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'MODELLING UNCERTAINTY IN THE SUSTAINABILITY OF 

INTELLIGENT TRANSPORT SYSTEMS FOR HIGHWAYS 

USING PROBABILISTC DATA FUSION’  

 

Abstract 

The implementation of ITS to increase the efficiency of saturated highways has 

become increasingly prevalent. It is a high level objective for many international 

governments and operators that highways should be managed in a way that is both 

sustainable i.e. environmental, social and economically sound and supportive of a 

Low-Carbon-Energy Future. Some clarity is therefore needed to understand how 

Intelligent Transport Systems perform within the constraints of that objective. The 

paper describes the development of performance criteria that reflect the contributions 

of Information Communication Technology (ICT) emissions, vehicle emissions and 

the embedded carbon within the physical transport infrastructure that typically 

comprises one type of Intelligent Transport System i.e. Active Traffic Management – 

a scheme that is used to reduce inter-urban congestion. The performance criteria 

form part of a new framework methodology ‘EnvFUSION’ (Environmental Fusion 

for ITS) outlined here. This is illustrated using a case study where environmental 

performance and pollution baselines (collected from independent experts, academic, 

governmental sources and suppliers) are processed using an attributional Lifecycle 

Assessment tool. The tool assesses the production and operational processes of the 

physical infrastructure of Active Traffic Management using inputs from the 

'Ecoinvent' database. The ICT component (responsible for data links) is assessed 

using direct observation, whilst vehicle emissions are estimated using data from a 

National Atmospheric Emissions Laboratory. Analytical Hierarchy Process and 

Dempster-Shafer theory are used to create a prioritised performance hierarchy: the 

Intelligent Transport Sustainability Index, which includes weighted criteria based on 

stakeholder expertise. A synthesis of the individual criteria is then used to reflect the 

overall performance of the Active Traffic Management scheme in terms of 

sustainability (low-carbon-energy and socio-economic) objectives. 

 

Keywords: - Uncertainty Modelling, Low carbon-energy policy, Intelligent 

Transport Systems, 
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1 Introduction 

 

1.1 Problem rationale 

 

The potential global warming crisis has called for technology within the transport  

sector which is able to produce efficiency benefits for the transport system, but 

which operates in such a way that it is not detrimental to the local and global 

environment. 'Intelligent Transport System' (ITS) is a broad term used to describe 

systems based on a combination of Information Communication Technology, 

positioning and automation technologies (Psaraki et al, 2012). In terms of road 

transport, their aim is to maximise the operational capacity of highways, offering 

enhanced performance within the transport network so that the need to construct 

additional road capacity can be avoided (Deakin et al, 2009; Žilina, 2009). These 

technologies can also serve to reduce emissions, maintain or increase safety, 

generate societal benefits (such as accessibility), maintain compliance and reduce 

economic expenditure. However, little is known about the actual contributions of 

intelligent transport systems in highways to climate change mitigation of private 

vehicle transport.  

 The concept of sustainability has been widely applied and usually attempts to 

integrate environmental social and economic concerns although there is still 

ambiguity in its terms of reference (Hilty et al, 2006; Matthews et al, 2007). In this 

research a method to assess the performance (in terms of sustainability) of an ITS 

scheme is developed, where sustainability is used to reflect  environmental, 

economic and social (safety and scheme compliance) terms. A range of both 

quantitative and qualitative indicators used to reflect these three aspects, as defined 

in subsequent sections of the paper. In order to assess the sustainability of ITS, the 

emissions from ICT and infrastructure for their whole lifecycle need to be considered 
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alongside the potential gains through increased traffic flow efficiency. ICT works as 

an enabler within ITS systems in order to improve the performance of the road 

network by improved control and supervision. According to Patey et al (2008) no 

studies at that time had focused on the embedded lifecycle emissions in the 

construction, operation and disposal of ITS schemes. In addition, there is no 

evidence to date of a framework designed to assess the combination of 

environmental performance with the wider impacts (such as safety and social 

aspects) of ITS technology.  

 The environmental impacts of ITS also sit alongside the carbon offset that 

these technologies generate by improved management of the transport network (i.e. 

through smoother flowing traffic, reduced congestion overall). Using current 

methods, the ICT support infrastructure, physical transport infrastructure and the 

operational assessment of vehicle throughput have all been calculated in isolation. 

Without a calculation of the overall emissions generated there is the risk that some 

elements remain unaccounted for, for example 'cause and effect' chains and hidden 

consequences. The aim of the research here is to extend the scope of the emissions 

accounted for to include both the potential carbon reduction from operating an ITS 

scheme and the embedded emissions from constructing and implementing the 

scheme.  

 The paper therefore introduces a 'unified' environmental and socio-economic 

framework, covering both current ICT standards and transport impact assessment. It 

is also able to take inputs from various deficient or uncertain data sources in order to 

quantify overall performance against sustainability criteria. The method is illustrated 

using a case study assessment of one particular type of ITS: the UK Highways 



 

4 
 

Agency’s active traffic management (ATM) scheme as implemented in the 

Birmingham area on a 16.4 km inter-city stretch of highway.  

Measures which were implemented are temporary shoulder use, lane enforcement 

and queue warning systems. Furthermore the framework has been developed in a 

flexible way so that it may be applied with all forms of inter-urban ITS schemes 

internationally. 

  

1.2 The introduction of  Active Traffic Management 

Active Traffic Management (ATM) is an international 'smarter highways' concept 

consisting of a collection of various systems working to reduce road congestion and 

improving traffic flow. It includes a feedback process of traffic data to the central 

highway control centre, which (following data analysis), allows human operators to 

implement dynamic changes to the highway signs and controls in response to current 

conditions. ATM also supports operations planning, which includes evaluating the 

expected road network performance under various future scenarios, such as increases 

in demand, lane closures, special events, etc. It is then possible to develop control 

strategies that may improve performance and test these strategies in terms of their 

cost and the benefits they bring under these future scenarios. Finally, the decision 

support system can be run in real time, which includes filtering the measurement 

data, providing short term prediction of the traffic state, and selecting the best 

available control strategy for the next one or two hours. 

 ATM has been introduced in many countries worldwide for several reasons, 

but its primary role is to reduce traffic congestion. For example, in the UK by 2005 

the road network operator's highway building allowance was £3 billion over budget, 

causing the Department for Transport to consider alternatives to further  

conventional highway widening schemes. In 2006, the successful trial near 
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Birmingham (UK) of the M42 ATM on the 16.4 kilometre stretch of road between 

junction 3a to 7 took place.  

By 2008 this type of scheme became a necessity as road traffic in Great Britain had 

grown by 84 per cent since 1980, from 172 to 318 billion vehicle miles (Department 

for Transport, 2008). The majority of the growth was in car traffic which had risen 

by 87 per cent since 1980, from 134 to 250 billion vehicle miles.  

 In the USA, the Washington State Department of Transportation 

implemented their first enforceable ATM schemes in 2010 in the Seattle 

Metropolitan area with heavy fines if road users did not comply with the stated speed 

limits (WSDoT, 2012). ATM systems were activated on 11.6 km (7.2 miles) of the I-

5 northbound carriageway in August 2010 and were expanded in 2011. The primary 

ATM strategies were ramp metering, queue protection, temporary shoulder running, 

junction control, and lane-specific signalling.  

 In Germany, the Federal Highway Research Institute reported demand on the 

network had increased and is expected to increase an additional 16 percent for 

passenger transport and 58 percent for freight transport by 2015 (Bolte, 2006). Their 

traffic management strategies include speed harmonisation, queue warning, 

temporary shoulder use, junction control, truck restrictions, ramp metering, dynamic 

rerouting, traveller information and truck distance tolling (Mirshahi et al, 2007).   

 The Netherlands have implemented similar systems, including the addition of 

a tidal flow scheme. The only tidal flow lane in the Netherlands was originally 

opened as a car-pool lane in 1992. This lane operates in the morning peak inbound 

direction toward Amsterdam and outbound in the evening. It is noteworthy that 

ATM is preferred by international transport decision makers to road widening due to 
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the reduced costs compared with widening highways and the decreasing availability 

of land for use in widening schemes.  

For example, the M42 scheme in the UK cost £96.4 million compared with the £500 

million that it would have cost to widen a section of highway. It is estimated that it 

takes on average 10 years to implement a widening scheme as opposed to 2 years for 

ATM with variances in road type, region and country. The following sections of this 

paper introduce the EnvFUSION methodology and illustrate the process to estimate 

the environmental and socio-economic impact using the case study of ATM on the 

M42 stretch of road.  

 

2 EnvFUSION methodology and related literature    

EnvFUSION has been designed as an internationally relevant, integrated assessment 

approach as part of a wider strategic performance management framework (Kolosz 

et al, 2012). The framework consists of a Lifecycle inventory (LCI) and Lifecycle 

Impact Assessment (LCIA) (taking an attributional assessment approach), together 

with priority setting and pair wise comparison using an Analytical Hierarchy Process 

(AHP). Dempster-Shafer theory (DST) is used in combination with AHP to form an 

intelligent transport sustainability index using subjective quantitative probability 

assignment. The rationale for integrating AHP and DST is that conventional DST 

does not differentiate the importance of different types of evidence (Ju and Wang, 

2012).  In reality, the decisions to proceed with many transport projects are founded 

on some subjectivities, including the prioritisation by decision makers of various 

targets which aim to reflect socio-economic and environmental objectives. There are 

therefore advantages deriving the method so that it can reflect both objective 

quantitative and subjective qualitative data.  
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Figure 1 illustrates the EnvFUSION method overall and is followed by an overview 

of the different elements. The role and rationale for use of the particular elements is 

presented together with some discussion of potential weaknesses.  

