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[1] Natural aerosol plays a significant role in the Earth’s
system due to its ability to alter the radiative balance of
the Earth. Here we use a global aerosol microphysics
model together with a radiative transfer model to estimate
radiative effects for five natural aerosol sources in the
present-day atmosphere: dimethyl sulfide (DMS), sea-salt,
volcanoes, monoterpenes, and wildfires. We calculate large
annual global mean aerosol direct and cloud albedo
effects especially for DMS-derived sulfate (–0.23 Wm–2

and –0.76 Wm–2, respectively), volcanic sulfate (–0.21 Wm–2

and –0.61 Wm–2) and sea-salt (–0.44 Wm–2 and –0.04 Wm–2).
The cloud albedo effect responds nonlinearly to changes in
emission source strengths. The natural sources have both
markedly different radiative efficiencies and indirect/direct
radiative effect ratios. Aerosol sources that contribute a large
number of small particles (DMS-derived and volcanic
sulfate) are highly effective at influencing cloud albedo per
unit of aerosol mass burden. Citation: Rap, A., C. E. Scott,

D. V. Spracklen, N. Bellouin, P. M. Forster, K. S. Carslaw,

A. Schmidt, and G. Mann (2013), Natural aerosol direct and indirect

radiative effects, Geophys. Res. Lett., 40, doi:10.1002/grl.50441.

1. Introduction

[2] Atmospheric aerosol is derived from both natural and
anthropogenic sources. Natural sources include primary emis-
sions of desert dust, sea-salt, and wildfire aerosol along with
aerosol precursors such as sulfur- and carbon-containing gases
from vegetation, ocean biology, and volcanoes that can subse-
quently form particles in the atmosphere [e.g., Carslaw et al.,
2010; Mahowald et al., 2011]. Aerosol affects the Earth’s
radiative balance through the scattering and absorption of
shortwave (SW) and longwave (LW) radiation (the aerosol
direct effect) and through influencing the formation and
properties of clouds, altering both cloud albedo (first indirect
or cloud albedo effect) and cloud lifetime (second indirect
effect) [Forster et al., 2007].
[3] The role of natural aerosol in affecting the Earth’s

radiative balance is poorly constrained, with the radiative
effects for several important natural aerosol sources still
not quantified [Mahowald et al., 2011]. This contributes to
poor understanding of natural aerosol interactions and
feedbacks within the Earth system [Carslaw et al., 2010].

Furthermore, natural aerosol contributes to aerosol back-
ground concentrations [Andreae, 2008], the quantification
of which is a prerequisite for accurate assessments of
impacts of anthropogenic aerosol on clouds and climate
[Menon et al., 2002; Schmidt et al., 2012].
[4] Here we explore the role of natural aerosol sources in

the Earth system by quantifying the contribution of five
natural sources, dimethyl sulfide (DMS) from ocean phyto-
plankton, sea-salt, wildfires, volcanoes, and monoterpenes
from vegetation, to present day (PD) aerosol. We quantify
the impact of each natural aerosol source on the Earth’s
radiative balance. We restrict the use of radiative forcing
(RF) to a change in the top-of-atmosphere (TOA) radiative
balance relative to preindustrial (PI) conditions [Forster
et al., 2007] and we express the impact of natural aerosol
to the PD atmosphere as a radiative effect (RE), defined to
be the TOA change in radiation due to a change in that
natural aerosol source.

2. Methodology

2.1. Global Aerosol Model

[5] We simulated aerosol concentrations using the
GLOMAP-mode global aerosol microphysics model [Mann
et al., 2010] at a horizontal resolution of 2.8� � 2.8� driven
by European Centre for Medium-Range Weather Forecasts
reanalysis data. The aerosol size distribution is treated using
a two-moment modal scheme with 5 modes: hydrophilic
nucleation, Aitken, accumulation and coarse modes and
non-hydrophilic Aitken mode. Within each mode the
different aerosol components are internally mixed. New parti-
cle formation is simulated through binary-homogeneous
nucleation of sulfuric acid and water [Mann et al., 2010].
Natural emissions include oceanic DMS calculated using the
DMS sea surface concentration database of Kettle and
Andreae [2000] along with the sea-to-air transfer velocity of
Nightingale et al. [2000], passive volcanic degassing and
time-averaged explosive SO2 from Dentener et al. [2006],
sea-salt calculated using the scheme of Gong [2003],
monoterpenes from Guenther et al. [1995], and biomass
burning emissions from van der Werf et al. [2004]. The
importance of humans in altering global fire patterns and
the amount of fire in prehuman times is poorly understood
[Bowman et al., 2009]. Therefore, in this study we do not
distinguish between natural and anthropogenic fire, and
estimate upper limit effects by implicitly assuming that all
fire is natural. We also assumed that monoterpenes form
secondary organic aerosol (SOA) with a fixed yield as
detailed in Mann et al. [2010] and carbonaceous aerosol
is emitted using the initial size distribution from Stier et
al. [2005]. We assume that non-hydrophilic aerosol may
be physically aged by one monolayer of condensable mate-
rial (secondary organics or sulphuric acid), and transferred
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to the corresponding hydrophilic mode. We do not calcu-
late the radiative effect of mineral dust.
[6] All model simulations were completed using meteo-

