \xrightarrow{g^c} X^{(c+1)} \rightarrow \Sigma X^{(c)}$$

where f^c is a minimal left add R-approximation and g^c is a minimal right add R-approximation and where $X^{(0)} = X$. These will be called the exchange triangles for X with respect to R. They can be constructed using induction on c. We will often write $\kappa_R X$ for $X^{(c)}$, and κ for κ_R; $\kappa R X$ will be referred to as the twist of X with respect to R. Note that $\kappa^{(c)} = \kappa^{(c+1)} = \kappa^{(c)} \kappa$ for all c.

These exchange triangles lift the triangles $X^{(c)} \rightarrow 0 \rightarrow \Sigma R X^{(c)} \rightarrow \Sigma R X^{(c)}$ in the Iyama–Yoshino reduction $\frac{1}{d} (\Sigma R) / R$ canonically to C. Therefore, $X^{(c)}$ is indecomposable, rigid and Ext-orthogonal to add R for all c. This justifies the following definition:

Definition: The mutation of R at R_k, for $k \in \{1, \ldots, m\}$, is the rigid object $R/R_k \oplus \kappa_{R/R_k} R_k$.

We will often write μ_k for μ_{R_k} and call it the mutation at k.

We note that our use of the work of Iyama–Yoshino to define the mutation above is similar to that of [BOO, Sect. 3] where cluster-tilting objects are mutated at a non-indecomposable summand.

In [BT09], the authors associate coloured quivers to d-cluster–tilting objects in $(d + 1)$-Calabi–Yau categories. Here we use a similar definition to associate a coloured quiver to R.

For an integer d, we write \mathbb{Z}/d for the quotient of \mathbb{Z} by the ideal generated by d, identifying this with the set $\{0, 1, \ldots, d-1\}$ if $d > 0$ and with \mathbb{Z} otherwise.

Definition: The coloured quiver $Q = Q_R$ associated with the rigid object R is defined as follows: The set of vertices is $Q_0 = \{1, \ldots, m\}$. We label each vertex k with the periodicity $d_k(R)$ (possibly infinite) of the sequence of exchange triangles for R_k. Fix two vertices i, j and $c \in \mathbb{Z}/d_i(R)$. Then the number $q_{ij}(c)$ of c-coloured arrows from i to j is given by the multiplicity of R_j in $B_i^{(c)}$, where

$$R_i^{(c)} \xrightarrow{f^c_i} B_i^{(c)} \xrightarrow{g^c_i} R_i^{(c+1)} \rightarrow \Sigma R_i^{(c)}$$

are the exchange triangles as above for R_i with respect to R/R_i.

Note that by definition, Q_R does not have any loops (1-cycles).

Remark:

- Analogous definitions would apply to a functorially finite, strictly full rigid subcategory \mathcal{R} of C closed under direct sums and direct summands, such that, for each indecomposable $R \in \mathcal{R}$, the subcategory $\mathcal{R} \setminus R$ is again functorially finite.
- Analogous definitions would also apply to rigid objects in a stably 2-Calabi–Yau Frobenius category. The use of Iyama–Yoshino reduction would be replaced by [BIRS09, Theorem I.2.6] (see also [GLS06, Lemma 5.1] and [AO, Sect. 4]).
2.2. Mutation of rigid objects and Iyama–Yoshino reductions. The following lemma shows that the mutation of rigid objects is well-behaved with respect to Iyama–Yoshino reductions. This will turn out to be helpful in simplifying the proof of Theorem 18 in Section 7.

Let $R = R_1 \oplus \cdots \oplus R_m$ be a rigid object in \mathcal{C}. Let $\mathcal{C}_R = \frac{1}{\Sigma} (\mathcal{C}_R)/(R)$ be the Iyama–Yoshino reduction of \mathcal{C} with respect to R, with shift ΣR.

Let T be a rigid object in \mathcal{C}, containing R as a direct summand. Assume that T_k is a summand of T but not of R, and consider the exchange triangle with respect to T/T_k:

\[(*) \quad T_k \xrightarrow{f} B_k^{(0)} \xrightarrow{g} T_k^{(1)} \xrightarrow{\epsilon} \Sigma T_k. \]

Here $B_k^{(0)}$ belongs to add \overline{T}, where $T = T_k \oplus \overline{T}$.

Lemma 1. The induced morphism f is a minimal left $\pi_R(\overline{T})$-approximation in \mathcal{C}_R.

Proof. The triangle $(*)$ in \mathcal{C} induces a triangle

\[T_k \xrightarrow{f} B_k^{(0)} \xrightarrow{g} T_k^{(1)} \xrightarrow{\epsilon} \Sigma R T_k, \]

in \mathcal{C}_R. We have:

\[\mathcal{C}_R(\Sigma R^{-1} \pi_R(T_k^{(1)}), \pi_R(\overline{T})) \simeq \text{Ext}^1_{\mathcal{C}_R}(\pi_R(T_k^{(1)}), \pi_R(\overline{T})) \simeq \text{Ext}^1_{\mathcal{C}_k}(T_k^{(1)}, \overline{T}) = 0, \]

using [IY08, Lemma 4.8]. Hence, the morphism f is a left $\pi_R(\overline{T})$-approximation. It is left minimal since $T_k^{(1)}$ is indecomposable in \mathcal{C}_R. \(\square \)

Remark: Write $B_k^{(0)} = R_k^{(0)} \oplus C_k^{(0)}$, with $C_k^{(0)}$ having no summands in common with R. Then the morphism $T_k \xrightarrow{f} C_k^{(0)}$ is not a left \overline{T}/R-approximation in \mathcal{C} in general.

Let Q be the coloured quiver of T in \mathcal{C}, and let \overline{Q} be the coloured quiver of $\pi_R(T)$ in \mathcal{C}_R. Lemma 1 has the following immediate corollary:

Corollary 2. The coloured quiver \overline{Q} is the full subquiver of Q with vertices corresponding to the indecomposable summands of T/R.

Moreover, computing the minimal \overline{T}-approximation $f \in \mathcal{C}$ in the triangle $(*)$ amounts to computing the minimal add T_j-approximation of T_k in the Iyama–Yoshino reduction $\mathcal{C}_{\overline{T}/T_j}$ for all $j \neq k$. More precisely:

Lemma 3. Let $R = R_1 \oplus \cdots \oplus R_m$ be a rigid object in \mathcal{C} and let $1 \leq k \leq m$. For each $j = 1, \ldots, m$, let C_j denote the Iyama–Yoshino reduction of \mathcal{C} with respect to $R/(R_k \oplus R_j)$. For $j \neq k$, let $f_j : R_k \longrightarrow R_j^{(0)}$ be a map in \mathcal{C} be such that $R_k \xrightarrow{f_j} R_j^{(0)}$ is a minimal left add R_j-approximation in C_j. Then the morphism:

\[R_k \xrightarrow{[f_j]} \bigoplus_{j \neq k} R_j^{(0)} \]

is a minimal left add R/R_k-approximation in \mathcal{C}.

Proof. Let $i \neq k$, and let $R_k \xrightarrow{f} R_i$ be an arbitrary morphism in \mathcal{C}. Since f_i is an add R_i-approximation in \mathcal{C}_i, there are morphisms $\bigoplus_{j \neq k} R_j^{(0)} \xrightarrow{g_1} R_i$, $R_k \xrightarrow{\beta_1} \bigoplus_{j \neq k, i} R_j^{(0)}$, and $\bigoplus_{j \neq k} R_j^{(0)} \xrightarrow{\alpha_1 \beta_1} R_i$ in \mathcal{C} (for some $\alpha_j^{(0)}$) such that $f = g_1 [f_j] + \alpha_1 \beta_1$. Note that α_1 must be a radical map, as no summand of its domain is isomorphic to R_i.

Reducing to \mathcal{C}_j for some $j \neq i, k$, we see that the component $\beta_{1,j}$ of β_1 mapping to $R_j^{(1)}$ factors through $f_j : R_k \to R_j^{n_j}$ up to a map factoring through $\oplus_{i \neq j,k} R_i$. That is, we can write $\beta_{1,j}$ as $u_j f_j + w_j v_j$ for some $u_j : R_j^{n_j} \to R_j^{(1)}$, $v_j : R_k \to X_j$, and $w_j : X_j \to R_k$, where $X_j \in \oplus_{i \neq j,k} R_i$. Note that w_j is a radical map, since none of the summands in X_j are isomorphic to R_j.

