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Improved AURA k-Nearest Neighbour Approach
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Abstract. The k-Nearest Neighbour (kNN) approach is a widely-used
technique for pattern classification. Ranked distance measurements to
a known sample set determine the classification of unknown samples.
Though effective, kNN, like most classification methods does not scale
well with increased sample size. This is due to their being a relationship
between the unknown query and every other sample in the data space.
In order to make this operation scalable, we apply AURA to the kNN
problem. AURA is a highly-scalable associative-memory based binary
neural-network intended for high-speed approximate search and match
operations on large unstructured datasets. Previous work has seen AURA
methods applied to this problem as a scalable, but approximate kNN
classifier. This paper continues this work by using AURA in conjunction
with kernel-based input vectors, in order to create a fast scalable kNN
classifier, whilst improving recall accuracy to levels similar to standard
kNN implementations.

1 Introduction

Many pattern matching techniques, whilst effective, do not scale well with in-
creased sample data space. The k-Nearest Neighbour (kNN) approach is one such
method that is widely-used[1]. For each applied query, a distance measurement
must be calculated between the query and every sample in the data space, and
the data ranked to determine the queries neighbours. With a large set of known
data, this can be restrictively slow.

In order to increase performance, we apply AURA to the kNN problem[7].
AURA is a highly-scalable associative-memory based binary neural-network, in-
tended for high-speed approximate search and match operations on large un-
structured datasets. It is typically used in large pattern-matching applications
that are unsuited to conventional pattern-matching algorithms. Upon presenta-
tion of a query, AURA can rapidly process a large dataset, returning a smaller
subset of approximate matches. This subset can then be rapidly processed using
more traditional, computationally-intensive methods such as kNN. This two-
stage approach is used in the FEDAURA project for fraud detection in large
data sets [2]. Initial work on AURA kNN used “blurred” input vectors (3-bits
set) to obtain a recalled subset of approximate matches[3]. Though fast and



scalable, it has been shown to be inaccurate. In order for the top k neighbours
to be contained in the subset recalled from AURA, the subset must be large.
In [3], we showed that the AURA kNN was faster than a standard C++ kNN
implementation. Here we investigate the recall accuracy of various kernel shapes
applied to the AURA input vectors with different data types and specifications.

2 kNN Classifier

Several distance metrics are used to measure the similarity of a query sample
and all known samples in the data space. For accurate geometrical distance
measurement, the Euclidean metric is used (see equation 1). However, since
this must be calculated for all samples, this can require intensive computation
with large data sets. The City Block metric simplifies measurement though
introduces some error (equation 2).

d(X> Y)euc =

d(X,Y) =Y |Xi - Vil (2)

i=1

By plotting these distance equations about a query point in 2-dimensional space
(figure 1) we can see the effect of both metrics. The query vector lies at the centre
of the plots with a distance score of zero. All other data points are measured
from the query point, radiating out linearly with increasing distance score.
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Fig. 1. Plots of (a) city block and (b) euclidean distance around a (central) point in
2D space



3 AURA

AURA (Advanced Uncertain Reasoning Architecture) is a family of techniques
and implementations intended for high-speed approximate search and match
operations on large unstructured datasets [4]. AURA technology is fast, scalable,
economical, and offers unique advantages for finding near-matches not available
with other methods.

AURA is based on a high-performance binary neural network called Corre-
lation Matrix Memory (CMM). Typically, several CMM elements are used in
combination to solve soft or fuzzy pattern-matching problems. AURA finds ex-
act and near-matches between indexed records and a given query, where the
query itself may have omissions and errors. The degree of nearness required
during matching can be varied through thresholding techniques. AURA implic-
itly supports powerful combinatorial queries, which accept a match between, for
example, any 5 from 10 fields in the query against the stored records.

A CMM consists of a binary correlation matrix neural network implemented
in memory, for the storage and retrieval of vector patterns. Each column of the
matrix is seen as a neuron, and each row represents an input and synapses to
each neuron. The CMM concept has two main modes of operation; teach and
recall. In teach mode, associated input and output binary vectors are trained
into the CMM and its matrix weights (bits) are set. The training operation is
expressed in equations 3 and 4, where My is the initial empty CMM weights
memory matrix, and M}, is the CMM matrix after k training operations. @
denotes a logical OR operation, S,f is the transposed separator pattern and P
is the input pattern. IV is the number of patterns trained into the CMM.

My, = My, ® S{ - Py, wherek € N (4)

0=> MPT (5)

To perform a CMM recall, only the input binary vector is applied to the CMM
matrix. Rows are selected by bits set in the input pattern, P;, and columns in
the CMM are summed to create an output integer vector, O (equation 5). The
resulting summed column data can be read unprocessed, or thresholded to obtain
the final binary vector containing the possible matches, Si. When recalling, the
input pattern can also be applied as a weighted (positive integer) vector. The
integer input, I, is applied to a CMM row and any bits set in that row are
added I times to their respective column count. Two types of thresholding can
be applied (Willshaw or Lmax) dependent upon the application. Willshaw [5]
thresholding compares the summed columns with a thresholded level, whilst
Lmax [6] retrieves the top L or more matches from all of the summed columns.
A detailed description of CMM neural networks can be found in [7].