rology for the year 2000 after a 3 month model spin-up.
For each natural aerosol source we simulated source
strengths of 0%, 25%, 50%, 75%, 90%, and 100%. These
simulations included anthropogenic aerosol emissions for
the year 2000 according to Dentener et al. [2006]. To
compare natural and anthropogenic aerosol we completed
an additional simulation using PI (year 1750) anthropogenic
emissions [Dentener et al., 2006]. We note that Dentener
et al. [2006] apply different wildfire emissions in 1750,
meaning that our anthropogenic RF includes some influence
from changing wildfire.

2.2. The Radiative Transfer Model

[7] We used the off-line version of the Edwards and
Slingo [1996] radiative transfer model with 6 bands in the
SW and 9 bands in the LW, with a delta-Eddington 2 stream
scattering solver at all wavelengths. We employed a monthly
mean climatology for water vapor, temperature and ozone
based on European Centre for Medium-Range Weather
Forecasts reanalysis data, together with surface albedo and
cloud fields from the International Satellite Cloud Climatol-
ogy Project (ISCCP-D2) [Rossow and Schiffer, 1999] for the
year 2000. The sensitivity of our RE estimates to the cloud
climatology was found to be small, according to an extra
set of calculations performed using the 1983–2008
multiannual ISCCP cloud climatology (see Table A1 in the
auxiliary material).
[8] To estimate the aerosol direct radiative forcing (DRF)

and effect (DRE), the radiative transfer model was used along
with output from GLOMAP-mode. For each spectral band
and all aerosol modes we calculated aerosol optical properties
as described in Bellouin et al. [2013]. The aerosol DRF
and DREs were calculated as the difference of TOA net (SW
+LW) radiative fluxes between the PD control and 26 perturbed
experiments, i.e., one corresponding to PI conditions and 25
experiments corresponding to 5 different source strengths

(0%, 25%, 50%, 75%, and 90%) for each of the five natural
aerosol sources considered. The same perturbed experi-
ments were used to estimate the aerosol cloud albedo forc-
ing (CAF) and effect (CAE) as described in previous
studies [Spracklen et al. 2011a, 2011b; Schmidt et al.
2012]. We calculated cloud droplet number concentration
(CDNC) using the mechanistic parameterisation of cloud
drop formation [Nenes and Seinfeld, 2003] assuming a cloud
updraft velocity of 0.2 m s–1 as used in Spracklen et al.
[2011a]. We did not simulate changes to cloud lifetime.

3. Results and Discussion

[9] We first present results of anthropogenic RF against
which we later contrast the RE from natural aerosol sources.
The annual mean anthropogenic aerosol burden, aerosol
optical depth at 0.55 mm (AOD), and all-sky net DRF and
CAF are illustrated in Figure 1a, with annual global mean values
shown in Table 1. Our results compare well with the AeroCom
[Schulz et al., 2006] results: anthropogenic AOD of 0.032
(AeroCom mean 0.029�0.01), clear-sky DRF of –0.82 W m–2