Adding over all j for $j \neq i, k$, we obtain maps $\alpha_2 : \oplus_{i \neq k} R_i^{(2)} \to \oplus_{i \neq k} R_i^{(1)}$, $\beta_2 : R_k \to \oplus_{i \neq k} R_i^{(2)}$, and $\gamma_2 : \oplus_{j \neq k} R_j^{n_j} \to \oplus_{j \neq k} R_j^{(1)}$ (for some $a_i^{(2)}$) such that $\beta_1 = \alpha_2 \beta_2 + \gamma_2 [f_j]$. Setting $g_2 = \alpha_1 \gamma_2$ we obtain $\alpha_1 \beta_1 = \alpha_1 \alpha_2 \beta_2 + g_2 [f_j]$, so

$$f = g_1 [f_j] + \alpha_1 \beta_1 = \alpha_1 \alpha_2 \beta_2 + (g_1 + g_2) [f_j].$$

Here, α_2 is a radical map, since all of its summands, the w_j, are radical. See Figure 2.

Iterating this step we construct, for all $r \geq 3$, morphisms $g_r : \oplus_{j \neq k} R_j^{n_j} \to R_i$, $\alpha_r : \oplus_{j \neq k} R_j^{n_j} \to \oplus_{j \neq k} R_j^{n_j}$, and $\beta_r : R_k \to \oplus_{j \neq k} R_j^{n_j}$ for $r = 3, \ldots, n$ (and some $a_i^{(r)}$), such that $f = \beta_n \alpha_n \cdots \alpha_1 + (g_1 + \cdots + g_n) [f_j]$ and each of the α_i is a radical map. Since \mathcal{C} is Hom-finite, the radical of $\text{End}(R)$ is nilpotent and the composition $\beta_n \alpha_n \cdots \alpha_1$ vanishes for n big enough. Therefore f factors through $[f_j]$ and $[f_j]$ is a left add R/R_k-approximation in \mathcal{C}. The left minimality of $[f_j]$ follows from the left minimality of each f_j.

\section{Coloured quivers for partial triangulations}

Let (S, M) be an unpunctured oriented Riemann surface with boundary and marked points. We will always assume that each boundary component contains at least one marked point and that no component of (S, M) is a monogon, a digon or a triangle.

\subsection{Composition of arcs}

Let α and β be two oriented arcs in (S, M) with $\beta(1) = \alpha(0)$. The composition $\alpha \beta$ is the arc given by

$$t \mapsto \begin{cases}
\beta(2t) & \text{if } 0 \leq t \leq 1/2 \\
\alpha(2t - 1) & \text{if } 1/2 \leq t \leq 1.
\end{cases}$$

See Figure 3.

Note that the composition only makes sense for oriented arcs.

\subsection{Twisting an arc with respect to a partial triangulation}

In this section, our aim is to generalise the flip of triangulations to the twist of an arc with respect to a partial triangulation.
Let R be a partial triangulation of (S, M), i.e. a collection of non-crossing arcs $\gamma_1, \ldots, \gamma_m$. Let α be an arc in (S, M) which does not cross R and does not belong to R, i.e. $\alpha \in A^0_R(S, M)$. We define the twist of α with respect to R as follows: Choose an orientation α of α. Consider the arcs of the partial triangulation R which admit $\alpha(0)$ as an endpoint. Restrict to a neighbourhood of $\alpha(0)$ small enough not to contain any loop. The orientation of the boundary containing $\alpha(0)$ induces an ordering on the parts of the arcs included in the neighbourhood (see Figure 4). Let α_s be the arc, in R or boundary, which follows α in this ordering (note that it is not allowed to be α itself). Similarly, define α_t with respect to the endpoint $\alpha(1)$. These will be called the arcs following α in R.

We give α_s and α_t the orientations α_s and α_t described in the local pictures of Figure 4. Note that this orientation coincides with the orientation of the boundary if α_s or α_t is a boundary arc.

For an oriented arc β, let $[\beta]$ denote the underlying unoriented arc. Define the twist of the arc α with respect to R to be the underlying unoriented arc of the composition:

$$\kappa_R(\alpha) = [\alpha_t \alpha_s^{-1}].$$

See Figure 5 for an example of a twist. Note that the definition of the arc $\kappa_R(\alpha)$ does not depend on the choice of an orientation for α. It is easy to check, using a case-by-case analysis depending on whether or not α, α_s, α_t are loops and the order in which they appear at their end-points, that $\kappa_R(\alpha)$ does not cross any arc in R, i.e. that $\kappa_R(\alpha) \in A^0_R(S, M)$.

The twist with respect to R is invertible with inverse κ_R^{-1}, which can also be defined similarly.
3.3. Mutation of partial triangulations. Let \mathcal{R} be a partial triangulation of (S, M), and let $\beta \in \mathcal{R}$. Write $\mathcal{R} = \mathcal{R} \cup \{\beta\}$. The mutation of \mathcal{R} at β is the partial triangulation
\[\mu_\beta \mathcal{R} = \mathcal{R} \cup \{\kappa_\mathcal{R}(\beta)\}. \]
If \mathcal{R} is a triangulation, then, for $\beta \in \mathcal{R}$, $\mu_\beta \mathcal{R}$ is the usual flip of \mathcal{R} at the arc $\beta \in \mathcal{R}$; see [FST08, Defn. 3.5].

3.4. Coloured quivers. Let \mathcal{R} be a partial triangulation and α an arc which is not an element of \mathcal{R} and does not cross \mathcal{R}. Let β be an arc in \mathcal{R}. For all $c \in \mathbb{Z}$, define the numbers $m^{(c)}(\alpha, \beta)$ by:
\[
m^{(c)}(\alpha, \beta) = \begin{cases}
2 & \text{if } \beta = \alpha_s = \alpha_t \\
1 & \text{if } \beta \in \{\alpha_s, \alpha_t\} \text{ and } \alpha_s \neq \alpha_t \\
0 & \text{otherwise},
\end{cases}
\]
\[
m^{(c)}(\alpha, \beta) = m^{(c)}(\kappa_\mathcal{R}(\alpha) \backslash \gamma_i, \beta).
\]
We associate a coloured quiver $Q_\mathcal{R}$ with a partial triangulation $\mathcal{R} = \{\gamma_1, \ldots, \gamma_m\}$ in the following way:

Definition The coloured quiver $Q_\mathcal{R}$ associated with the partial triangulation \mathcal{R} is defined as follows: The set of vertices is $Q_0 = \{1, \ldots, m\}$. We label each vertex i with the smallest integer $d = d_i(\mathcal{R})$ such that $\kappa_d^\mathcal{R}(\gamma_i) = \gamma_i$, or with zero if no such integer exists. Fix two distinct vertices i, j and $c \in \mathbb{Z}/d_i(\mathcal{R})$. Then the number $q^{(c)}(i, j)$ of c-coloured arrows from vertex i to vertex j is given by $m^{(c)}(\kappa_i^\mathcal{R}(\gamma_i), \gamma_j)$, where $\mathcal{R}_i = \mathcal{R} \backslash \{\gamma_i\}$.

Note that $Q_\mathcal{R}$, by definition, contains no loops. For an example of a coloured quiver associated to a partial triangulation of a torus and the effect of mutation on the quiver, see Section 6.2.

4. Cutting along an arc and CY reduction

Let (S, M) be as in Section 3.

4.1. Cutting along an arc. Let α be an arc on (S, M) not homotopic to a point or a boundary arc. Fix a representative of α, also denoted by α, whose intersection with the boundary of S consists only of its endpoints. Then the marked surface obtained from (S, M) by cutting along the arc α is the Riemann surface with boundary obtained by cutting along the arc α together with the image of the marked points M after cutting. Up to homeomorphism, it does not depend on the choice of representative of α. We will denote it by $(S, M)/\alpha$. Note that if α is not a
loop, then each endpoint of \(\alpha \) gives rise to two distinct marked points in \((S, M) / \alpha \). If \(\alpha \) is a loop, its endpoint gives rise to three distinct marked points in \((S, M) / \alpha \).

The resulting marked surface cannot contain a monogon as a connected component, since \(\alpha \) is not homotopic to a point. No connected component can be a bigon, since \(\alpha \) is not a boundary arc. If a component homeomorphic to a triangle has been created, we remove it.

There is a natural bijection between the arcs on \((S, M) / \alpha \) and the arcs of \((S, M)\) which do not cross the arc \(\alpha \). Moreover, the (partial) triangulations of \((S, M) / \alpha \) correspond, through this bijection, to the (partial) triangulations of \((S, M)\) containing the arc \(\alpha \).