 
 

Figure 1: Overview of EnvFUSION methodology 
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2.1 Lifecycle Assessment for Intelligent Transport 

2.1.1 Description 

 

Lifecycle Assessment (LCA) can be described as an Environmental Systems 

Analysis tool (Ahlroth et al, 2011) and has been incorporated within the 

EnvFUSION framework due to its detailed emissions modelling capability (Rebitzer 

et al, 2004). It was first established in the 1990's, slowly gathering international 

recognition and popularity as the first research publications emerged (Guinée et al, 

1993a; Guinée et al, 1993b; Finnveden et al, 2009). It was later subject to some 

criticism by the academic community due to the resource intensive data collection 

and computation needed. LCA techniques have since advanced considerably, 

assisted by the introduction of an international standard (ISO 14040) intended to 

harmonise the methodology across different regions and countries (International 

Standards Organisation, 2006; Arvanitoyannis, 2008) and improve access to the 

background data through the Swiss Ecoinvent database (Frischknecht and Rebitzer, 

2005). Guidelines have also been developed which include process optimisation, 

(Pieragostini et al, 2012) parameterisation of inventory data (Cooper et al, 2012) and 

techniques to improve LCA as an approach for environmental analysis (European 

Commission JRC, 2010a, b).  

 The literature highlights many different LCA approaches, although two are 

dominant i.e. attributional LCA and consequential LCA (Rebitzer et al, 2004; 

Finnveden et al, 2009; Mathiesen et al, 2009). The attributional approach is 

essentially a point estimate in time and usually calculated using historical data. The 

consequential approach considers marginal and major changes to a system, whether 

this change occurred in the past, present or the future (Sandén and Karlström, 2007; 
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Brander et al, 2009; Chen et al, 2012). The most appropriate choice of approach 

largely depends on the product or service under assessment.  

Finally, there is the option to perform either a simplified or full LCA, with the 

former being affordable and quick to calculate and the latter being more accurate at 

the cost of intensive data collection. According to Hunt et al (1998) and Rebitzer et 

al (2004) it is preferable to simplify data collected from each process (vertical) as 

opposed to implementing horizontal cut-offs. The latter would involve data 

compromises in the various (horizontal) phases of a lifecycle such as cradle-to-grave, 

cradle-to-gate, gate-to-gate and gate-to-grave. This type of simplification is not 

recommended as the weighting and results will differ too substantially from those 

that would have been produced using a more detailed analysis, particularly when the 

output of the LCA is subject to aggregation using a normalisation method such as 

AHP. 

 

2.1.2 Limitations of LCA 

Whilst being a popular and effective assessment tool, each type of LCA also carries 

some limitations. Simplified LCA's tend to be insensitive to geographic aspects, for 

example the product process which is based upon time and space is aggregated to a 

point, which doesn’t reflect the geographic location of the individual emissions 

(Ossés de Eicker et al, 2010). When assessing a scheme that is particular to a 

geographical location it is possible that some data for the region may not be 

available, in which case data from other regions may have to be collected, 

introducing inaccurate final results.  The amount of data required to produce a full 

LCA (compared with a simplified LCA) can be expensive and time consuming, 
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particularly if data is limited or restricted (Christiansen and SETAC-Europe, 1997; 

Goedkoop et al, 2010).  

Finally, it has been observed that each of the different LCA approaches available can 

generate very different results (Finnveden et al, 2009; Higgs et al, 2010; Ahlroth et 

al, 2011; Cherubini and Strømman, 2011; Malça and Freire, 2011).  

 

2.1.3 LCA studies applied to Intelligent Transport Systems 

To the best of the authors’ knowledge to date no LCA studies for inter-urban ITS 

schemes have been published. However, numerous LCA studies have been carried 

out within the transport sector focusing, for example, on traffic throughput 

(Spielmann and Scholz, 2005; Leduc et al, 2010), Input-Output models for economic 

supply and demand, alternative fuels (Finnegan et al, 2004) and vehicle technologies 

(Rajagopal et al, 2011). In terms of scope, the Ecoinvent database also includes 

various logistics inventory data for freight transport including heavy goods and 

passenger vehicles (Spielmann and Scholz, 2005). In relation to road transport and 

ITS, ICT systems may include roadside infrastructure for displaying messages, data 

centers for storing traffic information, traffic control systems and general 

telecommunication services such as surveillance and route guidance.  It is therefore 

worth noting that LCA studies on ICT production have also been undertaken.  

 According to Higgs et al (2010) a great deal of effort has recently been made 

to define the whole lifecycle of energy production and CO2 impact of ICT, in 

addition to the materials used in the manufacturing process. This research is still in 

its early stages however, as calculation of the levels of energy and CO2 within the 

ICT supply chain is complex due to the almost infinitesimal configurations of 

equipment (Stobbe et al, 2009; Dao et al, 2011). Estimating ICT emissions at the 

product level is out of scope for this paper (see future work). Instead, general criteria 
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are given which reflect the operational performance of the ICT data links using 

metrics that are readily available. 

2.2 Multi-criteria Decision Making with AHP/DST  

 

The decision making method for the EnvFUSION framework uses a combination of 

two techniques: Analytical Hierarchy Process is used to prioritise and weight various 

performance criteria into groups of decision alternatives whilst Dempster-Shafer 

theory combines all available data sources using criteria from the Analytical 

Hierarchy Process using a quantitative fusion process. This allows uncertainty to be 

quantified, which may arise from the LCA and other inputs such as data from ITS 

experts and published literature sources.  

 After data fusion, the Dempster-Shafer process takes the Analytical 

Hierarchy Process weights for each criterion as a multiplier and sums the 

probabilities of each criterion (with their weights) to produce an overall performance 

value for the ATM scheme. The configuration of sustainable performance using 

Dempster-Shafer theory in this paper has been influenced by Awasthi and Chauhan 

(2011). The methods are described in more detail below. 

 

2.2.1 Analytical Hierarchy Process 

Analytical Hierarchy Process has been included in the EnvFUSION framework due 

to its ability to support calculation of criteria scores and its transitivity properties 

(Awasthi and Chauhan, 2011). However, its main advantage here is its ability to 

facilitate prioritisation by decision makers of the three main pillars of sustainability, 

i.e. the social, economic and environmental facets. It is a technique pioneered by 

Thomas Saaty (1980) in order to organise and analyse complex decisions. According 
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to Brucker et al (2004) Analytical Hierarchy Process is one of the most widely used 

methods within the multi-criteria decision method group.  

It enables the user to establish weights for selected impact criteria through the use of 

pair-wise comparisons and is based upon three elements
i
: the construction of a 

hierarchy, priority setting and logical consistency (Saaty, 1990; Hermann et al, 2007; 

Sambasivan and Fei, 2008). According to Brucker et al (2004) and Saaty (1990) 

criteria within MCA can be generated spontaneously.  

 

2.2.2 Dempster-Shafer theory with AHP 

In EnvFUSION, Analytical Hierarchy Process is augmented by the use of Dempster-

Shafer theory which is an expanded and formalised version of the original 'theory of 

evidence' created by Dempster (1968). It allows users to combine evidence from 

different sources and arrive at a degree of belief (represented by a belief function) 

that takes into account all the available evidence. DST is a probabilistic method,  

used in a variety of applications including expert systems, information fusion, risk 

analysis and artificial intelligence (Shafer, 1976; Awasthi and Chauhan, 2011). It 

was chosen over other decision support methods supporting uncertainty such as 

Association Rules, Fuzzy Logic (possibility theory) and Probabilistic Neural 

Networks as they lack the ability to unify groups of solitary data, whilst DST's main 

strength is in allowing evidence to be derived from multiple sources, both objective 

and subjective. Transport decision making also tends to produce differences between 

various stakeholders which DST is able to quantify. Whilst AHP serves the function 

of making priorities between criteria explicit, DST enables a unified decision to be 

made by fusing the opinions of multiple stakeholders to a single measure of 

performance for each criterion. DST and AHP therefore act in synergy in the 
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EnvFUSION framework The first integration of these two techniques (AHP and 

DST) was undertaken by Beynon et al (2000).  

Some of the main benefits of DST include the ability to handle uncertainty, missing 

or incomplete data, as well as data fusion and the aggregation of different data types 

(Shafer, 1976; Dempster, 2008; Awasthi and Chauhan, 2011; Yao et al, 2012). This 

is particularly relevant in this context as some data may be unavailable through the 

primary data collection phases of the framework (Lifecycle material inventory) and 

DST can compensate for this using probabilistic data values. DST can reduce 

uncertainty (both objective and subjective) as well as maintaining the harmonisation 

of qualitative and quantitative data between the transport and ICT performance 

criteria.   