(AeroCom –0.68�0.24 W m–2), all-sky net DRF –0.46 W m–2

(AeroCom –0.22�0.16 W m–2), and DRF AOD clear-sky
efficiency, defined as the TOA clear-sky RF per unit of AOD,
of –26 W m–2 (AeroCom –23�7 W m–2). Our annual global
mean CAF estimate of –0.95 W m–2 is within the range of
previous studies [Forster et al., 2007]. The zonal distributions
of DRF and CAF exhibit maxima at around 30�N, matching
the anthropogenic aerosol burden (Figure 1 and Auxiliary
Material Figure A1a).
[10] Figures 1b–1f show the annual mean REs calculated

as the difference between the PD control and complete
removal experiments for each natural aerosol source, with
annual global mean values reported in Table 1. The spatial
patterns of DRE typically match those of the aerosol burden,
with the largest DRE over the oceans for both sea-salt and
DMS-derived sulfate and over the continents for terpene-
derived SOA. In our model, sea-salt is the natural aerosol
with the largest global annual mean all-sky DRE calculated
as –0.44 W m–2. The clear-sky DRE we calculate due to

Table 1. Annual Global Mean Aerosol Burden, Optical Depth at 0.55 mm, Contribution to CDNC at Cloud Base, Direct and Indirect

Radiative Effects, Burden and AOD Clear-Sky Radiative Efficienciesa

Study
Burdenb

[mg m–2]
AOD

at 0.55 mm
ΔCDNC
[%]

Clear-Sky
Direct RE
[W m–2]

All-Sky
Direct RE
[W m–2]

Indirect RE
[W m–2]

DRE
Burden eff.c

[W/g]

DRE
AOD eff.d

[Wm–2/t]

CAE
Burden eff.c

[W/g]

PD-PI This 2.58 0.032 –0.82 –0.46 –0.95 –318 –26 –368
Prev. 3.7�0.9h 0.029�0.01h –0.68� 0.24h –0.22�0.16h;

[–0.9,–0.1]o
[–1.8,–0.3]o;

–1.8l
–23�7h

DMS
sulfate

This 0.57 0.010 10.2 –0.35 –0.23 –0.76 –616 –35 –1336
Prev. 0.39j –0.17j e,f-2.03n

Sea-salt This 8.87 0.019 1.3 –0.70 –0.44 –0.04 –79 –36 –4.9
Prev. (7.5–36.8)k

9.2i;7.6l
0.027i (–1.5,–5)k;

–0.42i
–0.18i –1.82l –46i –239l

Volcanic
sulfate

This 0.69 0.008 9.2 –0.30 –0.21 –0.61 –430 –35 –892
Prev. 0.72q; 0.56j 9.4q –0.21j –0.56q

Terpene
SOA

This 0.25 0.003 2.4 –0.14 –0.13 –0.02 –554 –54 –101
Prev. 0.14m; 1.55p –0.29p –0.01m g,f

–0.19m –2753m

Wildfire This 0.6 0.004 5.3 –0.06 –0.01 –0.09 –101 –14 –151
Prev. 0.98r 0.006r –0.27r 0.13r –1.64r –275 –45

aOur indirect REs only include the CAE, whereas previous work may include additional aerosol cloud effects (see table footnotes).
bAerosol burden (e.g., SO4, organic matter). cNormalized RE by aerosol burden. dNormalized RE per unit AOD. eIncludes the direct effect.
fIncludes the cloud lifetime effect. gIncludes semidirect effect. hSchulz et al. [2006]. iReddy et al. [2005]. jGraf et al. [1997]. kHaywood

et al. [1999]. lMenon et al. [2002]. mGoto et al. [2008]. nThomas et al. [2010]. oForster et al. [2007]. pO’Donnell et al. [2011]. qSchmidt et al. [2012]
(does not include time-averaged SO2 emissions from explosive eruptions). rWard et al. [2012].
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sea-salt (–0.7 W m–2) is at the lower magnitude end of
previous studies (–0.42 to –5 W m–2) [Haywood et al. 1999;
Reddy et al., 2005] at least partly due to our low sea-salt mass
burden (8.9 mg m–2) in comparison to these studies (range
7.5–36 mg m–2). We calculate an all-sky DRE for DMS- and
volcanic-derived sulfate of –0.23 W m–2 and –0.21 W m–2,
respectively, both agreeing well with the values reported
by Graf et al. [1997]. We simulate an all-sky DRE from
monoterpene derived SOA of –0.13 W m–2, which is sub-
stantially larger than that calculated by Goto et al. [2008]
(–0.01 W m–2), partly due to the greater SOA burden in
our model. Our clear-sky DRE from monoterpene SOA
(–0.14 W m–2) is smaller than that reported by O’Donnell
et al. [2011] (–0.29 W m–2) who treated SOA from both
monoterpene and isoprene and thus simulated a larger
atmospheric SOA burden. For wildfire aerosol we
estimate a clear-sky global annual mean DRE of –0.06
W m–2 and an almost zero all-sky annual global mean
DRE of –0.01 W m–2. This is consistent with Forster
et al. [2007] who reported a multimodel mean all-sky
DRF of 0.03�0.12 W m–2 despite clear-sky negative
forcing, an effect attributed to absorption by the black
carbon component of wildfire aerosol when present
above clouds.