CMM techniques lend themselves to such applications as inverted indices,
whereby objects are stored in the CMM categorised by certain attributes. For
attributes containing discrete, real, and categorical data, binning must be used
to encode the data into the input vector. Each attribute is quantised over a range



of bins, with each bin represented as a row in the CMM. Multiple attributes can
be encoded into an input vector by allocating a sub-vector to each attribute and
binning each attribute within this range.

4 AURA kNN Classifier

Comparing the conventional kNN and the AURA-based approach, the latter cal-
culates the k-nearest neighbours by traversing rows in a matrix. The standard
kNN is similar to traversing columns in the same CMM with floating-point ma-
trix entries rather than the binary entries of the AURA CMMs. The nested loop
for standard on-line kNN for a single query record is:

For all records (columns)
For all attributes (rows)

In contrast the loop for the CMM for a single query record is:

For all attributes (rows)
For all records (columns)

Thus we can speed calculation using AURA as we only select specific rows (bins),
so working with only a fraction of the data.

The input data is quantised and binned prior to its application to the CMM.
The quantised data retrieved from the CMM is therefore an approximation of
kNN. To compensate for this we retrieve a larger than & subset from AURA,
then post-process this small batch using conventional kNN. Another problem
with quantisation is the boundary effect. The bins have hard boundaries so
records lie within one bin only. Hence, for a particular value the distance to
other points in the same bin may be greater than the distance to a point in a
neighbouring bin. A technique developed as part of the FEDAURA project [2]
attempted to overcome this problem during recall by blurring the input vectors.
When setting a bit in the input query to represent an attribute’s bin, bits are
also set for the two adjacent bins. Thus, we retrieve any values that lie just
across the bin boundary and hence may be closer. This blurring of the input
query proved to be fast, but inaccurate, and so for the top k-nearest neighbours
to be recalled from AURA, the recalled subset must be large[3].

Figure 2(a) shows how distance scores are calculated around a central query
point, for a binary-weighted block kernel (multiple-bits set) method in a 2-
attribute (2-dimensional) problem. Note that the distance score at the query
is at maximum, and a nearest-neighbour record is only valid if its distance score
is greater than 1 (i.e. the top plateau). Records that return a score of 1 lie
within one of the radial field weighting regions, and can only be said to be an
approximate match. Similarly a record that scored ’0’ could be actually closer
to the query than a record that lay at the extremities of the "1’ region. Filtering
out these uncertainties can be easily achieved by absolute (Willshaw) thresh-
olding at level 2. For n-dimensional space using binary-weighted input vectors,
equation 6 determines the threshold level at which valid records are returned.



Equation 6 can be expanded when input vectors are weighted, and assuming that
every field’s input vector shares a common maximum weight, w, then equation
7 applies.

threshold >n — 1 (6)
threshold > (n — 1) - w (7)

In order to emulate kNN distance measurement using AURA, we decided to
improve on the binary-weighted approach by applying a kernel-weighted integer
input function to the query. For each attribute within the input vector query, we
apply a quantised integer kernel function centred on the query’s attribute bins.
The summed intersection of these kernel projections contains stepped concentric
patterns of equal scores. These scores, representing distance, will be at a max-
imum (n - w) at the query, and will radiate out into n-dimensional space until
the limiting threshold is reached (equation 7). Two kernel shapes were selected:
a triangular function that attempts to emulate the block-distance metric and
a semi-circular function that attempts to emulate euclidean-distance measure-
ment. In n-dimensional scenarios, the kernels produce an n-dimensional stepped
hyper-diamond or stepped hyper-sphere respectively. Figures 2(b) and 2(c) plot
score against attribute distance from a central (query) point, for both kernel
methods in a two-dimensional scenario. It can be seen that when using the tri-
angular kernel function, the intersecting scores, although stepped, compare well
with the traditional kNN block-measurement approach (figure 1). Note that
AURA-KNN, unlike traditional kNN, gives a maximum distance score at the
query and reduces as we move away from the query. The semi-circular kernel
method produces an intersection that approximates to euclidean distance, how-
ever, the distance to score stepping is non-linear. This non-linearity creates poor
resolution nearest the query point. For thorough evaluation we set the value of
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Fig. 2. Plot of AURA distance scores around a (central) point in 2D space using (a)
block (multi-bits set), (b) triangular, and (c) semi-circular kernel functions

k = 99. We vary the number of candidate matches retrieved by AURA using a
parameter we call the ErrorMargin(EM ), which is effectively a multiple of k.
AURA reduces the L-Max threshold value until it has recalled at least EM * k
matches. Throughout our evaluation we use an EM of 10 which retrieves at



least 990 candidate matches. The setting is a trade-off between recall accuracy
and retrieval speed. A higher value will retrieve more candidate matches which
maximises the likelihood of recalling the true k nearest neighbours as defined
by standard Euclidean kNN but increases the retrieval time as more candidate
matches have to be post-processed.