2.2.3 Limitations of the DS/AHP methods   

Some limitations exist in each of the methods and it is worth addressing these before 

further elaboration of the framework. For AHP, the number of pair-wise 

comparisons that may be needed by the experts can be onerous. This is an issue of 

both fatigue and time resource but can be overcome by considering groups of 

decision alternatives. In some circumstances, DST may also be paradoxical in that 

the results may be counter-intuitive when confusing probabilities of truth with 

probabilities of provability. This is avoided in this method due to the development of 

a pragmatic underlying rule-set which provides meaning to the probability values.  

A further drawback arises in the consistency of the comparisons when a large 

number  is needed, but this may be addressed by careful design of data collection.   

 

2.2.4 Applications of DST/AHP in transport 
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The literature illustrates a limited number of studies that combine AHP with DST 

within the transport field, however to the best of the authors’ knowledge no studies 

have been published specifically related to Intelligent Transport Systems.  

One study example from the wider transport field is Awasthi and Chauhan (2011) 

who integrated AHP and DST to calculate the emissions and socio-economic  impact 

of car-sharing within an urban environment. While they successfully deployed DST 

to compensate for incomplete or missing data, the benefit of using the technique over 

other multi-criteria decision making tools isn’t elaborated.   

 

2.3 Combining LCA and DST/AHP 
To date it has not been possible to find published academic literature that combines 

Lifecycle Assessment with AHP and DST and therefore such an approach is novel.  

However, Hermann et al (2007) have combined Environmental Performance 

Indicators, LCA and AHP. Their approach involved a linear aggregation of the 

environmental performance indicators, using a cradle-to-grave LCA to assess 

emissions that were based upon organisational criteria established through AHP. The 

disadvantage of this approach was that the LCA involved much simplification, 

resulting in a loss of some of the necessary accuracy for full emissions calculation. 

The approach adopted here mitigates this by using a simplified LCA as only one of 

three data sources within the model. When the emissions data has been processed 

using an impact assessment method, the model then combines the ICT and transport 

network throughput data with the LCA outputs into the ITS sustainability index 

using DST and AHP. Some recent literature has  been concerned with the  

integration of uncertainty evaluation in LCA by including fuzzy multi-criteria 

analysis as well as other decision making methods (see for example Basson and 

Petrie (2007) and Benetto (2008)). In section 3 below, a description of the 
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framework is given, demonstrating how the three methods (LCA/DST/AHP) inter-

relate within the EnvFUSION framework overall. 

 

3 Framework Development and Integration 

This section discusses the development of the framework, beginning with a 

description of the criteria selection process that together reflect the sustainability 

objective. This is followed by an outline of the LCA emissions modelling process 

and  definition of the ICT operational efficiency criteria. The information fusion 

process is then described and finally, the overall ITS sustainability index is given. 

  

3.1 Criteria Selection and Weight allocation 

The intial step in the framework is the selection of criteria for the environmental 

assessment of the ATM scheme. In practice this resulted from a process of literature 

study, expert brainstorming and peer review with the outcome as shown in Figure 2. 

Experts within the academic community and the road network operator then rated 

and prioritised the criteria using the AHP method as follows. The problem was 

firstly defined by structuring the hierarchy from the bottom (alternatives) through the 

intermediate levels (criteria) to the top (objectives). A set of pair-wise comparison 

matrices were then constructed for each of the lower levels with one matrix for each 

element in the level immediately above using the pair-wise Likert scale (Table 1). 
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Figure 2: - Evaluation Criteria within the EnvFUSION framework 

 

Numerical Rating Opinion/Knowledgeable 
1 No Opinion/Equal 

2 Favourable 

3 Moderately Favourable 

4 Strong 

5 Extremely favourable (Max) 

 

Table 1: Pair-wise Comparison Likert scale used within EnvFUSION 

 

For more information on the AHP methodological process, see for example Saaty 

(1980) and Beynon (2002). 

3.2 LCA Emissions Modelling in EnvFUSION 

 

The Simapro software package (developed by PRe Consultants in Holland) provided 

a platform for modelling all phases of the LCA for the ITS infrastructure, including 

the inventory analysis and impact assessment (Goedkoop et al, 2010). The Ecoinvent 

database was used to assign the materials that were collected from the suppliers into 

their appropriate LCA upstream unit processes (Frischknecht et al, 2005). A 

significant amount of uncertainty exists during this phase, as the background process 

consists of data based on average European demand patterns.  
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For the inventory analysis, Ecoinvent features its own uncertainty assessment: 

Ecoinvent Lognormal Distribution (ELD). According to Frischknecht et al (2005) 

the ELD assessment takes into account the variability and uncertainty of parameters 

within the unit process input/output such as measurement uncertainties (the accuracy 

of the measurement at source), process specific variations (new technologies etc) and 

temporal variations (the age of the data when extracted). The EnvFUSION 

framework undertakes a Monte Carlo analysis using uncertainty data from the ELD 

method (Goedkoop et al, 2010). Uncertainties are handled consistently using a Petri 

matrix originally developed by Weidema and Wesnæs (1996).   

The square of the geometric standard deviation for use in the calculation of the 

confidence interval (95% interval - SDg95)  or     
    is then calculated using equation 

(1) 

     
     

      √                                                                                         

 

Section 5.2.4 provides an illustration of the uncertainty calculations for the case 

study used in this research. A number of impact assessment (mid-point) methods are 

potentially available, however the CML 2001 (Centre of Environmental Science of 

Leiden University) model was selected for use in EnvFUSION. This was to allow 

the characterisation of the normalised emissions at the mid-point level rather than the 

damage assessment level, which is out of scope for the framework. The global 

warming potential model was extracted from the IPCC's (Intergovernmental Panel 

Committee on Climate Change) own accounting methodology, which gives the 

carbon equivalent per kilo of greenhouse-gas emission over a period of 100 years. 

The geographic scope for this method is set at the global scale (IPCC, 2001; 

Goedkoop et al, 2010).  
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3.3 ICT operational efficiency criteria in EnvFUSION  

In order to calculate the operational emissions of the ICT data links, various energy 

efficiency metrics and indicators were adopted from the literature leading to the 

criteria summarised in Table 2. 

 

Parameters/Criteria Display Format 

Energy  used for task or resource KWh 

CO2 per task or resource KG CO2 eqv 

Kg of CO2 offset KG CO2 eqv 

Kg of CO2 covered by renewable energy 
certificates 

KG CO2 eqv 

What is your annualized average 
PUE/DCIE?  (last 12 months) 

<Range 1 – 2.5> or <%> 

Are you European Code of Conduct for 
Datacenter compliant? 

Yes/No (Endorser or full participant) 

Do you have an Energy Star for 
Datacenter rating 

<Points range or star rating, no,> 

Are you LEED (or BREEAM) for data 
center rated? 

<Platinum, gold, silver, bronze, no etc> 

 
Table 2: ICT Infrastructure Criteria 

 

Since the case study used in this research (the M42 ATM project) also required the 

reconfiguration and enhancement of communication systems at the west midlands 

regional control centre, it was important to quantify the energy and emissions 

consumption of this change where possible. Energy used per task (or resource) 

indicates the shared resources towards managing the ITS technology on the roads 

and is measured in kW/h. CO2 per task (or resource) focuses on the carbon 

emissions, whilst the KG of CO2 carbon offset indicates the saving of CO2 for the 

ITS schemes that are linked to the data center. This is disaggregated further into a 

criterion that determines whether the offset stems from renewable certificates. Power 

Usage Effectiveness is defined as the total efficiency of the data center (2).   

Note that  at the time of writing, the average data center (internationally) has a Power 

Usage Effectiveness of 1.8-1.89 from a recent survey conducted by the Uptime 

Institute (Stansberry and Kudritzki, 2012) . 
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Data center infrastructure efficiency is the measure preferred by data center 

operators, defined by the inverse calculation of (2) expressed as a percentage. Other 

certificates include Certified Energy Efficiency Data Center Award developed by the 

British Computing Society giving a subjective score of gold, silver and bronze 

depending on the efficiency (Chartered Institute for IT, 2011). It was developed 

using the EU code of conduct for data center energy efficiencies best practice 

guidelines, which consists of minor or major improvements which will contribute to 

energy efficiency. A subjective rating of YES or NO is given. The Energy Star for 

data centers is a joint program between the U.S. Environmental Protection Agency 

and the U.S. Department of Energy and assesses the efficiency of individual 

hardware, most recently buildings (i.e. data centers). The award is given with both a 

points system and a certification for meeting minimum standards. The final criterion 

reflects achievement against Leadership in Energy and Environmental Design or 

Building Research Establishments Environmental Assessment Method. 

 

3.4 EnvFUSION Information Fusion and Indicator Estimation 
 

The data (basic probability assignments and mass functions) are required for each of 

the criteria (Figure 2), which in practice may be generated from a number of sources 

including experts, IT environmental reports, the LCA model within EnvFUSION and 

direct measurements. It should be noted that sources that use their own grading 

system will be able to subjectively rate performance using this method. 