Remark 4. The surface \((S, M) / \alpha \) can also be constructed as follows. Let \(\mathcal{I} \) be a triangulation of \((S, M)\) containing \(\alpha \). The surface \((S, M)\) is then obtained from the triangles of the triangulation by gluing matching sides of triangles in a prescribed orientation. The surface \((S, M) / \alpha \) is obtained from the same triangles by respecting the same gluings except for the sides which correspond to \(\alpha \), which are not glued together anymore.

Given a collection \(\mathcal{R} \) of non-crossing arcs, one can cut successively along each arc. Whatever order is chosen yields the same new surface, by Remark 4. The corresponding surface will be called the reduction of \((S, M)\) with respect to \(\mathcal{R} \), and will be denoted by \((S, M) / \mathcal{R} \). We will denote the natural bijection between \(\mathcal{A}^0(\mathcal{R}, S, M) \) and \(\mathcal{A}^0((S, M) / \mathcal{R}) \) by \(\pi_{\mathcal{R}} \).

4.2. Compatibility with CY reduction. Let \(R \) be a basic rigid object in \(\mathcal{C}((S, M)) \), and let \(\mathcal{R} \) be the associated partial triangulation. We denote by \(\mathcal{C}_R = \mathcal{C}_R = (\Sigma R) / \mathcal{R} \) the Calabi–Yau reduction of \(\mathcal{C}((S, M)) \) with respect to \(R \), and by \((S, M) / \mathcal{R} \) the marked surface obtained from \((S, M)\) by cutting along the arcs of \(\mathcal{R} \).

Proposition 5. The triangulated categories \(\mathcal{C}((S, M) / \mathcal{R}) \) and \(\mathcal{C}_R \) are equivalent.

Proof. Complete the collection of arcs \(\mathcal{R} \) to a triangulation \(\mathcal{I} \). Let \((Q, W)\) be the QP associated with \(\mathcal{I} \). By definition, there is an equivalence of triangulated categories \(\mathcal{C}((S, M)) \simeq \mathcal{C}((Q, W)) \). By [Kel09, Theorem 7.4] (see section 1.3), the category \(\mathcal{C}_R \) is triangle equivalent to the cluster category \(\mathcal{C}((Q', W')) \), where \((Q', W')\) is obtained from \((Q, W)\) by deleting the vertices of \(Q \) which correspond to arcs in \(\mathcal{R} \), and all adjacent arrows. On the other hand, the arcs in \(\mathcal{I} \) not in \(\mathcal{R} \) induce a triangulation of the surface \((S, M) / \mathcal{R} \). It follows from Remark 4 that \((Q', W')\) is the QP associated with this triangulation. Thus \(\mathcal{C}((S, M) / \mathcal{R}) \) is equivalent to \(\mathcal{C}((Q', W')) \).

Remark: Lemma 7 shows that the equivalence above is well-behaved with respect to well-chosen bijections between arcs and exceptional objects.

Figure 6 shows the effect of cutting along an arc in a triangulation of a torus with a single boundary component containing two marked points. We cut along the red arc (numbered 3) and obtain a cylinder with four marked points as shown, with triangulation given by the remaining arcs. In the last step, the cylinder has been rotated around to get a simpler picture. The effect on the corresponding quiver with potential is shown in Figure 7.

Proposition 6. Let \((S, M)\) be a marked surface and \(\mathcal{R} \) a partial triangulation of \((S, M)\). Let \(\mathcal{R}' \) be a collection of arcs containing \(\mathcal{R} \). Then the coloured quiver associated to \(\pi_{\mathcal{R}}(\mathcal{R}' \setminus \mathcal{R}) \) in \((S, M) / \mathcal{R} \) coincides with the coloured quiver associated to \(\mathcal{R}' \) in \((S, M) \) with the vertices corresponding to \(\mathcal{R} \) and all arrows incident with them removed.
Figure 6. Cutting along an arc, numbered 3, in a torus to get a cylinder: triangulation case.

Figure 7. The change in the quiver with potential from the cut in Figure 6. The potential in each case is given by the sum of the 3-cycles containing black dots.

Proof. It is clear that the vertices of each coloured quiver correspond to the arcs in $\mathcal{R}' \setminus \mathcal{R}$. In the definition of the twist $\kappa_{\mathcal{R}}$ (see Section 3.2), no distinction is made between arcs in \mathcal{R} and boundary arcs. Then, looking at the definition of the coloured quiver of a partial triangulation (see Section 3.4) we see that the arrows between arcs in $\mathcal{R}' \setminus \mathcal{R}$ are the same when considered in either coloured quiver. The result follows.

We now give an example. In Figure 8, we start with a partial triangulation of a torus with a single boundary component with two marked points. This has been obtained by removing arcs 4 and 5 from the triangulation considered in Figure 6. As before, we cut along the red arc (numbered 3) and obtain a cylinder with four marked points as shown, with a partial triangulation given by the remaining arcs. Figure 9 gives the corresponding coloured quiver associated to the partial triangulation in Figure 8, together with the new quiver obtained after cutting along the red arc (numbered 3), i.e. with vertex 3 and all arrows incident with it removed.
5. Compatibility

5.1. Compatibility of the mutations. Let \(\mathcal{A} = \{ \gamma_1, \ldots, \gamma_m \} \) be a partial triangulation of \((S, M)\). Complete \(\mathcal{A} \) to a triangulation \(\mathcal{T} \) of \((S, M)\), and let \(T \) be the associated cluster tilting object in \(\mathcal{C} = \mathcal{C}(S, M) \). Let \(R \) be the direct summand of \(T \) corresponding to \(\mathcal{A} \). We thus obtain a map \(\alpha \mapsto X_\alpha \) between the arcs of \((S, M)\) and the isomorphism classes of exceptional objects in \(\mathcal{C}(S, M) \) (see section 1.2.3).

We denote by \(\pi_R \) the bijection \(A^0_{\mathcal{A}}(S, M) \to \mathcal{C}_R \); recall also that \(\pi_R \) denotes the functor \(\Sigma R \to \mathcal{C}_R \). Consider the partial triangulation \(\pi_R(\mathcal{T} \setminus \mathcal{A}) \) of \((S, M)/\mathcal{A} \). Note that \(T' := \pi_R(T) \) is cluster tilting in \(\mathcal{C}(S, M)/\mathcal{A} \simeq \mathcal{C}_R \) by [IY08, Theorem 4.9]. This cluster tilting object induces a bijection \(\beta \mapsto Y_\beta \) between the arcs in \((S, M)/\mathcal{A} \) and the exceptional objects in \(\mathcal{C}_R \).

Lemma 7. Let \(\alpha \) be an arc in \(A^0_{\mathcal{A}}(S, M) \). Then the image of \(X_\alpha \) under \(\pi_R \) is isomorphic to \(Y_{\pi_R \alpha} \).

Proof. Using [JP, Proposition 3.5], the modules associated with \(\pi_R X_\alpha \) and \(Y_{\pi_R \alpha} \) are seen to be isomorphic.

Let \(\alpha \) be an arc in \((S, M)\) which is not in \(\mathcal{A} \) and which does not cross \(\mathcal{A} \), i.e. \(\alpha \in A^0_{\mathcal{A}}(S, M) \). Fix an orientation \(\alpha_0 \) of \(\alpha \) and let \(\alpha_s \) and \(\alpha_t \) be the two (possibly boundary) arcs following \(\alpha \) in \(\mathcal{A} \) (as defined in section 3.2). Recall that \(\kappa_{\mathcal{A}}(\alpha) \) is defined to be \([\alpha_0 \alpha_0^{-1}] \).

If \(\gamma \) is any arc in \((S, M)\) then recall we have (from [BZ]; see Section 1.2.3):

\[
\Sigma X_\gamma = X_{\kappa_{\mathcal{A}}(\gamma)},
\]

where \(\phi \) denotes the empty set of arcs in \((S, M)\). Thus \(\kappa_{\mathcal{A}}(\alpha) \) is obtained from the arc \(\alpha \) by composition with the two boundary arcs which follow \(\alpha \) (see Section 3.2).
The following corollary describes the twist of an arc in terms of the action of the shift functor of an Iyama-Yoshino reduction.