[11] The largest CAEs are calculated for DMS- (–0.76Wm–2)
and volcanic-derived sulfate (–0.61Wm–2), with substantially
weaker global mean CAEs from the other natural sources
(Table 1). The volcanic CAE we calculate here is slightly
larger than in Schmidt et al. [2012] because of the larger
volcanic emission flux used in our study. The large CAE from
DMS and volcanoes occurs because they contribute a large
number of small particles which result in a large increase in
CDNC per unit of aerosol burden. The larger size of sea-salt
particles compared to other natural aerosol sources results in
a smaller impact on CDNC per unit of emission and a small
CAE (–0.04 W m–2) despite the larger atmospheric burden.
Menon et al. [2002] calculated a substantially larger global
mean CAE (–1.82 W m–2) despite a similar sea-salt burden
to our model because they do not calculate CDNC based on
the aerosol size distribution, but use an empirical relationship
between aerosol mass and CDNC. In our simulations the
presence of large sea-salt particles can also suppress in-cloud
supersaturation which can prevent other smaller particles from
activating to form cloud droplets [Rap et al., 2009; Korhonen
et al., 2010]. The global mean CAE of terpene-derived SOA
that we calculate is also relatively small (–0.02 W m–2)
compared to other natural sources, partly because a positive
RE over tropical oceans offsets a continental cooling.

Figure 1. Annual mean all-sky aerosol burden, aerosol optical depth at 0.55 mm, direct and cloud albedo net radiative (a) forcing
and (b–f) effect for anthropogenic (Figure 1a) and natural aerosol sources (Figures 1b–1f) in the present day atmosphere. Values
above each panel are global means, with values in brackets showing Northern and Southern Hemisphere means, respectively.
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Globally, the inclusion of terpene-derived SOA yields an
annual mean increase in simulated CDNC, due to the growth
of particles in the hydrophilic distribution, and the ageing of
particles in the nonhydrophilic distribution. Over some tropi-
cal ocean regions nucleation scavenging of the large hydro-
philic particles, and subsequent loss through precipitation,
dominates over the growth of particles to CCN active sizes,
yielding a small decrease in CDNC and a positive indirect
RE. Goto et al. [2008] calculated an aerosol indirect effect
(including cloud albedo, lifetime effects, and semi-direct
effects) due to monoterpene SOA of –0.19 W m–2, whilst
O’Donnell et al. [2011] estimated a positive global mean
aerosol indirect effect (+0.23 W m–2) due to SOA. However,
a direct comparison is difficult because O’Donnell et al.
[2011] included an anthropogenic component to SOA and
calculated an aerosol indirect RE that included both the cloud
albedo and cloud lifetime effects. Clearly future work is
needed to further understand the indirect effect from SOA.
[12] In contrast to the anthropogenic aerosol burden which

in the NH is more than four times larger than in the SH, the
natural aerosol burden has a relatively larger SH component,
mainly due to high sea-salt (SH burden ~90% larger than in
the NH) and DMS-sulfate (SH burden ~40% larger than in
the NH) loadings, see Figure 1 and Auxiliary Material
Figure A1b. While the DRE zonal mean closely matches
the burden for all five natural aerosol sources, the CAE is
substantially larger in the SH than in the NH due to the large
anthropogenic aerosol burden in the PD suppressing the
CAE of natural aerosols in the polluted NH [Chuang et al.,
2002; Schmidt et al., 2012; Ward et al., 2012]. In the SH
oceans the RE is dominated by the DRE from sea-salt and
the CAE from DMS sulfate, with zonal mean REs from these
sources of up to –0.8 W m–2 and –2.8 W m–2, respectively.
We simulate little seasonal cycle in RE for any of the natural
aerosol sources considered except for DMS-derived sulfate
where the CAE is significantly larger in the SH summer months
(DJF global mean of –1.4Wm–2) than in the SHwinter months
(JJA global mean of –0.29 W m–2) due to a strong seasonal
cycle of DMS emissions in the SH (see Auxiliary Material
Figure A2), consistent with Thomas et al. [2010]. During the