Table 3 illustrates a performance ranking in order to assign belief vectors to the basic 

probability values from various sources with uncertain data. 
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Grade Performance Ranking 
No Target (NT) 0.1 

Very Low (VL) 0.3 

Low (L) 0.5 

Medium (M) 0.7 

High (H) 0.9 

Very High (VH) 1.0 

 

Table 3: Performance Sustainability Scale  

 

Peer experts provide the Basic Probability Assignments (BPA) either directly or 

from a pair-wise questionnaire. These different sources are then aggregated using 

DST. A distance-to-target (DTT) method (Weiss et al, 2007) is used to normalise the 

probability values based upon expected future targets that are set by the road 

network operator. These targets can also be aligned by local, regional and 

international government bodies and institutions. Whilst DTT was originally derived 

as a LCA method to evaluate and prioritise the different environmental impact 

categories, in this research DTT has been expanded to incorporate environmental 

issues (such as emission levels, energy consumption), social perspectives (such as 

road user acceptance), safety and finally, scheme cost. The method is modified to 

give an aggregated score while AHP enables prioritisation. The reduction targets can 

be achieved by marginal improvements in technology. This allows the LCA method 

to be in full synergy with AHP and DST as opposed to acting as just an input value 

to the information fusion process. Using a version of the DTT method proposed by 

Weiss (2007), the difference between the apparent status of a criterion per year and a 

future target value is calculated as: 

                                                                                                                             

 

With        being the distance-to-target value dependent on the context of the 

particular criteria,        the apparent level of environmental, social and economic 

burden represents the definition of sustainability in the model and        the future 
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'sustainability target’. In this context, sustainability takes a value which considers all 

facets of evidence in the form of a sustainability index (representing the prioritised 

set of criteria). In order to determine the performance ranking       of a specific 

criterion, the future sustainability target (comprising the environmental and socio-

economic criteria below) is divided by the performance burden related to the specific 

criterion, which gives a value representing a distance to target weight. 

      
      

      
                                                                                                                            

 The distance to target weights for the particular case study used in this research are 

provided in the case study results within Section 5. 

 Using this proposed solution for calculating uncertainty within the context of 

the M42 ATM scheme, the following calculations were based upon Awasthi and 

Chauhan's (2011) approach to assigning belief. Using the individual performance 

rankings in Table 3 we have                    and the BPA for each 

information source, the overall performance weights (ri ) for a criterion i would then 

be calculated as follows: 

    ∑                                                                                                          

 

   

 

Where      represents the global performance ranking                     

represents the individual performance ranking of a sustainability grade   , bpa (  ) 

represents the basic probability assignment or mass function related to each 

sustainability grade    and P  represent the number of grades applicable. P = 6 for 

                   .      is the distance to target weight for a criterion i 

which is calculated after the bpa's have been converted by the overall performance 

ranking. 
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3.5 The EnvFUSION ITS Sustainability Index 

 

Overall performance rankings are used to assess the level of emissions and socio-

economic aspects of the ITS scheme using an intelligent transport sustainability 

index. The overall performance rankings for the criteria C1, C2,...,CN  are denoted by 

r1,  r2, r3,... rN . An ITS sustainability index value is then given by combining:  

                                                                                            

where             represent the weights of criteria C1 ,C2,...,Cn obtained using 

AHP. The key performance for a scheme is assessed by the performance ranking of 

the index, which sorts the criteria from highest performing area of ITS to areas 

which perhaps require more focus.   

 

4 M42 Case Study: description and primary data collection  
4.1: Overview  

In order to illustrate the data collection process, it is firstly necessary to define the 

scope of the infrastructure within the particular case study of the M42 ATM. The 

ATM features gantries spaced 500 metres apart and feature several components as 

illustrated by Figure 3 (future schemes may position these at 800 meters). Briefly, 

the infrastructure comprises a lightweight superspan gantry (covering 4-lanes), 

variable message signs, a HADECS camera enforcement unit, a set of four advanced 

motorway information (AMI) units over each carriageway and a combined 

equipment unit for each carriageway.  
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Figure 3: Typical ATM Gantry Inventory 

 

The infrastructure is manufactured using a variety of materials, though the ATM 

performance specifications do not include a material and quantity guideline. 

Consequently, there is a large degree of uncertainty in terms of emissions across 

current ATM schemes. The data collection process was undertaken in two iterative 

stages, each stage involving the collection of primary and background data (see 

Figure 4).  
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Primary data collection involved liaison with the scheme component suppliers, and 

included: product schematics, material quantities, energy ratings for the output 

(message signs etc) and the logistics of the scheme (considering the journey time 

from the supplier to the site). The background data stage involved linking specific 

materials (collected from primary sources) to various processes throughout all stages 

of their lifecycle. This was undertaken using the Ecoinvent database which features 

pre-determined emissions categorisation on common (but not exhaustive) materials 

and process related energy use (Frischknecht et al, 2005; Frischknecht and Rebitzer, 

2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Data collection process 

During the first stage, primary data were collected from four suppliers and the road 

network operator who were directly involved in the the M42 scheme.  The second 

stage extended the geographical location of the data sources and included a further 

three suppliers plus two external consultants who operated on more recent ATM 

schemes within the UK network. This second stage was necessary to compensate for 

some restrictions in the availability of primary data from the M42 suppliers. This 

stage introduced some degree of uncertainty due to more recent versions of the ATM 

components coming into production and use in other schemes.  
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However, the extent of the component changes was judged not to be signficant for 

the purposes of this illustration. 

4.2 Primary data: Standard Gantry 

Primary data consisted of blueprints and specifications provided by the UK Road 

Network Operators Carbon Accounting Framework. Although construction of the 

infrastructure varies between sites and contractors, the ATM data for the M42 pilot is 

already available and therefore the choice for this study. Table 4 illustrates the Road 

Network Operators’ estimated material weighting for each ITS component for a 

standard ATM highway section where (x) indicates no materials allocated to that 

piece of equipment. 

ITS 
Equipment 

Weight of Material per Unit (kg) 

Steel Reinforced 
Concrete 

Copper Aluminium Toughened 

Glass 

Plastics Electrical 
Components 

Lightweight 
SS Gantry 

18,000 x x x x x x 

2*MS4 
 8*AMI 

1,500 x 250 1,000 500 250 500 

10 M Piles x 16,000 x x x x x 

Power Cable 0.7 x 1.8 x x 0.5 x 

Cabinets 30 2,000 1 x x 2 20 

Misc Cable x x 0.9 x x 0.3 x 

CCTV + Poles 200 1,000 x 2 x x 2 

 
Table 4: Standard Inter-Urban ATM Material Weighting 

 

The data in Table 4 is considered generic for inter-urban ATM schemes and forms 

the second phase of the data collection as discussed below. It should be noted that 

there is a discrepancy as the Carbon Accounting Framework estimates the weight of 

a lightweight super span gantry at approximately 18,000 KG, whilst the LCA 

material analysis indicate a substantially higher weight at 39,083 Kg. 

 

4.3 Primary data: Lightweight Superspan Gantry 

Lightweight super span gantries are deployed in ATM schemes. These gantries 

extend over both carriageways and are produced using lightweight low alloyed steel. 
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The road network operator's supplier purchases semi-finished (uncoated) steel from 

up-stream suppliers within the European zone. Due to the lack of data on the 

production and conversion of the steel process, average data on the chemical 

composition and emissions of the graded steel product was collected using up-stream 

unit processes provided by the Swiss Ecoinvent database. This grading of steel 

derives solely from the chemical makeup and density of the primary production 

materials in the steel-making process. The total weight of the material is  important 

in the calculation of the emissions as steel manufacturing is one of the most carbon 

intensive processes - despite attempts to curb its emissions by introducing more 

efficient production processes or alternative materials (Matsumiya, 2011; Yellishetty 

et al, 2011a; Yellishetty et al, 2011b). Because of the discrepancies of the total 

gantry weight between the road network operator and our own material weighting 

calculations, the data in Table 4 will be used for the purposes of illustration here. 

This is not to be confused with the use of Ecoinvent, rather it is to determine the 

actual weighting of components as part of the inventory analysis. The rationale is 

that the aggregation process is transparent and consistent with the supplier gantry 

schematics. 

4.4 Primary data: Supporting Equipment 

 

The materials assessed were very consistent with the ATM material weighting for 

Message Sign Mark 4 (MS4) and Advanced Motorway Indicators (AMI). Other 

components, such as the combined equipment cabinets required several estimations 

due to a lack of primary data. Combined equipment cabinets (CEC's) are used to 

store a variety of different hardware including power supplies, standard 

transponders, MIDAS (Motorway Incident Detection and Automatic Signalling) 

outstations, transponders and telephone responders along with other miscellaneous 
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equipment associated with CCTV cameras (Highways Agency, 2009). There are 

three types of CEC available: The smallest cabinet - CEC-R ('Remote') sits on the  

side of the carriageway opposite the longitudinal power cable weighing 345 KG. 

Typically only MIDAS outstations and CCTV outstation equipment need to be 

housed on opposite carriageway to the longitudinal cable network. The CECR has 

one equipment bay with a power distribution bay located at one end. CEC-LB 

('Longitudinal') is used on standard gantry locations and according to the supplier 

schematics weighs in at approx. 1,285 KG and is designed to house a longitudinal 

cable joint. The CEC-LB has a total of three equipment bays with the middle of the 

three housing the cable joints thus leaving two bays to house the electronic 

equipment. The power distribution bay is located at one end of the cabinet similar to 

the CECR.  