Corollary 8. Under the bijection $A^0_{\mathcal{R}}(S, M) \leftrightarrow A^0((S, M)/\mathcal{R})$, the induced action of the shift functor of $C_{(S, M)/\mathcal{R}}$ on $A^0_{\mathcal{R}}(S, M)$ coincides with that of the twist $\kappa_{\mathcal{R}}$. In other words, we have a commutative diagram:

$$
\begin{array}{c}
A^0((S, M)/\mathcal{R}) \\
\downarrow \pi_{\mathcal{R}} \\
A^0_{\mathcal{R}}(S, M)
\end{array} \xrightarrow{\text{shift}} \begin{array}{c}
A^0((S, M)/\mathcal{R}) \\
\downarrow \pi_{\mathcal{R}} \\
A^0_{\mathcal{R}}(S, M).
\end{array}
$$

Proof. Let $\alpha \in A^0_{\mathcal{R}}(S, M)$. By (1), noting that \mathcal{R} becomes part of the boundary of $(S, M)/\mathcal{R}$, we have $\Sigma_R Y_{\pi_{\mathcal{R}}(\alpha)} \simeq Y_{\pi_{\mathcal{R}\kappa_{\mathcal{R}}(\alpha)}}$. The result follows.

We now have the ingredients we need in order to show that the two mutations (of partial triangulations and rigid objects) are compatible.

Proposition 9. Let $R = R_1 \oplus \cdots \oplus R_m$ be the rigid object in $C_{(S, M)}$ associated with the partial triangulation \mathcal{R} as above. Fix $1 \leq k \leq m$. Then we have the indecomposable summand R_k of R and corresponding arc γ_k of \mathcal{R}. Let α be an arc in $A^0_{\mathcal{R}}(S, M)$. Then we have:

$$
\kappa_R X_\alpha \simeq X_{\kappa_{\mathcal{R}}(\alpha)} \quad \text{and} \quad \mu_k R \simeq X_{\mu_k \mathcal{R}}.
$$

Hence, in particular, $d_k(R) = d_k(\mathcal{R})$.

Proof. Since α does not cross \mathcal{R}, it follows from [BZ] (see Section 1.2.3) that $X_\alpha \in \Sigma_R$. Similarly, $X_{\kappa_{\mathcal{R}}(\alpha)} \in \Sigma_R$, since $\kappa_{\mathcal{R}}(\alpha)$ does not cross \mathcal{R}. By the description of the shift Σ_R of $C_{\mathcal{R}}$ in [IY08, 4.1], $\pi_R(\kappa_R(X_\alpha)) \simeq \Sigma_R(\pi_RX_\alpha)$ in C_R. By Lemma 7, $\Sigma_R Y_{\pi_{\mathcal{R}}(\alpha)} \simeq Y_{\pi_{\mathcal{R}\kappa_{\mathcal{R}}(\alpha)}}$. By Corollary 8, we have $\Sigma_R Y_{\pi_{\mathcal{R}}(\alpha)} \simeq Y_{\pi_{\mathcal{R}\kappa_{\mathcal{R}}(\alpha)}}$. Hence $\pi_R(\kappa_R X_\alpha) \simeq \pi_R(X_{\kappa_{\mathcal{R}}(\alpha)})$.

Note that $\kappa_R X_\alpha$ is an indecomposable object in Σ_R which is not in \mathcal{R} (see Section 2.1). Since $\kappa_{\mathcal{R}}(\alpha)$ does not cross \mathcal{R} and does not lie in \mathcal{R}, the same is true of $X_{\kappa_{\mathcal{R}}(\alpha)}$. It follows that $\kappa_R X_\alpha \simeq X_{\kappa_{\mathcal{R}}(\alpha)}$, proving the first part of the Proposition. The second and third statements follow.

5.2. Compatibility of the coloured quivers

As in the previous section, let $\alpha \in A^0_{\mathcal{R}}(S, M)$; we fix an orientation of α and let α_s and α_t be the two (possibly boundary) arcs following α in \mathcal{R} (as defined in section 3.2). Note that it is possible that $\alpha_s = \alpha_t$. We choose a triangulation \mathcal{T} of (S, M) containing \mathcal{R} and α. Let T be the corresponding cluster tilting object, containing R as a direct summand and X_α as an indecomposable direct summand. Recall that $X_\gamma = 0$ if γ is a boundary arc.

Lemma 10. There is a minimal left add R-approximation of X_α in $C_{(S, M)}$ of the form

$$
X_\alpha \longrightarrow X_{\alpha_s} \oplus X_{\alpha_t}.
$$

Proof. By the 2-Calabi-Yau tilting theorem (see Section 1.2.2), the functor $H = \mathcal{C}(T, \Sigma -)$ induces an equivalence between C/T and mod $J(Q, W)$. Hence H induces an equivalence between Σ^{-1} add T and the category \mathcal{P} of projective modules over $J(Q, W)$. Let $P_\alpha = H(\Sigma^{-1} X_\alpha)$ for each arc α in \mathcal{T} and let $\mathcal{P}_R = H(\Sigma^{-1}$ add $R)$. Then it is enough to show that there is a minimal left \mathcal{P}_R-approximation of P_α in mod $J(Q, W)$ of the form

$$
P_\alpha \longrightarrow P_{\alpha_s} \oplus P_{\alpha_t}.
$$
We recall that $J(Q, W)$ is gentle (see Section 1.1). In particular, the defining relations are all zero-relations. Let $\delta_1, \delta_2, \ldots, \delta_j$ be the arcs in \mathcal{T} incident with $\alpha(0)$ which are after α in the order induced by the orientation of the boundary at $\alpha(0)$ (and listed in that order); see Section 3.2. Similarly, let $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k$ be the arcs in \mathcal{T} around $\alpha(1)$ which are after α in the order induced by the orientation of the boundary at $\alpha(1)$.

Because of the zero-relations in $J(Q, W)$, the only non-zero paths in Q starting at α are paths:

$$\alpha \rightarrow \delta_1 \rightarrow \delta_2 \rightarrow \cdots \rightarrow \delta_j$$

and

$$\alpha \rightarrow \varepsilon_1 \rightarrow \varepsilon_2 \rightarrow \cdots \rightarrow \varepsilon_k.$$

Thus the only non-zero morphisms from P_α to some indecomposable projective module lie in the composition chains:

$$P_\alpha \rightarrow P_{\delta_1} \rightarrow P_{\delta_2} \rightarrow \cdots \rightarrow P_{\delta_j}$$

and

$$P_\alpha \rightarrow P_{\varepsilon_1} \rightarrow P_{\varepsilon_2} \rightarrow \cdots \rightarrow P_{\varepsilon_k},$$

or are linear combinations of these (noting that the chains may overlap).

If α_s is a boundary arc, but α_s is not, then α_s occurs in the first chain above. It is easy to see that the non-zero map $P_\alpha \rightarrow P_{\alpha_s}$ coming from the chain of compositions is a left minimal \mathcal{P}_R-approximation and we are done. The argument is similar if α_s is a boundary arc but α_t is not. If both α_s and α_t are boundary arcs then the zero map is a left minimal \mathcal{P}_R-approximation.

We are left with the case where neither α_s nor α_t is a boundary arc. Thus $\alpha_s = \delta_i$ for some i while $\alpha_t = \varepsilon_{i'}$ for some i'. Let f_s and f_t be the non-zero morphisms arising from the above chains of compositions and let $f : P_\alpha \rightarrow P_{\alpha_s} \oplus P_{\alpha_t}$ be the map with components f_s, f_t. It follows from the above that f is a left \mathcal{P}_R-approximation of P_α. It remains to check that f is left minimal.

We note that if we had $f_s = kh$ for some $h : P_\alpha \rightarrow P_\beta$ and $k : P_\beta \rightarrow P_{\alpha_s}$ for some $\beta \in \mathcal{R}$ then k would have to be an isomorphism since the path in Q from α to α_s is not equal to any other path in Q from α to α_s, and α_s is the first arc in \mathcal{R} appearing along this path. A similar statement holds for f_t.

If f were not left minimal, a summand of form $0 \rightarrow P_{\alpha_s}$ (respectively, $0 \rightarrow P_{\alpha_t}$) would split off and we would have a left \mathcal{P}_R-approximation of the form $g_s : P_\alpha \rightarrow P_{\alpha_s}$ (respectively, $g_t : P_\alpha \rightarrow P_{\alpha_t}$). We consider only the first case (the second case requires a similar argument). In this case, f_t factors through g_s, i.e. $f_t = v g_s$ for some $v : P_{\alpha_s} \rightarrow P_{\alpha_t}$. By the above, v is an isomorphism and $g_s = v^{-1} f_t$.

Again, since g_s is a left \mathcal{P}_R-approximation, we also have that f_s factors through g_s, i.e. $f_s = w g_s$ for some $w : P_{\alpha_s} \rightarrow P_{\alpha_t}$. By the above, w is an isomorphism. Hence we have $f_s = w v^{-1} f_t$ where $w v^{-1}$ is an isomorphism. This is a contradiction since f_s and f_t arise from two different paths starting at α. The result is proved.