4.1 Kernels

We evaluate 3 kernel shapes in this paper; Triangle, Semi-Circle, and a blurred
(or 3-Bits Set) kernel. In the following, n; is the number of bins for attribute
i, max(n) is the maximum number of bins across all attributes and «; is the
scale factor to ensure all attributes have the same potential maximum score so
all attributes are ascribed an equal weight.

Triangle Has a linear decrement and is equivalent to quantised City Block
Distance, see equation 8.

— (z; — yi)az} where «; = %‘n) (8)

max(n)

Triangle(z,y) = Z { 5

i

Semi-Circle Has a quadratic decrement, and is equivalent to quantised Eu-
clidean Distance, see equation 9'.

2

2
. max(n max(n
SemiCircle(z,y) = Z l(%) —(z; — yi)zai] where a; = %
(9)
3-Bits Set Cheapest - only activate 3 lines of CMM per attribute, no control
required, tendency to retrieve too many equal-valued matches which all have
to be post-processed so overall retrieval can be slow.

i

5 Evaluation

We implemented the standard kNN that forms the baseline comparator using
C++. We employed range normalisation in the Euclidean Distance calculation
(see equation 10) to ensure all attributes were ascribed equal weights as all
attributes have equal weight in the AURA evaluation. We note that the weights
can be varied in both approaches if desired to reflect attribute weights. We
omitted the square root for speed as this does not affect the order of the nearest
neighbours. range; denotes the range of data for attribute <.

EuclidDist(z,y) = Xj(u)2 for all i attributes (10)
— " range;

! Derived from discussions with Bojian Liang and Garry Hollier



The k nearest neighbours for vector i are the k records with the lowest EuclidDist(x, y).
This equates to the inverse of the Semi-Circle. AURA retrieved the nearest neigh-
bours as those with the highest score but conversely, standard kNN retrieves the
records with the lowest score.

For our evaluation we use three data sets:

LR The Letter Recognition data set from the UCI data repository [8]. The
data comprises 20,000 vectors of 14 randomly-distributed, integer-valued at-
tributes ranging from 0-15.

REAL A data set containing 200,000 vectors of 14 real-valued attributes with
values between 0 and 1. The data set was generated using the Java random
number generator.

IBM A data set containing 20,000 vectors of 9 integer-valued attributes with
ranges between 0-4 and 0-1,349,600. This data set was generated using the
IBM data set generator [9] with standard settings. Note that we removed
the final class attribute from the data.

For the purposes of our evaluation here, we are only interested in the recall
accuracy of binning continuous or discrete attributes combined with the kernel
shape input vector scores. Thus, we treat all attributes from all three data sets
as continuous or discrete and subdivide the ranges into a series of bins.

We use 10 bins for the LR data set (LR-10) as the range of values in each
attribute is small. We use a higher number of bins (25) for the REAL data set
(REAL_25) as the attributes are continuously valued between 0 and 1 so a higher
degree of binning accuracy is desirable. For the final IBM data set, there is a
disparity in the attribute ranges so we analyse two setting of 10 and 25 bins
(IBM-10 & IBM_25) to investigate which performs best when attributes ranges
differ between 4 and 1,349,600.

We compare the top 99 matches retrieved by each of the kernel shapes across
the four settings (LR-10, REAL_25, IBM_10, IBM_25) against the 99 top matches
retrieved by a standard kNN technique implemented using C++. This will ver-
ify that the AURA pre-processing step which effectively minimises the search
space is accurate. Post-processing of the top matches ensures the nearest neigh-
bour orders will be identical. Therefore we are interested only in the number of
neighbours in the top 99 as their orders will be identical.

6 Results and analysis

In table 1 we list the recall accuracy percentages for the various kernel shape and
data set combinations. The Semi-circle kernel is most accurate, closely followed
by the Triangle. The original 3-Bits Set kernel performs poorly. The Triangle
and the Semi-Circle are sufficiently accurate (over 99% recall accuracy) for most
application domains. The difference in the recall accuracy between these two is
negligible, though it is expected that the Semi-Circle kernel approach will prove
more accurate as we reduce the size of the recalled subset.



LR_10|REAL_25/IBM_10{IBM_25
Triangle 99.49 99.95| 100.00| 100.00
Semi-Circle|| 99.57| 100.00| 100.00| 100.00
3-Bits Set || 89.27 17.01} 63.51| 52.33
Table 1. Table listing the recall accuracy (percentage) for the three kernel shapes
using the three data sets. There are two settings for the IBM data set for comparison.

We note that the records missed by the Triangle and Semi-Circle kernels are
always at the tail of the neighbour list. For most applications, we feel this slight
inaccuracy at the least critical end of the neighbour list is easily mitigated by
the performance enhancements facilitated by the AURA techniques [3].

7 Conclusions

Previous work [3] has shown the AURA-knn approach to be faster than the
standard computational approach. This is achieved by using AURA as a coarse
filter to rapidly extract a subset of records from the data space, then process-
ing this smaller, manageable subset with traditional methods. In this paper we
have improved on this approach by dramatically increasing the accuracy of the
recalled AURA subset, which equates to a smaller recalled subset and reduced
post processing requirements.
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