 Within enforcement areas the CECLB is replaced with the higher capacity 

CEC-EB (Enforcement) with an estimated steel casing weight of 1,600 KG. The 

largest Cabinet, the CEC-EB is designed to house the roadside controller for the 

Digital Enforcement Equipment as well as the normal highway communication and 

CCTV equipment. 

 

4.5 Operational data assumptions 

 

Various assumptions were made to determine the operational performance of the 

ATM system including energy consumption of electrical devices, maintenance and 

vehicle emissions (external to the LCA assessment). According to the road network 

operator’s implementation guidance (Highways Agency, 2009) the peak energy 

readings of the apparent electricity consumption (Volt-Amperes) was recorded on 

the M42 ATM between junctions 3A and 7 in 2006 with an average power factor of 

0.9.  
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In addition to independent testing of signal power consumption, it was suggested that 

the gantry loads were approximately 11.7kVA (kilo Volts-Amperes) and a 10% 

reserve capacity of 12.8kVA. In order to determine the actual energy output of each 

device, further calculations were made. Table 5 illustrates these conversions applied 

to each ITS component within the scheme. 

 

 

Table 5: Energy conversion of standard ITS components 

 

Based upon the apparent (VA) peak values from the implementation guidance, the 

correct value for the M42 ATM standard equipment is approx. 21 kW per km which 

increases to 29kW per km in enforcement areas with the addition of the Highways 

Agency Digital Enforcement Camera System and fixed CCTV. This does not include 

Advance Direction Signs and general lighting. 

 The operational phase of the scheme consists of temporary shoulder running 

operating during peak and off-peak times. During peak times, the power 

consumption is notably higher as the infrastructure guides vehicles onto the hard 

shoulder to increase network capacity. During off-peak, the majority of the 

infrastructure is on standby. The carbon accounting framework averages the typical 

ITS Component Sub-Component 
Peak (VA) 
Apparent 

Power 

Average 
Power 
Factor 

Actual Power 
(kW) 

Equipment Cabinet CECLB Internal Lighting 80 0.9 0.072 

  Heating and Cooling 2,200 0.9 1.980 

  Maintenance Equipment 690 0.9 0.621 

  Roadside Equipment 480 0.9 0.432 

NRTS Load (Rectifiers -Backup)  N/A 2,500 0.9 2.250 

Message Sign MK4  N/A 1,215 0.9 1.0935 

Advanced Motorway Indicator  N/A 185 0.9 0.1665 

Equipment Cabinet CECR Internal Lighting 30 0.9 0.027 

  Heating and Cooling 800 0.9 0.720 

  Maintenance Equipment 690 0.9 0.621 

  Roadside Equipment 280 0.9 0.252 

  Total 9,150   8.235 
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consumption for a generic ITS service based on approximately 4,000 hours operation 

per annum (roughly 11 hours a day). Results from the Temporary Shoulder Use 

(Hard Shoulder Running in UK) 60 MPH evaluation (Ogawa et al, 2010) based upon 

a typical weekday indicate that 08:00-10:00 AM and 16:00-18:00 PM were the 

periods where the shoulder was active. It is assumed that the energy consumption 

within the equipment cabinets is active 24 hours a day. This equipment is used to 

monitor the performance of the components such as the MS4 sign and AMI units. 

This includes the National Road Transmission Service load which features a 

constantly charged battery for backup or disaster avoidance. According to the 

implementation guidance the MS4 and AMI units are on standby under normal 

running operations but become active during the morning and afternoon peaks.  

 From these assumptions it is possible to forecast the daily, annual and 

lifespan
ii
 (15 years) energy consumption of the post 2005 ATM ITS equipment. The 

value for the total lifespan of an individual gantry is based upon the individual ITS 

components operational performance over 15 years and was integrated into the 

lifecycle using upstream energy production scenarios in the Ecoinvent database. 

Although a typical scheme predicates to 30 years, a great deal of uncertainty would 

be introduced into the model if the lifespan was extended due to a need to assess 

increasing energy efficiency in technological advancement of infrastructure 

components (Mathiesen et al, 2009; Lund et al, 2010). From Figure 5, the energy 

requirements of a standard gantry is illustrated. Enforcement locations require 

additional equipment such as the Highways Agencies Digital Enforcement Camera 

System and a large equipment cabinet is required for this purpose (replacing the 

CEC-LB). Advanced direction signage requires lighting in some locations and will 

increase the power consumption.  
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The right hand diagram illustrates corresponding calculations for the entire (16.4km) 

scheme (M42, junctions 3a to 7) with each gantry configuration. As the data 

concerning the ratio of enforced to standard gantry locations is unavailable, only the 

standard energy consumption was modelled using the LCA, although the diagram 

illustrates the results of the energy consumption if the complement of each gantry 

configuration was at 100% for the whole scheme. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Energy consumption by scheme type (left: per KM, right: Full scheme)   

 

The consumption of new ATM differs from the M42 pilot due to the spacing of each 

gantry which is 800 metres while the M42 features gantries spaced at 500 metres. 

Following collection of all the necessary primary data for the scheme infrastructure, 

the EnvFUSION method could then be applied as described in Section 5 below. 

 

5 M42 Case Study: application of EnvFUSION methodology 

 
This section illustrates the application of the EnvFUSION methodology as described 

in section 3 for the M42 Case Study and using the primary data outlined in section 4. 
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It should be noted that the method is generic and with the correct data, similar 

schemes internationally may also use this methodology. 

5.1 System boundary, criteria allocation and assignment 

The system boundary of the study is an assessment of ATM infrastructure per km 

multiplied by the scheme length over its lifecycle (from 2005 to 2020) using an 

attributional LCA. The midpoint method of the LCA calculates the greenhouse gas 

(GHG) emissions as KG CO2 equivalency of the scheme per kilometre, using ratio 

parameters taken from the road network operators' Carbon Accounting Framework 

created in 2008. ICT operational data was obtained by direct observation from the 

local traffic control centre. Vehicle road emissions were calculated from the 

Department for Transports National Transport Model emission curves (AEA, 2009). 

The criteria selected (Figure 2) represent all elements for estimating ITS 

sustainability and include Scheme lifecycle emissions (C1), Road user emissions 

(C2), Kg of CO2 covered by IT certificates (C3), KG of CO2 per IT task or resource 

(C4), Energy used per task or resource (C5), Annual DCIE for data center (C6), 

Roadside energy consumption (C7), Acceptance (C8), Safety (C9) and Scheme cost 

(C10). The Road network operator provided equal weights (=0.100) to the criteria 

using AHP. 

5.2 LCA Emissions Results 

The LCA emissions were determined in the impact assessment phase using the LCA 

impact method developed by the Center of Environmental Science of Leiden 

University (CML). The results in this paper are displayed in CO2 equivalency using 

the Global Warming Potential (GWP) method, a relative measure of how much heat 

a greenhouse gas traps in the atmosphere, calculating the lifecycle of emissions in 

the atmosphere over a 100 year period.  
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Normalisation and damage assessment factors were ignored due to the emissions 

data subsequently acting as direct input to the EnvFUSION endpoint method using 

AHP/DST theory. Figure 6 illustrates the lifecycle (2006-2020) contribution of the 

vehicle emissions, ICT emissions and ATM infrastructure embedded emissions in 

Kilo-tonnes of CO2 equivalency. The GWP of the schemes energy consumption is 

also included and is largely accountable for the increase in emissions from ATM. 

Note that the ICT emissions remain constant - this is due to the road network 

operator not possessing the required measuring equipment for estimating data center 

energy workload per km of the scheme.  

 

 

 

 

 

 

 
 

 

Figure 6: Overall GWP of ATM in ktCO2eqv (Left: Per KM, Right: Per Scheme) 

 

 

5.2.1 ATM Infrastructure Emissions  

 

Estimated emissions results for individual ITS components are outlined below. The 

value is in tonnes of CO2 equivalent over a 100 year GWP time horizon and the 

temporal boundary of the study is set at 15 years taking into account the full cradle-

to-grave assessment up to 2020. Operational assumptions include the total energy 

consumption for the infrastructure in addition to the maintenance of the electrical 

components.  
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Table 6 illustrates the distribution of GHG emissions of gantry and supporting 

infrastructure per KM within the M42 managed motorway scheme for the 15 year 

period to 2020. Note that support includes the power infrastructure and any 

additional enforcement equipment such as CCTV etc. A more detailed breakdown is 

unavailable due to the confidentiality agreement in place for the research between 

the road network operators and research team. The main results feature the spacing 

of each gantry on the M42 at 500 metres while the results in brackets indicate the 

difference in emissions of more recent ATM schemes (post M42) at 800 metres. 

GHG Substance in KG 
CO2eqv 

(800 metre spacing in brackets 
 for ATM post M42) 

Lightweight 
Gantry 

Message 
Sign 
MK4 

CECLB 
Equip. 

Cabinet 

CECR 
Equip. 