\textbf{Theorem 11.} Let R be the rigid object in $\mathcal{C}_{(S, M)}$ associated with the partial triangulation \mathcal{R}. Then the coloured quivers $Q_\mathcal{R}$ and Q_R coincide.

\textit{Proof.} By Proposition 9, it is enough to prove that the sets of 0-coloured arrows coincide. This follows from Lemma 10. \checkmark

6. Some examples

6.1. The A_n case. In this section, we assume that the category \mathcal{C} is the cluster category of type A_n.

Suppose that $R = R_1 \oplus \cdots \oplus R_m$ is a basic rigid object in \mathcal{C}. In Section 2.1 we have associated a coloured quiver Q with R. If R_k is an indecomposable direct
summand of R then the rigid object $\mu_k R$ also has a coloured quiver, \tilde{Q}, associated with it, and we can ask if \tilde{Q} can be computed from Q. This is known in the d-cluster-tilting object case of a $d+1$-Calabi-Yau category \cite[Thm. 2.1]{BT09} but is not known for a general rigid object. In Section 7 we will indicate some results in this direction with a categorical proof, but here we give a complete answer for the cluster category of type A using a combinatorial (geometric) proof. In this case, the corresponding surface is a disk with $n+3$ marked points (see \cite{CCS06}), which we shall denote (S, M); as usual, we denote by \mathcal{R} the set of noncrossing arcs in (S, M) corresponding to the indecomposable direct summands of R, writing γ_i for the arc corresponding to R_i. We may assume that all arcs are straight lines. We have seen above that we can compute Q using \mathcal{R} instead of R.

If R is indecomposable, the corresponding coloured quiver is trivial (a single vertex and no arrows) and there is nothing more to do. We assume we are not in this case.

The complement in (S, M) of $\mathcal{R} \setminus \{\gamma_i\}$ is a union of disks, including one, D_i, containing γ_i, with a polygonal boundary. Then, by its definition, $\kappa_{\mathcal{R} \setminus \{\gamma_i\}}$ has the effect of rotating each of the endpoints of γ_i anticlockwise one edge around the polygonal boundary of D_i.

If the boundary of D_i is a polygon with an even number of sides and γ_i joins two opposite vertices on this boundary then we say that γ_i is symmetric.

Lemma 12. The arc γ_i is symmetric if and only if, for any vertex j such that i and j are ends of a common arrow in Q, there is a unique colour c such that $q_c(i, j) \neq 0$.

Proof. Let D_i be the disk defined above. If γ_i is symmetric, then the minimum number of twists with respect to $\mathcal{R} \setminus \gamma_i$ required to return γ_i to itself is equal to half the number of sides of the boundary of D_i and this has the effect of rotating γ_i through half a revolution. It follows that if i and j are ends of a common arrow in Q, there is a unique colour c such that $q_c(i, j) \neq 0$. If γ_i is not symmetric, the minimum number of twists required is equal to the total number of sides of the boundary of D_i, and this has the effect of rotating γ_i through a full revolution. We see that if i and j are ends of a common arrow in Q, there are exactly two distinct colours c such that $q_c(i, j) \neq 0$.

We remark that a vertex j as in Lemma 12 always exists, since we have assumed that \mathcal{R} has more than one element. It follows that whether γ_i is symmetric or not is determined by the coloured quiver Q. See Figure 10 for an example.

We have the following:

Lemma 13. Fix $i \in \{1, 2, \ldots, m\}$. Choose a vertex j such that $q_c(i, j) \neq 0$ for some c (such a j always exists by our assumption that \mathcal{R} more than one element).
Then we have:

\[d_i = \max\{c \geq 0 : q(c)(i, j) \neq 0\} + \min\{c \geq 0 : q(c)(j, i) \neq 0\} + 1. \]

Proof. Suppose first that \(\gamma_i \) is not symmetric. Then the situation is as in Figure 11, where the labels on the boundary indicate the number of edges along sections of the boundary. Since \(d_i \) is the number of sides of \(D_i \), we have that

\[d_i = (s + t) + r + 1 = \max\{c \geq 0 : q(c)(i, j) \neq 0\} + \min\{c \geq 0 : q(c)(j, i) \neq 0\} + 1. \]

as required. If \(\gamma_i \) is symmetric, then \(d_i \) is half the number of sides of \(D_i \). The situation can again be depicted as in Figure 11 (with the additional restriction that \(t + r + 1 = s \)) and we obtain:

\[d_i = t + r + 1 = \max\{c \geq 0 : q(c)(i, j) \neq 0\} + \min\{c \geq 0 : q(c)(j, i) \neq 0\} + 1. \]

\[\square \]

The possibility of symmetric arcs makes it difficult to compute the new coloured quiver after mutation of \(R \) at an arc, so we use a modified version of the original quiver, defined as follows.

Definition The modified coloured quiver \(Q^+_R \) of \(R \) is the coloured quiver obtained from \(Q_R \) as follows. The vertices are \(\{1, 2, \ldots, m\} \). We set

\[d^+_i(R) = \begin{cases} 2d_i(R) & \text{if } \gamma_i \text{ is symmetric;} \\ d_i(R) & \text{if } \gamma_i \text{ is not symmetric.} \end{cases} \]

If \(\gamma_i \) is symmetric, we set \(q^+_c(i, j) = q(c)(i, j) \) and \(q^+_{c+d_i}(i, j) = q(c)(i, j) \) for all \(c \in \{0, 1, \ldots, d_i - 1\} \), while if \(\gamma_i \) is not symmetric, we set \(q^+_c(i, j) = q(c)(i, j) \) for all \(c \in \{0, 1, \ldots, d_i - 1\} \).

Note that for any two distinct vertices \(i \) and \(j \), the modified coloured quiver always has exactly two arrows from \(i \) to \(j \). We usually write this as a single arrow labelled with the two colours \((l, l') \), with \(l \leq l' \). We also note that the arrows in \(Q^+_R \) can be obtained from \(R \) using the same rules (see Section 3.4) as for \(Q_R \) except that we use the numbers \(d^+_i(R) \) instead of the numbers \(d_i(R) \). Using the same arguments as in the proof of Lemma 13, we have (again choosing a vertex \(j \) such that \(q^+_c(i, j) \neq 0 \) for some \(c \)):

\[d^+_i = \max\{c \geq 0 : q^+_c(i, j) \neq 0\} + \min\{c \geq 0 : q^+_c(j, i) \neq 0\} + 1. \]

Lemma 14. The modified coloured quiver of \(R \) is determined by the coloured quiver of \(R \) and vice versa.
i \quad (r, r + p) \quad \rightarrow \quad k \quad (0, q)

\leftrightarrow

i \quad (0, p) \quad \rightarrow \quad k \quad (q - 1, q + r)

\[q \quad \begin{array}{c} k \end{array} \quad r \quad p \quad \] \begin{array}{c} i \end{array} \quad \begin{array}{c} \text{Case I} \end{array} \quad \text{Here we have} \quad p \geq 2, \quad q \geq 2, \quad r \geq 1. \quad \text{Note that} \quad d_i^+ = p + r + 1, \quad \tilde{d}_i^+ = p + q \quad \text{and} \quad d_k^+ = \tilde{d}_k^+ = q + r + 1.

Proof. Given the coloured quiver \(Q_R \) of \(R \), Lemma 12 indicates how to determine which arcs are symmetric, and thus how to compute \(Q_R^+ \) directly from \(Q_R \) using the definition above. Note that an arc \(\gamma_i \) is symmetric if and only if \(d_i^+ = d_i^+ (R) \) is even and there is a vertex \(j \) and a colour \(c \) such that \(q^+_c (i, j) \neq 0 \) and \(q^+_c (i, j) \neq 0 \).

It follows that the coloured quiver of \(R \) can be determined from the modified coloured quiver of \(R \).

It is thus enough for us to give a method for determining the modified coloured quiver of the mutation of a rigid object in terms of the modified coloured quiver of the rigid object. We first compute the change in the quiver in a number of cases.

Figures 12–16 each show a configuration of arcs in \((S, M)\), together with the result after mutation at \(\gamma_k \). In each case, a label on part of the boundary indicates the number of boundary edges between the two nearest arc ends on the boundary and the black dot indicates the end of arc \(k \) to show how this has changed after the mutation. The following is a simple calculation:

Lemma 15. For each of the five cases in Figures 12–16, the effect of mutation at \(k \) on the corresponding modified coloured quiver is as shown.