SH summer, DMS-derived sulfate results in local monthly
mean REs of up to –11 W m–2 across the Southern Ocean.
[13] Figure 2 shows the RE of the different natural aerosol

sources as a function of aerosol source strength. The DRE
responds linearly to changes in the emission strength of
natural aerosol sources. In contrast, the CAE behavior is
nonlinear, due to: (i) CCN number concentrations
responding nonlinearly to changes in emissions as a result
of aerosol microphysical effects [Woodhouse et al., 2010;
Schmidt et al. 2012]; (ii) CDNC saturating at high aerosol
number concentrations [Ramanathan et al., 2001]; and (iii)
cloud albedo responding to the fractional rather than
absolute change in CDNC. This results in a unit change in
the source strength at lower emission strengths having a
larger effect on the CAE than at larger strengths.
[14] There is substantial variability in the aerosol radia-

tive efficiency [Forster et al., 2007] of different natural
aerosol sources. Due to the nonlinear CAE, the CAE
burden efficiency depends on the magnitude of the pertur-
bation in source strength (Auxiliary Material Table A2).
Table 1 details the burden efficiency for the complete removal
of each natural aerosol source. In our model DMS sulfate
(–616 Wg–1), monoterpene SOA (–554 Wg–1) and volcanic
sulfate (–430 Wg–1) have the greatest clear-sky DRE burden
efficiencies. There is even larger variability in the CAE burden
efficiency with DMS sulfate (–1336Wg–1) and volcanic sulfate
(–892 Wg–1) efficiencies being up to two orders of magnitude
larger than for other natural sources. The DMS sulfate efficien-
cies for both DRE and CAE are larger than the corresponding
volcanic sulfate efficiencies, likely due to the difference in
vertical aerosol distributions [Graf et al., 1997]. Also, the
ratio of annual global mean CAE to clear-sky DRE in the
PD varies between the different natural aerosols from rela-
tively small values for sea-salt (0.06) and terpene SOA
(0.18) to larger values for wildfire (1.5), volcanic-sulfate
(2.0) and DMS-sulfate (2.2). Aerosol sources that lead to
large numbers of small particles (DMS and volcanoes)
contribute greatly to CDNC per unit of emission, resulting
in a greater CAE burden efficiency.
[15] This is the first study to use the same model frame-

work to quantify the RE for a wide range of natural aerosol
sources. Our results typically match previous studies
performing similar experiments for specific natural aerosol
sources (Table 1), although there are some important differ-
ences. In particular, we find that aerosol sources that form
large numbers of small particles (DMS and volcanic sul-
fate) have the greatest impact on cloud albedo. We attribute
a substantially smaller CAE to sea-salt than previously es-
timated [Menon et al., 2002] with potential implications for
schemes attempting to modify cloud albedo through the
controlled emission of sea-salt particles into the atmosphere
[e.g., Jones et al., 2009]. However, we note that the size distri-
bution of naturally emitted sea salt particles is uncertain, with
different CAE likely for different sea spray source functions.
[16] We do not study climate-driven perturbations to natu-

ral aerosol fluxes, so we cannot explore the role of natural
aerosol climate feedbacks such as the CLAW hypothesis
[Charlson et al., 1987], the validity of which has recently
been questioned [Quinn and Bates, 2011]. Specifically, our
experiments are different to those by Woodhouse et al.
[2010], where changes in the global mean DMS-flux of
between –20% and +70% resulted in small changes in
CCN in the PD. Nevertheless, our results do show that the

Figure 2. Sensitivity of direct (DRE) and cloud albedo
effects (CAE) to the natural aerosol source strength in the
present-day atmosphere.
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RE efficiency of natural aerosol sources can be comparable
to that from anthropogenic aerosol sources. Our work
implies that we need to better quantify natural aerosol and
aerosol-precursor fluxes and better understand their effec-
tiveness in forming CCN. The implications of climate-
driven perturbations to natural fluxes, such as the large
(+150%) change in regional DMS flux suggested by
Cameron-Smith et al. [2011] need further investigation.

[17] Acknowledgments. We acknowledge funding though NERC
grants NE/G005109/1, NE/G015015/1, NE/J009822/1 and NE/J004723/1.
[18] The Editor thanks two anonymous reviewers for their assistance in

evaluating this paper.
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