Cabinet 
AMI 

Support 
(CCTV 

etc) 

Carbon dioxide, 

fossil 

        266,572 

(166,607) 

1,376,868 

(860,542) 

968,566 

(605,354) 

785,764 

(491,103) 

4,980,448 

(3,112,780) 

362,994 

(226,871) 

Methane, fossil 
14,956 

(9,347) 

56,202 

(35,126) 

46,778 

(29,236) 

37,994 

(23,746) 

201,008 

(125,630) 

340,262 

(212,664) 

Dinitrogen monoxide 
1,346 

(841) 

12,570 

(7,856) 

9,916 

(6,197) 

8,082 

(5,051) 

45,454 

(28,409) 

15,668 

(9,793) 

Ethane, hexafluoro-, 

 HFC-116 

22 

(14) 

10,172 

(6,357) 

296 

(185) 

152 

(95) 

27,746 

(17,341) 

4,116 

(2,573) 

Sulfur hexafluoride 
286 

(179) 

5,274 

(3,296) 

6,296 

(3,935) 

1,950 

(1,219) 

17,874 

(11,171) 

116 

(73) 

Methane, 

 tetrafluoro-, CFC-14 

92 

(57) 

16,482 

(10,301) 

180 

(112) 

108 

(68) 

10,134 

(6,334) 

1,758 

(1,099) 

Carbon monoxide, 

fossil 

3,672 

(2,295) 

3,562 

(2,226) 

756 

(472) 

468 

(293) 

8,162 

(5,101) 

230 

(144) 

Methane, biogenic 
314 

(196) 

1,022 

(639) 

110 

(69) 

78 

(49) 

4,112 

(2,570) 

676 

(423) 

Methane, 

chlorodifluoro-, 

HCFC-22 

8 

(5) 

640 

(400) 

44 

(27) 

28 

(18) 

2,564 

(1,603) 

92 

(58) 

Carbon dioxide, land 

transformation 

8 

(5) 

332 

(207) 

82 

(51) 

64 

(40) 

1,306 

(816) 

24 

(15) 

Remaining Substances 
3,476 

(2,172) 

40 

(25) 

646 

(404) 

98 

(61) 

72 

(45) 

2,584 

(1,615) 

TOTAL OF ALL COMPARTMENTS 
287,316 

(179,573) 

1,483,776 

(927,360) 

1,033,124 

(645,702) 

834,764 

(521,728) 

5,301,392 

(3,313,370) 

362,994 

(226,871) 

GANTRY INSTALLATION 19 (12) Tonnes of CO2 including all gantry equipment and support 

GANTRY DECOMISSION 19 (12) Tonnes of CO2 including all gantry equipment and Support 

 

Table 6: KG CO2 Equivalency of GHG substances for ATM infrastructure per KM up 

to 2020 
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5.2.2 Vehicle Emissions 

Using polynomial regression, annual average daily traffic flows (AADF) on the M42 

were forecast along with vehicle emissions curves and predicted vehicle market 

share from the national transport model (which projects future emissions by vehicle 

types up to 2035). Lifespan vehicle emissions were based upon the annual average 

daily traffic flows that were recorded from  five count points over two 12 hour 

periods per day (AADFCP) multiplied by the link length of the scheme            

and the number of days in the year using equation (7). 

                                                                                                                     

Projected vehicle composition factors were taken from the UK's National 

Atmospheric Emissions Inventory (NAEI, 2012) while speed/emission curves were 

extracted from the National Transport Model (AEA, 2009). Table 7 illustrates the 

resulting vehicle emissions over a period of 15 years in tonnes of CO2 equivalency. 

Average speeds across the M42 were extrapolated up to 2020. Note that for cars, 

taxis and light goods vehicles; petrol and diesel emissions are combined. 

Greenhouse Gas 
Substance 

(Tonnes CO2 Equiv.) 

2 Wheeled 
Motor 

Vehicles 

Cars 
and 

Taxis 
Coaches 

Light 
Goods 

Vehicle 

Heavy 
Goods 

Vehicle 

All Operational Regimes (24 hour) 

Carbon monoxide (CO) 252 3,978 17 184 576 

Nitrous Oxide  

(NOx (Equivalent of N02) 
18 2,291 124 611 4,548 

Hydrocarbons  

(Equivalent of CH1.85) 
21 261 4 33 116 

Ultimate Carbon Dioxide  

(CO2) 
2,874 534,191 17,359 24,728 1,005,101 

All Compartments 3,165 540,721 17,504 25,556 1,010,341 

Temporary Shoulder Running (HSR 60) at Morning and Afternoon Peak 

Carbon monoxide (CO) 
52 829 4 39 120 

Nitrous Oxide 

 (NOx Equivalent of N02) 4 477 26 127 947 

Hydrocarbons     

(Equivalent of CH1.85) 5 54 1 6 24 

Ultimate Carbon Dioxide 

(CO2) 599 111,289 3,616 5,151 209,396 

All Compartments 660 112,649 3,647 5,323 210,487 

Table 7: Tonnes CO2eqv for M42 Junction 3A-7 vehicle emissions up to 2020 
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Figure 7 represents the cumulative savings of emissions in Global Warming 

Potential post implementation up to 2020. From this analysis, it could be concluded 

that (in terms of a traditional Environmental Impact Assessment) the vehicle 

emissions within the ATM scheme - along with the minor advantages of improved 

traffic flow - will offset their emissions by the end of the scheme lifespan, taking into 

account the roadside infrastructure. Projecting the results of the highways agencies 

emissions monitoring between 2003 and 2006 (traffic growth fixed at 2003 levels), 

an estimated 53 kilo-tonnes of CO2 equivalency will be offset by 2020 due to the 

direct usage of the ATM scheme.  

 

 

   

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Vehicle Emission Cumulative Savings of GHG's 
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Savings due to estimated improvements in vehicle technology are also illustrated 

which are dependent on traffic growth and follow assumptions of the UK's National 

Transport Model (AEA, 2009). See Sultan (2009) for more detailed results on the 

M42 ATM monitoring and evaluation process. Between 2003-2006, Hydrocarbon 

emissions increased by 3%. It is possible that the increase in HC emissions is due to 

the change in vehicle operation, i.e. the engines are operating in an area that is less 

efficient with regards to HC emissions and is an area that requires further 

investigation (Sultan, 2009). Whilst the speed limit for temporary shoulder use was 

initially set at 80 Km/h (50 Mp/h), by 2008 it was increased to 97 Km/h (60 Mp/h). 

This resulted in an increase in average traffic speed by 8 Km/h. Traffic growth 

between the case of no variable speed enforcement and the case of full VSM 

enforcement plus temporary shoulder usage has increased by 6% (northbound) and 

9% (southbound). This increase is in-line with national highway traffic growth of 

7.9% (Figure 8). 

 

 

 

 

 

 

 

 

 

Figure 8: M42 J3A-7 Annual Traffic Growth 
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5.2.3 ICT Data Emissions 

 

Data for ICT Emissions from the ATM scheme were taken from the regional traffic 

control centre responsible for its operation. Following direct observation of the data 

center, communication interface and an  interview with staff, Table 8 illustrates the 

current environmental status of the regional traffic control center.  

 

Parameters/Criteria Result 

Energy used for task or resource 185,747 KWh per Annum (2,786,205 lifespan) 

GWP per task or resource 109,163 KG CO2eqv (1,637,453 lifespan) 

GWP offset None 

Kg of CO2 covered by renewable energy 
certificates 

None 

What is your annualized average PUE  
(last 12 months) 

2.5 

Are you European Code of Conduct for 
Datacenter compliant? 

No 

Do you have an Energy Star for 
Datacenter rating 

No 

Are you LEED (or BREEAM) for data 
center rated? 

No 

 
Table 8: ICT Environmental Status of Regional Traffic Control Center 

 

 

Due to current limitations in ICT metrics, the energy per task and resource could 

only be assessed at the hardware level, and although various research initiatives are 

being carried out to understand the energy consumption at the application/software 

level (Berl et al, 2010), the regional traffic control center does not have the required 

technology to overcome these constraints at the time of writing. 

 

5.2.4 Uncertainty Assessment and Assumptions 

 

As outlined in (3.3) the Ecoinvent database addresses uncertainty in the data using 

the Ecoinvent logarithmic distribution (Frischknecht and Rebitzer, 2005). All unit 

processes have six embedded factors of uncertainty factors comprising: reliability, 

completeness, temporal correlation, geographical correlation, further technological 
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correlation and finally sample size (calculated using a Petri matrix). Uncertainty in 

EnvFUSION is addressed in several stages. Firstly, 1000 Monte Carlo simulations 

were performed on the LCA inventory to determine the absolute uncertainty of the 

lifecycle of a gantry. Figure 10 illustrates the absolute uncertainty distribution of the 

lifecycle inventory with global warming potential. The horizontal axis displays the 

value of the calculation while the vertical axis represents the probability that a 

certain value is true, with the confidence interval calculated using equation (1). It can 

be seen from Figure 9 that the overall emissions may be higher than the initial 

calculation based upon the six uncertainty factors, although the probability 

distribution is negatively skewed overall, with higher probabilities assigned to the 

lower levels of emission values. Figure 10 illustrates global warming potential 

uncertainty compared with the uncertainty of other environmental factors in the LCA 

inventory. 

 

Figure 9: Lifecycle emissions uncertainty: Global Warming Potential (GWP 100) 
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Figure 10: Comparison of Lifecycle characterisation uncertainty  

 

 

From Figure 10, Global Warming Potential has one of the lowest levels of 

uncertainty when compared to other characterisation factors. Although these other 

factors do not contribute to the EnvFUSION model, they are illustrated in order to 

reflect the wider environmental uncertainty within the ATM scheme. 