We next consider, in the general case, the effect of mutation at a vertex \(k \) on the modified coloured quiver \(Q^+ = Q_{R_k}^+ \). Let \(k^* \) be the set of vertices at the targets of arrows starting at \(k \) with colour zero. A vertex \(i \) lies in \(k^* \) if and only if \(\gamma_i \) is incident with a single endpoint of \(\gamma_k \) and the clockwise angle from \(\gamma_k \) and \(\gamma_i \) is inside \((S, M)\); see the diagram on the left hand side of Figure 12, where \(i \) is an example of an element of \(k^* \).

Suppose \(i \notin k^* \) and that there is an arrow from \(i \) to \(k \) in \(Q^+ \). Then neither of the colours in the label of the arrow is equal to \(d_i^+ - 1 \) (else \(i \) would lie in \(k^* \)). The effect of mutating at \(k \) is to increase both of these colours by 1. If there is an arrow from \(k \) to \(i \) in \(Q^+ \), then, for the same reason, the colours in the label of the arrow are non-zero and mutation at \(k \) decreases these by 1.

If \(i \in k^* \), then the effect on \(Q^+ \) of mutating at \(k \) is shown in Figure 12: the disk in this picture should be interpreted as the boundary of the connected component of the complement in \((S, M)\) of \(R \setminus \{\gamma_i, \gamma_k\} \) containing \(\gamma_i \) and \(\gamma_k \).

Mutation at \(k \) can only affect the vertex labels corresponding to arcs on the boundary of the connected component of the complement in \((S, M)\) of the arcs in \(R \setminus \{\gamma_k\} \) containing \(\gamma_k \), so no other vertex labels can change.
We observe that mutation at k can only affect arrows in Q^+ incident with k (already considered above) or incident with at least one vertex in k^\ast.

Consider first the arrows between vertices $i \in k^\ast$ and $j \notin k^\ast$. Figures 13, 14 and 15 show the three possibilities for the location of γ_j. In each case the disk should be interpreted as the boundary of the connected component of the complement in (S, M) of the arcs in $\mathcal{A} \setminus \{\gamma_i, \gamma_j, \gamma_k\}$ containing γ_i, γ_j and γ_k.

The effect of mutation on the corresponding full subquiver of Q^+ is as shown.
Figure 15. Case IV. Here we have $p \geq 2$, $q \geq 0$, $r \geq 2$, $s \geq 1$, $t \geq 0$, $q + t \geq 1$. Note that $d_{i_1}^+ = q + s + t + 2$, $d_{i_1}^- = q + r + t + 1$, $d_j^+ = d_j^- = p + q + t + 1$ and $d_k^+ = d_k^- = r + s + 1$.

Figure 16. Case V. Here we have $p \geq 2$, $q \geq 1$, $r \geq 2$, $s \geq 1$. Note that $d_{i_1}^+ = q + r + 1$, $d_{i_2}^- = r + s + 1$, $d_{i_2}^+ = p + s + 1$, $d_{i_2}^- = p + q + 1$ and $d_k^+ = d_k^- = q + s + 2$.

Finally, we consider the arrows between vertices $i_1, i_2 \in k^*$. This case is shown in Figure 15, with the disk interpreted as the boundary of the connected component of the complement in (S, M) of the arcs in $\mathscr{R} \setminus \{\gamma_{i_1}, \gamma_{i_2}, \gamma_k\}$ containing γ_{i_1}, γ_{i_2} and γ_k. The effect of mutation on the corresponding full subquiver of Q^+ is as shown.

Analysing the effect of mutation leads us to the following method for mutating a (modified) coloured quiver in type A.

Proposition 16. Let $R = R_1 \oplus \cdots \oplus R_m$ be a rigid object in the cluster category of type A_n, with associated modified coloured quiver Q^+. Let R_k be a summand of R and let \tilde{Q}^+ denote the modified coloured quiver of $\mu_k(R)$, with periodicity \tilde{d}_i^+.
associated to vertex \(i \). Then \(\tilde{Q}^+ \) can be computed in the following way. The letters \(i, j, k \) always refer to distinct vertices.

Type A modified coloured quiver mutation:

(i) Suppose we have the following arrows:

\[
\begin{align*}
 &i \xrightarrow{(a,a')} k \quad j \xleftarrow{(c,c')} k \\
\end{align*}
\]

where \(d \neq 0 \). Add the following arrows:

\[
\begin{align*}
 &i \xrightarrow{(d,d+a'-a)} j \\
\end{align*}
\]

and cancel any pairs of arrows between \(i \) and \(j \) in the same direction whose colours differ by 1.

(ii) Suppose we have the following full subquiver of \(Q \):

\[
\begin{align*}
 &k \xrightarrow{(0,b')} i \xleftarrow{(a,a')} k \\
 &i \xrightarrow{(d,d')} j \xleftarrow{(c,c')} j \\
\end{align*}
\]

Then change the arrows between \(i \) and \(j \) to:

\[
\begin{align*}
 &i \xrightarrow{(d,d+b')} j \\
\end{align*}
\]

(iii) Apply the following rule to all vertices \(i \) with an arrow to or from \(k \):

\[
\begin{align*}
 i \xrightarrow{(a,a')} k &\mapsto
 \begin{cases}
 i \xrightarrow{(a+1,a'+1)} k & \text{if } b \neq 0; \\
 i \xrightarrow{(b-1,b'-1)} k & \text{if } b = 0.
 \end{cases}
\end{align*}
\]

If \(b = 0 \), add \(b' - a \) to the label at vertex \(i \), giving new value \(a' + b' - a \).
Otherwise, the vertex labels are unchanged.

Proof. By the discussion above, Step (iii) indicates how arrows incident with \(k \) change under mutation. The case \(b = 0 \) is shown in Case I (see Figure 12), where we take \(a = r \), \(a' = r + p \), \(b = 0 \) and \(b' = q \) and we note that it is easy to check using (2) that the change in vertex labels is as claimed.

Since mutation at \(k \) can only affect these arrows or those arrows incident with at least one vertex in \(k^* \), it remains only to check that applying the above method has the right effect in Cases II-V considered above. Case II (Figure 13) can be regarded as an instance of Step (i) with \(a = r \), \(a' = r + p \), \(b = 0 \) and \(b' = q \) and we note that it is easy to check using (2) that the change in vertex labels is as claimed.

Case III (Figure 14) can be regarded as an instance of Step (i) with \(a = q + t + 1 \), \(a' = q + r + t + 1 \), \(b = 0 \), \(b' = s \), \(c = t \), \(c' = p + t \), \(d = q \) and \(d' = q + s + 1 \), followed by Step (iii). Case IV (Figure 15) can be regarded as an instance of Step (i) with \(a = q + t + 1 \), \(a' = q + r + t + 1 \), \(b = 0 \), \(b' = s \), \(c = t \), \(c' = p + t \), \(d = q + 1 \) and \(d' = q + s + 1 \), followed by Step (iii). Case V (Figure 16) we see that only Step (iii) is applied, and we are done.
6.2. An example with infinitely many colours. We consider again the example from Figure 8, i.e. a torus with a single boundary component with two marked points. We show again the partial triangulation of this surface in Figure 17. Several copies are drawn to make it easier to see mutations at each of the arcs. The corresponding coloured quiver is given below the surface: note that removing any of the three arcs leaves a hexagon; it follows that mutation at any of the arcs has order 3, and we get finitely many colours: 0, 1 and 2, appearing as labels on the arrows.

Now suppose we mutate at arc 1. We obtain the partial triangulation in Figure 18; the corresponding quiver is given below the picture of the surface. Here, an arrow is labelled with \(\mathbb{Z} \) to represent an infinite number of arrows, one coloured \(n \) for each integer \(n \). This infinity of arrows comes from mutating at arc number 2. If we cut along the remaining arcs in the partial triangulation, we obtain a cylinder. Then, after each mutation a small neighbourhood of the triangulation is the same at each end of the arc (which explains the regularity), but as more and more mutations are made the arc wraps itself more and more around the cylinder. Thus we see that, even if the quiver is locally finite to start with, after a mutation it might not be.

Remark 17. We note that in the example in Figure 18, the coloured quiver contains a two-cycle of arrows both coloured zero, a situation that does not arise in the coloured quivers arising in \(m \)-cluster categories [BT09, Sect. 2].

7. Partial categorical interpretation

In this section, we prove the following result, which gives a partial description of the mutation of a coloured quiver associated to a rigid object in a categorical context. Note that the result applies to any 2-Calabi-Yau triangulated category (under mild assumptions), and is not restricted to the surface case.
Theorem 18. Let C be a Hom-finite, Krull–Schmidt, 2-Calabi–Yau triangulated K-category. Let Q be the coloured quiver associated with a rigid object $R = R_1 \oplus \cdots \oplus R_m \in C$ and let \tilde{Q} be the coloured quiver associated with $\mu_k R$, for some vertex k of Q. Denote the periodicity associated with vertex i of Q (resp. \tilde{Q}) by d_i (resp. \tilde{d}_i).

