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INTRODUCTION

Quantum cascade lasers (QCLs) are compact
sources of coherent radiation that can emit in
the terahertz (THz) region of the electromagnetic
spectrum. However, room temperature operation
has not yet been achieved in THz QCLs; the
current highest temperature operation is 199.5 K
at 3.22 THz using an AlGaAs/GaAs stucture [1].
Advances in theoretical modelling have contributed
to the development of such optimized and novel
devices and both Monte Carlo and rate-equation
models of QCLs can give good agreement with
experimental results [2]. However, these semi-
classical models do not account for coherent trans-
port which is thought to be important in THz QCLs
due to the typically thick injection barriers and can
predict unrealistic results. Like non-equilibrium
Green’s functions (NEGF), density matrix (DM)
modelling accounts for tunnelling but is less com-
putationally intensive which allows for its use as a
simulation tool. To reach higher temperatures, it is
necessary to suppress the performance degradation
mechanisms which occur. These include thermal
backfilling and thermally activated LO phonon
scattering which occurs as electrons gain enough
in-plane kinetic energy to emit an LO phonon
and relax to the lower laser level non-radiatively.
Therefore, we aim to investigate and then apply the
DM approach to the AlGaN/GaN system which
has been considered promising due to its higher
LO phonon energy (92 meV) compared to that of
GaAs (36 meV) [3].

METHOD

The density matrix method outlined in Ref. 4
allows for coherent modelling of a QCL structure
with any number of states. Additionally, the Hamil-
tonian in the Liouville equation can be be altered
to include further submodules in each period so
that intra-period transport is modelled coherently.
We first model a GaAs structure measured ex-
perimentally in Ref. 5 to compare gain/current
vs applied field using the rate equation approach,
the DM approach, and the DM approach with
two submodules per period [6]. The Armadillo
C++ linear algebra library [7] is used to solve

the Liouville equation in the DM calculations.
In the first implementation of the DM approach
(Figs. 1 and 4) tunnelling transport only through
the injection barrier is considered. Fig. 2 illustrates
the unrealistic spikes in current density and gain
when electrons scatter between spatially extended
subbands (as in Fig. 3) using the rate equation
approach.

The formalism is then applied to InAlGaN/GaN
(Fig. 5) and AlGaN/GaN THz QCLs with polar-
ization fields included. To calculate tight-binding
energies, wavefunctions and coupling strengths it is
necessary to remove pyro- and piezo-electric fields
from the isolating barriers to maintain periodicity
of the bandstructure. Optimizations are limited
to diagonal transition designs to account for an
enhanced Frölich interaction which is thought to
suppress gain in nitride systems [8].
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Fig. 1. Energy-band diagram of the ambipolar THz QCL in
Ref. 5 at 9 kV/cm. The lasing transition is from state 4 to 3.
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Fig. 2. Current density and gain as a function of forward
bias for the ambipolar THz QCL in Ref. 5 at 80 K with an
excess electron temperature of 10 K.
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Fig. 3. Energy-band diagram of the ambipolar THz QCL
in Ref. 5 at 7 kV/cm without the tight-binding approach.
This leads to an extended state 1 wavefunction providing an
unrealistic resonant LO phonon current path.
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Fig. 4. Simulated gain (or negative absorption) per cm for the
ambipolar THz QCL in Ref. 5 at 80 K with an excess electron
temperature of 10 K using the density matrix approach.
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Fig. 5. Energy-band diagram of the GaN THz QCL in Ref. 8
at a forward bias of 80 kV/cm with the tight-binding scheme
to obtain the localized wavefunctions shown.
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