 

5.3 Data Fusion and Indicator Estimation 

 

Data collection
iii

 was carried out using four sources, i.e. Experts (source 1), the LCA 

model (source 2), ICT metrics (source 3) and reports (source 4). The sources 

generated data on BPA’s (or mass values (m) in the case of missing data) concerning 

six performance levels  (No Target (N), Very Low (VL), Low (L), Medium (M), 

High (H) and Very High (VH)). The layout for calculating Dempster-Shafer is 

motivated by Awasthi and Chauhan (2011).  
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Figure 11: ITS Sustainability BPA Assignments 

Figure 11 illustrates the BPA values from each source for the following criteria: 

Scheme lifecycle emissions (C1), Road User Emissions (C2), GWP Data Center 

Offset (C3), GWP per IT resource (C4), Energy Used Per Resource (C5), Annual 

DCIE/PUE for data center (C6), Road side energy consumption (C7), Acceptance 

(C8), Safety (C9) and Scheme Cost (C10). An example is given below for one 

criteria - 'scheme lifecycle emissions' to demonstrate the fusion process for the data 

sources. For the Experts information source, the probabilities are: 

NT = 0, VL = 0, L = 0.3, M = 0.3, H = 0.4 and VH = 0.  
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In the first stage information source 1 and 2 were combined. In the second stage the 

results from stage 1 were combined with information source 3. In the final stage, the 

results were combined with stage 2 and information source 4. The criteria 'Scheme 

lifecycle emissions' is calculated based on the distance to target method. The bpa 

values are denoted as follows: from Experts by    
 , from the LCA Model by    

 , 

from the ICT Metrics by    
  and from Reports by    

 . The following calculations 

are taken from figure 12. 

    
           

             
            

            
            

            

    
           

              
            

            
             

            

    
           

           
          

          
          

         

    
           

             
            

            
            

            

Table 9 presents the fusion
iv

 results from source 1 (Expert) and source 2 (Models). 

Numbers are rounded for clarity and for conciseness, those columns and rows of the 

combination were dropped which do not have assigned values. 
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Table 9: Data Fusion from information sources 1 and 2 

                                                                     

                   

Since k > 0, normalisation was applied where the normalisation factor is given by 1 - 

k = 1 - 0.715 = 0.285. The main results of the first stage fusion between information 

source 1 and 2 can be expressed as: 
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The next step is to combine the results from information fusion between source 1 

(Expert) and 2 (Model) with information source 3 (Survey) in Table 10. 

 

    
           

     
   

   
    

   
   

    
   

   
    

   
   

     
   

   
    

   

   
 ⨁     
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Table 10: Data Fusion from information sources 1 and 2 and 3 

 

                                       

Since k = 1, the source is totally contradictory therefore normalisation is not applied 

(orthogonal sum is ignored therefore removing the source from the fusion process). 

This is justified as the ICT Metric does not have a target for the 'scheme lifecycle 

emissions'. With the results from the first fusion unchanged, the next stage of the 

fusion process is carried out. In Table 11, the results were combined from 

information sources 1, 2 and 3 with information source 4. 
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Table 11: Data Fusion from all sources (1, 2, 3 and 4) 
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Since k > 0, normalisation was applied where the normalisation factor is given by 1 - 

k = 1 - 0.791288 = 0.208772. The main results of the final stage fusion between 

information source 1, 2, 3 and 4 can be expressed as: 
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It is assumed that the reliability of each information source is 1. Therefore from 

Appendix A equation (9): 

 

                                                                          

                                         

Using the DST rule set and         the bpa's were obtained for the criteria 

'scheme lifecycle emissions' as follows:  
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The bpa's for the criteria 'scheme lifecycle emissions' are obtained once all elements 

of the data sources have been fused. The calculations were then carried out for the 

remaining 9 criteria from Figure 11. Table 12 illustrates the bpa's of the criteria after 

data fusion.  

 
Performance Criteria 

 Sustainability Grade BPA 

NT VL L M H VH 

Scheme lifecycle emissions (C1) 0 0.02521 0.13445 0.80672 0.03361 0 

Road User Emissions (C2) 0 0.01092 0.52459 0.45901 0.00546 0 

Kg of CO2 off - IT certificates (C3) 0 0.62791 0.37209 0 0 0 

KG of CO2 per IT resource (C4) 0 0 0.07692 0.92307 0 0 

Energy used per resource (C5) 0 0 0.66666 0.05556 0.27778 0 

Annual DCIE for data center (C6) 0 0 0 0.71428 0.28571 0 

Roadside Energy Consumption 
(C7) 

0 0 0.5 0.5 0 0 

Acceptance (C8) 0 0 0 0 0.48076 0.51925 

Safety (C9) 0 0 0 0.85714 0.14285 0 

Scheme Cost (C10) 0 0 0 0 0.05263 0.  0.94736 

 

Table 12: BPA values following data fusion 

 

The overall performance ranking was then computed using the performance grades 

from table 3 and distance to target weights that are specific to the M42. These were 

derived using the process outlined in section 3.4 and provided in Table 13 below. 

Sustainability Criteria Apparent 
Sustainability 
burden (2006) 

Future Target 
(2020) 

Preliminary Distance-
To-Target Value 

DTT Weight 

Scheme lifecycle emissions 
(tCO2eqv)  

10,171 5,000 5,171  0.5  

Road user emissions (tCO2eqv) 106,486 40,000 66,486  0.6  

GWP Data center offset (kgCO2eqv) 0 0 0  0.1 

GWP per IT resource (kgCO2eqv) 1,637 1,000 637  0.6  

Energy used per resource (Mw/h) 2,786 2,000 786  0.7  

Annual DCIE/PUE for data center 
(%) 

2.5 2.0 0.5  0.8  

Roadside energy consumption 
(Mw/h) 

2588 1200 1300  0.5  

Acceptance (%) 97 Shoulder 100 Shoulder 03 Shoulder  1.0  

Safety (KSR ratio-4VMSL) 7 6 1  1.0 

Scheme cost (Millions/£) 96 96 0  1.0  

Table 13: Distance to Target weights for the M42 case study 
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For example, the overall performance ranking for the criteria "scheme lifecycle 

emissions" is calculated as follows:  
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The overall sustainable performance ranking, distance to target weights and AHP 

were then calculated for the remaining 9 criteria as shown in Table 14. 

Performance Criteria 
 

Calculation of Intelligent Transport Sustainability 
Index 

GPR BPA's DTT 
weighting 

AHP ITSI Value 

Scheme lifecycle emissions (C1) 0.3 X 

0.5 X 

0.7 X 

0.9 X 

VL= 0.02521 

L= 0.13445 

M= 0.80672 

H= 0.03361 

X 0.5 X 0.100 0.033487 

Road User Emissions (C2) 0.3 X 

0.5 X 

0.7 X 

0.9 X 

VL= 0.01092 

L= 0.52459 

M= 0.45901 

H= 0.00546 

X 0.6 X 0.100 0.035508 

GWP Data offset - IT certificates (C3) 0.3 X 

0.5 X 

VL= 0.62791 

L= 0.37209 
X 0.1 X 0.100 0.002656 

GWP per IT resource (C4) 0.5 X 

0.7 X 

L = 0.07692 

M = 0.92307 
X 0.6 X 0.100 0.041077 

Energy used per resource (C5) 0.5 X 

0.7 X 

0.9 X 

L= 0.66666 

M= 0.55556 

H= 0.27778 

X 0.7 X 0.100 0.069028 

Annual DCIE/PUE for data center (C6) 0.7 X 

0.9 X 

M= 0.71428 

H= 0.28571 
X 0.8 X 0.100 0.060571 

Roadside Energy Consumption (C7) 0.5 X 

0.7 X 

L= 0.50000 

M= 0.50000 
X 0.5 X 0.100 0.030000 

Acceptance (C8) 0.9 X 

1.0 X 

H= 0.48076 

VH = 0.51925 
X 1.0 X 0.100 0.095193 

Safety (C9) 0.7 X 

0.9 X 

M= 0.85714 

H= 0.14285 
X 1.0 X 0.100 0.090000 

Scheme Cost (C10) 0.7 X 

0.9 X 

M= 0.05263 

H= 0.94736 
X 1.0 X 0.100 0.099474 

 

Table 14:  Intelligent Transport Sustainability Index calculations 
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5.4 The Intelligent Transport Sustainability index 

Using the calculations shown in Table 14 and criteria weights, the Intelligent 

Transport Sustainability Index (ITSI) is finally generated. The ITSI index brings 

together the fused performance targets, the DTT method and AHP, resulting in an 

overall distribution of criteria priorities. Although the apparent performance grades 

are ranked subjectively, the distance to target weights reflect quantitative 

governmental targets.  