(i) We have:

- $d_k = \tilde{d}_k$
- for any $j \in Q_0$ and any $c \in \mathbb{Z}/d_k$, $\tilde{q}_c(k, j) = q_{c+1}(k, j)$.

(ii) Let $i, j \in Q_0$ be such that $q_{(0)}(k, j) = 0 = q_{(0)}(k, i)$. Then we have:

- $\tilde{d}_i = d_i$, $\tilde{d}_j = d_j$;
- for any $c \in \mathbb{Z}/d_j$, $\tilde{q}_c(j, k) = q_{c-1}(j, k)$;
- for any $c \in \mathbb{Z}/d_i$, $\tilde{q}_c(i, j) = q_c(i, j)$.

We note that, for the cases covered by the theorem, the new coloured quiver depends only on the old coloured quiver and not on the particular choice of rigid object or category C.

7.1. Proof of Theorem 18. We break the proof of Theorem 18 down into smaller steps, which we present as individual lemmas.

Let $R = R_1 \oplus \cdots \oplus R_m \in C$ be rigid and let Q be the associated coloured quiver.

Lemma 19. We have $\tilde{d}_k = d_k$ and, for any $c \in \mathbb{Z}/d_k$ and any $j \in Q_0$,

$$\tilde{q}_c(k, j) = q_{c+1}(k, j).$$

Proof. The exchange triangles for $R^{(1)}_k$ can be deduced from those for R_k, so that we have $(R^{(1)}_k)^{(c)} = R^{(c+1)}_k$.

Lemma 20. Let $j \in Q_0$ be such that $q_{(0)}(k, j) = 0$. Then $\tilde{d}_j = d_j$ and for any $c \in \mathbb{Z}/d_j$ we have:

$$\tilde{q}_c(j, k) = q_{c-1}(j, k).$$
Proof. By Corollary 2, we may assume that \(R = R_j \oplus R_k \). Since \(q(0)(k,j) = 0 \), the first exchange triangle for \(R_k \) with respect to \(R_j \) is:

\[
R_k \longrightarrow 0 \longrightarrow R_k^{(1)} \longrightarrow \Sigma R_k.
\]

Let

\[
\ldots, R_i^{(-1)} \longrightarrow R_i^{(-2)} \longrightarrow R_i \longrightarrow \Sigma R_i^{(-1)}, R_j \longrightarrow R_j^{(0)} \longrightarrow R_j^{(1)} \longrightarrow \Sigma R_j, \ldots
\]

be the exchange triangles for \(R_j \) with respect to \(R_k \). Since \(q(0)(k,j) = 0 \), we have \(s = 0 \) and \(R_j \) is isomorphic to \(\Sigma R_j^{(-1)} \). The exchange triangles for \(R_j \) with respect to \(R_k^{(1)} = \Sigma R_k \) are thus obtained from those with respect to \(R_k \) by applying the shift functor:

\[
\begin{array}{c}
\Sigma R_j^{(-2)} \longrightarrow \Sigma R_j^{(-3)} \longrightarrow \Sigma R_j^{(-2)} \\
\Sigma R_j^{(-1)} \longrightarrow \Sigma R_j^{(-2)} \longrightarrow \Sigma R_j^{(-1)} \\
R_j \longrightarrow 0 \longrightarrow \Sigma R_j \\
\Sigma R_j \longrightarrow \Sigma R_k^{(0)} \longrightarrow \Sigma R_j^{(1)} \\
\Sigma R_j^{(1)} \longrightarrow \Sigma R_k^{(1)} \longrightarrow \Sigma R_j^{(2)} \\
\ldots
\end{array}
\]

\(\sqrt{\Sigma} \)

Lemma 21. Let \(i, j \in Q_0 \) be such that \(q(0)(k,j) = 0 = q(0)(k,i) \). Then, for any \(c \in \mathbb{Z}/d_i \), we have:

\[
\tilde{q}(c)(i,j) = q(c)(i,j).
\]

Proof. By Corollary 2, we may assume that \(R = R_i \oplus R_j \oplus R_k \). Let

\[
\ldots, R_i^{(-1)} \longrightarrow R_i^{(-2)} \longrightarrow R_i \longrightarrow \Sigma R_i^{(-1)}, R_i \rightarrow R_i^{(0)} \oplus R_i^{(1)} \rightarrow R_i \rightarrow \Sigma R_i, \ldots
\]

be the exchange triangles in \(\mathcal{C} \) for \(R_i \) with respect to \(R_j \oplus R_k \). We denote by \(R_i^{(c)} \) the twists of \(R_i \) with respect to \(\mu_k R/R_i \). Our assumptions have the following consequences:

(i) \(R_i^{(1)} = \Sigma R_k \)

(ii) the spaces \(\mathcal{C}(R_k, R_i) \) and \(\mathcal{C}(R_k, R_i) \) vanish.

Let \(\mathcal{C} \) be the Iyama–Yoshino reduction of \(\mathcal{C} \) with respect to \(\Sigma R_k = R_i^{(1)} \). The image in \(\mathcal{C} \) of a morphism \(f \in \mathcal{C} \) is denoted \(\overline{f} \).

By induction on \(c \geq 0 \), we are going to construct:

(a) A minimal left add \(R_j \)-approximation \(R_i^{(c)} \) \(\longrightarrow \) \(R_j^{(c)} \) in \(\mathcal{C} \);

(b) a triangle \(X_{c+1} \longrightarrow R_i^{(c+1)} \longrightarrow R_i^{(c+1)*} \longrightarrow \Sigma X_{c+1} \) in \(\mathcal{C} \), with \(X_{c+1} \) in add \(R_k \);

(a') a minimal right add \(R_j \)-approximation \(R_i^{(c+1)} \longrightarrow R_i^{(c+1)*} \) in \(\mathcal{C} \) and

(b') a triangle \(X_{c+1} \longrightarrow R_i^{(c+1)} \longrightarrow R_i^{(c+1)*} \longrightarrow \Sigma X_{c+1} \) in \(\mathcal{C} \), with \(X_{c+1} \) in add \(R_k \).

The result then follows from (a) and (a') by Corollary 2.

Let us first prove that (a) and (b) hold for \(c = 0 \). Note that, by (ii), both \(R_i \) and \(R_j \) belong to \((\Sigma^{-1} R_k^{(1)})^\perp \), so that (a) makes sense. Let us denote by \([f'] \) the map \(R_i \rightarrow R_i^{(0)} \) of a morphism \(f \) in \(\mathcal{C} \). Since \(\mathcal{C}(R_k, R_j) = 0 \), the map \(R_i \rightarrow R_i^{(0)} \) is a left add \(R_j \)-approximation in \(\mathcal{C} \), thus so is \(\overline{f} \) in \(\mathcal{C} \). Let \(g \in \text{End}_c(R_i^{(0)}) \) be such that \(g \overline{f} = \overline{f} \). Then \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} f' \\ f \end{bmatrix} = \begin{bmatrix} f' \\ f \end{bmatrix} \) factors through add \(\Sigma R_k \). Since \(R_i \) belongs to \(^\perp (\Sigma R_k) \), we
have in fact \[\begin{bmatrix} 1 & 0 \\ 0 & 9 \end{bmatrix} \begin{bmatrix} f' \\ f \end{bmatrix} = \begin{bmatrix} f' \\ f \end{bmatrix} \]. By minimality, \(g \) is an isomorphism. Thus \(f \) is left-minimal. By Lemma 3 and Lemma 20, the first exchange triangle with respect to \(\mu_k \mathcal{R} \) for \(R_i \) is

\[
R_i \xrightarrow{\mathcal{R}^c_0} R_{i}^{(1)} \xrightarrow{p} \Sigma R_i.
\]

The triangle (b) is easily constructed by applying the octahedral axiom to the composition \(R_i \xrightarrow{\mathcal{R}^c_0} R_{i}^{(1)} \xrightarrow{\text{proj}} R_{j}^{c} \) as follows:

Assume that (a) and (b) hold for some \(c \), and let us first prove that (a) holds for \(c + 1 \). Note that, by construction, \(R_i^{(c+1)} \) belongs to \(R_i^k = \Sigma^{-1}(R_i^{(1)})^\perp \) and so does \(R_j \), by (ii), so (a) makes sense. Write \(X \) for \(X_{c+1} \). Since \(X \) belongs to \(\text{add} R_i \), the space \(C(X, R_j) \) vanishes and the morphism \(R_i^{(c+1)} \rightarrow R_{i}^{(c+1)} \oplus R_{j}^{c+1} \) induces a morphism of triangles:

\[
\begin{array}{cccccc}
X & \xrightarrow{1} & R_i^{(c+1)} & \xrightarrow{1} & R_i^{(c+1)} & \xrightarrow{1} \Sigma X \\
\downarrow & & \downarrow & & \downarrow & \\
R_{i}^{c+1} & \xrightarrow{1} & R_{i}^{c+1} \oplus R_{j}^{c+1} & \xrightarrow{1} & R_{j}^{c+1} & \xrightarrow{1} \Sigma R_{j}^{c+1}.
\end{array}
\]

We claim that \(m \) is a minimal left add \(R_j \)-approximation in \(\mathcal{C} \). Let \(f \) belong to \(C(R_i^{(c+1)}, R_j) \). The following diagram illustrates the proof:

\[
\begin{array}{cccccc}
\Sigma^{-1} R_{i}^{(c+2)} & \xrightarrow{v} & R_i^{(c+1)} & \xrightarrow{q} & R_i^{(c+1)} & \xrightarrow{p} \Sigma X \\
\downarrow & & \downarrow & & \downarrow & \\
R_{i}^{c+1} \oplus R_{j}^{c+1} & \xrightarrow{\pi} & R_{j}^{c+1} & \xrightarrow{\pi} & R_{j}^{c+1} & \xrightarrow{f} \Sigma R_{j}^{c+1},
\end{array}
\]

where \(\pi_2 \) denotes the second projection. Since the space \(C(R_i^{(c+2)}, \Sigma R_{j}) \) vanishes, we have \(f q v = 0 \) and there exists a morphism \(a \) such that \(f q = a u \). By (ii), the morphism \(a \) factors through \(\pi_2 \). Let \(b \) be such that \(a = b \pi_2 \). We then have \(f q = b \pi_2 u = b m q \), and the morphism \(f - bm \) factors through \(p \). Since the object \(X \) belongs to \(\text{add} R_i \), this implies that \(f - bm \) lies in the ideal \((\Sigma R_k) \). That is \(m \) is a left add \(R_j \)-approximation in \(\mathcal{C} \). Let \(g \in \text{End}_{\mathcal{C}}(R_{j}^{c+1}) \) be such that \(g m = m \).
Moreover, if \(m = m - gm \) belongs to the ideal \((\Sigma R_k)\). This implies that the composition
\((m - gm)q\) vanishes since \(\mathcal{C}(R_i^{(c+1)}, \Sigma R_k) = 0\). Let \(h \in \mathcal{C}(\Sigma X, R_j^{(c+1)})\) be such that
\(gm = m + hp \). We have: \(gmq = mq + hpq = mq \). Since \(mq = \pi_2 u\) is left minimal, the morphism \(g \) is an isomorphism in \(\mathcal{C}\), thus so is \(g \) in \(\mathcal{C} \). Hence (a) holds for \(c + 1 \).

Let us now prove that (b) holds for \(c + 1 \). By Lemma 3, Lemma 20 and (a) for \(c + 1 \), we have a minimal left add
\(R_j \oplus \Sigma R_k \) approximation of \(R_i^{(c+1)*} \) in \(\mathcal{C}\) of the form \([m_r]\) for some \(r : R_i^{(c+1)*} \rightarrow \Sigma R_k^c \), which we complete to an exchange triangle

\[
R_i^{(c+1)*} \xrightarrow{[m_r]} R_j^c \oplus \Sigma R_k^c \rightarrow R_i^{(c+2)*} \rightarrow \Sigma R_i^{(c+1)*}.
\]

Complete the commutative square

\[
\begin{array}{ccc}
R_i^{(c+1)} & \xrightarrow{u} & R_j^c \oplus R_k^c+1 \\
\downarrow q & & \downarrow [1 \ 0] \\
R_i^{(c+1)*} & \xrightarrow{[m_r]} & R_j^c \oplus \Sigma R_k^c
\end{array}
\]

to a commutative diagram

\[
\begin{array}{ccc}
R_i^{(c+1)} & \xrightarrow{u} & R_j^c \oplus R_k^c+1 \rightarrow R_i^{(c+2)} \rightarrow \Sigma R_i^{(c+1)} \\
\downarrow q & & \downarrow [1 \ 0] \\
R_i^{(c+1)*} & \xrightarrow{[m_r]} & R_j^c \oplus \Sigma R_k^c \rightarrow R_i^{(c+2)*} \rightarrow \Sigma R_i^{(c+1)*} \\
\downarrow \Sigma X & & \downarrow \Sigma Y \\
\Sigma R_i^{(c+1)} & \xrightarrow{\eta} & \Sigma^2 X \\
\downarrow \Sigma R_k^c+1 & & \downarrow \Sigma R_k^c+1 \\
\Sigma R_i^{(c+2)} & & \Sigma R_i^{(c+2)}
\end{array}
\]

whose rows and columns are triangles. By construction, \(R_i^{(c+2)*} \) belongs to \(\perp (\Sigma^2 R_k) \).
Moreover, \(\mathcal{C}(\Sigma R_i^{(c+2)}, \Sigma^2 R_k) \simeq \mathcal{C}(R_i^{(c+2)}, \Sigma R_k) = 0 \). Thus \(\Sigma Y \) also belongs to the extension-closed subcategory \(\perp (\Sigma^2 R_k) \), and the morphism \(\eta \) vanishes, since \(X \in \text{add } R_k \). As a consequence, the triangle in the third row splits and \(Y \) belongs to \(\text{add } R_k \). Define \(X_{c+2} \) to be \(Y \). Then we see that (b) has been shown.

The statements (a') and (b') can be deduced from (a) and (b) by duality, as we now explain. Consider, in the category \(\mathcal{C}^{op} \), the object \(R_i \oplus R_j \oplus \Sigma R_k \).

It is a rigid object:

\[
\mathcal{C}^{op}(R_i, \Sigma \mathcal{C}^{op} \Sigma R_k) = \mathcal{C}^{op}(R_i, \Sigma R_k) = \mathcal{C}(R_k, R_i) = 0,
\]

and similarly, \(\mathcal{C}^{op}(R_j, \Sigma \mathcal{C}^{op} \Sigma R_k) = 0 \). Moreover, it satisfies the assumptions we made to prove (a) and (b):

\[
\mathcal{C}^{op}(\Sigma R_k, R_i) = \mathcal{C}(R_i, \Sigma R_k) = 0.
\]

Note that \(\mu^{op} \Sigma R_k = R_k \), \(R_i^{(c)op} = R_i^{(-c)*} \) and \(R_i^{(c)*op} = R_i^{(-c)} \). Therefore, there are triangles in \(\mathcal{C}\)

\[
Y_{c+1} \leftrightarrow R_i^{(-c-1)*} \leftrightarrow R_i^{(-c-1)} \leftrightarrow \Sigma^{-1} Y_{c+1}
\]
with Y_{c+1} in add ΣR_k. Let $X_{-c-1} = \Sigma^{-1} Y_{c+1}$, to get the triangles (b').

By (a) applied to \mathcal{C}^{op}, there are minimal right add R_j approximations $R^c_j \hookrightarrow R^\mathcal{C}^\text{op}_j$ in $\mathcal{C}^\text{op}_k = \frac{1}{2} (\Sigma R_k)/(R_k)$. This proves that we have $R^\mathcal{C}^\text{op}_j = t_{-c-1}$. Written in \mathcal{C}, the exchange triangles in \mathcal{C}^{op} for t_j with respect to $R_j \oplus \Sigma R_k$ are of the form:

$$R^c_j \hookrightarrow R^\mathcal{C}^\text{op}_j \oplus (\Sigma R_k)^{\mathcal{C}^\text{op}} \hookrightarrow R^c_j \oplus (\Sigma R_k)^{\mathcal{C}^\text{op}} \hookrightarrow \Sigma^{-1} R^c_j$$

By Lemma 3, we thus have minimal right add R_j approximations $R^c_j \hookrightarrow R^\mathcal{C}^\text{op}_j$ in \mathcal{C}.

References

COLOURED QUIVERS FOR RIGID OBJECTS AND PARTIAL TRIANGULATIONS

School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom
E-mail address: marsh@maths.leeds.ac.uk

Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, UFR des Sciences, 33, rue Saint-Leu, 80039 Amiens Cedex 1, France
E-mail address: yann.palu@u-picardie.fr