Performance Criteria 
 

Final ITSI Index Results 

Apparent 
Performance 
Grade 

ITSI 
Performance 
Value 

Priority 

Scheme Cost (C10) High 0.099474 10 

Acceptance (C8) Very High 0.095193 9 

Safety (C9) High 0.090000 8 

Annual DCIE for data center (C6) Medium 0.069028 7 

Energy used per resource (C5) Low 0.060571 6 

KG of CO2 per IT resource (C4) Medium 0.041077 5 

Road User Emissions (C2) Low 0.035508 4 

Scheme lifecycle emissions (C1) Medium 0.033487 3 

Roadside Energy Consumption (C7) Low/Medium 0.030000 2 

Kg of CO2 off - IT certificates (C3) Very Low 0.002656 1 

OVERALL PERFORMANCE Medium 0.556993 
 

 

Table 15: Prioritised Sustainable Index Results  

 

 

5.5 Discussion and Sensitivity Analysis 

EnvFUSION is a performance framework designed to estimate performance against 

sustainability criteria despite uncertainties within the data set. Based upon the ITSI 

performance results in table 15, it is possible to produce a 'unified' analysis on which 

areas of the ITS scheme are performing acceptably and which areas can potentially 

be improved. From strongest to weakest (top to bottom in Table 14), the highest 

performing criterion (based upon the ITSI performance value) is 'scheme cost'.  
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This is due to not only the future target being met, but also the subjective 

performance grade being rated as 'high'. It is conjectured that this reflects the major 

reduction in scheme cost compared to traditional traffic flow improvement schemes 

such as road widening. The lowest performing criterion is that which reflects the 

extent to which the data center has established IT carbon reduction strategies. For 

this case study there are currently no carbon reduction strategies in place, despite 

ICT having a major influence on the emissions and energy of the Active Traffic 

Management scheme and therefore no targets.  

 With the correct knowledge and training, the energy efficiency of the data 

center may be improved through strategies such as following the guidelines of the 

EU Code of Conduct for Data Center Energy Efficiency etc. The criterion 

‘Roadside-energy consumption’ also has a low rating due to the large increase in 

energy consumption compared with its pre-implementation state. A sensitivity 

analysis was carried out by varying the AHP criteria weights and the distance-to-

target weights. Five scenarios were established (Table 16), prioritising the AHP 

weights based upon the embedded and operational emissions at the roadside with the 

remaining values distributed equally the energy consumption of the road C7 the 

energy and emissions from the data center safety and acceptance (social 

sustainability pillar) and finally the economic sustainability pillar - scheme cost. 

Scenarios 6 through 10 (Table 17) illustrates the same sets of criteria (emissions, 

energy, ICT, social and economic) reaching their desired targets (Distance to 

target=1) with AHP values remaining unchanged. 
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Table 16: AHP and DTT Sensitivity Analysis 

 

 

 

 

 

 

 

 

Figure 12: Results of AHP Sensitivity Analysis 

Figures 12 and 13 illustrate the results of both the AHP and Distance-To-Target 

Sensitivity Analysis. The performance values of the criteria remain consistent with 

the variances in the AHP in each scenario. Of particular note is the lack of change at 

the top and bottom of the priority list.  

Scenario/Priority AHP Criteria Value 

Scenario 1: 

Roadside Emissions 

C1=0.4, C2=0.4, C3=0.025, C4=0.025, C5=0.025, C6=0.025, C7=0.025, 

C8=0.025, C9=0.025, C10=0.025 

Scenario 2: 

Roadside Energy 

C1=0.022, C2=0.8, C3=0.022, C4=0.022, C5=0.022, C6=0.022, C7=0.022, 

C8=0.022, C9=0.022, C10=0.022 

Scenario 3: 

ICT Emissions 

C1=0.033, C2=0.033, C3=0.2, C4=0.2, C5=0.2, C6=0.2, C7=0.033, C8=0.033, 

C9=0.033, C10=0.033 

Scenario 4: 

Safety and Acceptance 

C1=0.022, C2=0.022, C3=0.022, C4=0.022, C5=0.022, C6=0.022, C7=0.022, 

C8=0.4, C9=0.4, C10=0.022 

Scenario 5: 

Economic 

C1=0.022, C2=0.022, C3=0.022, C4=0.022, C5=0.022, C6=0.022, C7=0.022, 

C8=0.022, C9=0.022, C10=0.8 

Scenario/Priority Distance-to-Target Criteria Value 

Scenario 6: 

Roadside Emissions 
C1=1, C2=1, C3=0, C4=0, C5=0, C6=0, C7=0, C8=0, C9=0, C10=0 

Scenario 7: 

Roadside Energy 
C1=0, C2=1, C3=0, C4=0, C5=0, C6=0, C7=0, C8=0, C9=0, C10=0 

Scenario 8: 

ICT Emissions 
C1=0, C2=0, C3=1, C4=1, C5=1, C6=1, C7=0, C8=0, C9=0, C10=0 

Scenario 9: 

Safety and Acceptance 
C1=0, C2=0, C3=0, C4=0, C5=0, C6=0, C7=0, C8=1, C9=1.4, C10=0 

Scenario 10: 

Economic 
C1=0, C2=0, C3=0, C4=0, C5=0, C6=0, C7=0, C8=0, C9=0, C10=1 
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This implies that scheme cost retains best performance while KG CO2 offset in the 

data center remains the top priority for  improvement in sustainability. However, it 

appears that the distance-to-target method has considerable influence on the ITSI 

performance values, which indicates the model is sensitive to allocated targets. It is 

also argued that the basic probability assignments and distance-to-target values carry 

the most potential to change priorities. However, in the event that the BPA values are 

equal or "uncertain", the Analytical Hierarchy Process and the distance-to-target 

method actually assist in making a decision, demonstrating the robustness of 

EnvFUSION as a decision making tool.  

 

Figure 13: Results of Distance to Target Sensitivity Analysis 

 

6 Conclusions 

 
This paper begins with the premise that there is a gap in knowledge concerning the 

impacts of ITS schemes in terms of sustainability and difficulties in assessing these 

impacts due to the inherent nature of ITS i.e. as a system of systems. In reality, there 

are many relationships between the technology, the road users and emissions which 

add to the complexity of the system as a whole.  
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Moreover, recent increases in the implementation of technology indicate a need to 

estimate the level of carbon offset such technology can bring to the transport 

network. This research has aimed to address this gap by introducing a 'unified' 

sustainability framework that bridges existing standards and targets between ICT and 

transport impact assessments. It also takes inputs from various deficient or uncertain 

data sources in order to provide key performance indicators to estimate the emissions 

and socio-economic status of ATM schemes. 

 To summarise, the road-side infrastructure contributed around 9% (1.647 

kilo-tonnes of CO2 equivalency) of lifecycle GWP with vehicle emissions remaining 

the dominant category. The emissions included the contribution of the ATM and 

improvements in vehicle technology. As a consequence of improved traffic flow, the 

scheme offsets the emissions from the original  2003 traffic flows by around 53 kilo-

tonnes of CO2 equivalency (4% reduction). The top four priorities of the ITSI index 

are the data center, roadside energy consumption, scheme lifecycle emissions and 

road user emissions. The main benefits of the EnvFUSION framework are as 

follows: 

 the ability to integrate different transport and ICT variables alongside the 

infrastructure data in order to incorporate the operational (emissions and 

energy) consumption of the scheme in the overall indicator.  

 the ability to make data that is individually incomplete an absolute whole 

using basic probability assignment and mass values 

 the ability for international organisations and national governments to set 

targets using the distance-to-target method which will influence the priority 

of the ITS criteria under observation. This is particularly useful if the basic 



 

51 
 

probability assignments and analytical hierarchy process values are equal and 

a more refined decision has to be made. 

The framework is intended to be complimentary to existing sectoral frameworks 

such as the UK Transport Carbon Model in its potential to reduce the ambiguity 

surrounding the embedded emissions of the transport infrastructure and thereby 

provides better support to long term decision making. Although EnvFUSION 

includes effects such as embedded and operational emissions from electricity 

generation, it is not an energy systems model nor is it solely a transport model, but 

acts as an interface between these and other factors to ensure these technologies 

remain sustainable over their entire lifecycle. 

7 Further research 

In order to increase the authenticity of the framework, increased complexity should 

be applied to more closely resemble the real-life decision making necessary to 

improve overall sustainability in ITS. For example, reliability issues within deficient 

data sources should be explored more thoroughly alongside the possibility of 

developing inter-scheme comparisons between two or more existing ITS services. 

The AHP approach would support this possibility by its use of decision alternatives.  

 While the case study described here is based on a scheme already in 

operation, the research can be  extended to estimating potential energy and emissions 

reductions likely to arise from future technology advances. Future work will involve 

reconfiguring the LCA inventory from the current fixed data sets to dynamic 

marginalisation for certain forecasting periods using consequential cause and effect 

patterns up to 2050 (this being the timeline for most European and International 

governments’ ambitious 80% carbon reduction in transport). Finally, the work will 
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consider embodied emissions of ICT, although this research area is relatively new 

and the supporting evidence sparse to date. 
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i
 Refer to Saaty (1990) for a full overview on the AHP method. 

ii
 We refer to lifespan as the duration of operational activity before the gantry requires replacing and 

should not be confused with lifecycle assessment. This is to avoid the possibility of improved or 

alternative technologies disrupting the emissions results which leads to significant levels of 

uncertainty. See Further Research. 

iii
 Note that the bpa values have been altered in order to maintain anonymity with the source material 

iv
 Refer to Shafer (1973) and Beynon et al (2000) 
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