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Abstract 
This article presents the results of brightness matching and brightness discrimination 

tests carried out using sequential evaluation (temporal juxtaposition) to compare 

brightness under lamps of different spectral power distribution at mesopic levels of 

illumination. These data are compared with the results of previous tests which used 

simultaneous evaluations (spatial juxtaposition) to enable comparison of these 

different modes of evaluation. It is concluded that sequential and simultaneous 

evaluations yield similar estimates of illuminances required for equal spatial 

brightness and similar levels of precision in this task. 
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1 INTRODUCTION 

The authors have previously reported the results of brightness matching and brightness 

discrimination tasks using simultaneous evaluations – side-by-side booths lit simultaneously 

by two different light sources [Fotios & Cheal, 2007]. This article presents the results of a new 

series of tests in which the matching and discrimination tasks were repeated using the same 

set of lamps as before but now using sequential evaluations – a single booth lit in temporal 

alternation by two different light sources.  

 

Sequential evaluations have been used in previous work to discriminate between 

brightnesses under lighting of different spectral power distribution (SPD) [Berman et al, 1990; 

Vrabel et al, 1998]. However, Yeshurun et al suggest that the sequential forced choice 

discrimination task is not bias free and therefore should be used with caution, if at all 

[Yeshurun, Carrasco & Maloney, 2008]. Uchikawa and Ikeda [Uchikawa & Ikeda, 1986] 

concluded that simultaneous evaluations of brightness tend to result in more stable results 

than sequential evaluations and this has lead at least one research group to adopt 

simultaneous evaluation rather than sequential for their brightness judgements [Bullough, 

Yuan & Rea, 2007]. The aim of this article is to review evidence for effects of evaluation mode 

on judgements of spatial brightness, thus to assist analysis of past research and to guide best 

practice for future work.  

 

There are two modes for evaluation of multiple stimuli, joint evaluation and separate 

evaluation [Hsee et al, 1999] and the joint evaluation can be further sub-divided into temporal 

and spatial juxtapositions. The separate evaluation means that stimuli are presented 

individually and test participants provide a judgement of absolute magnitude. The joint 

evaluation permits a stimulus to be judged in comparison with a simultaneous reference 

stimulus, a relative judgement; the two stimuli are presented simultaneously in spatially 

adjacent fields, or sequentially at the same spatial location. Joint evaluations typically seek 

responses by the methods of forced choice discrimination (e.g. which stimulus is brighter?) or 

adjustment (e.g. match stimuli for equal brightness by adjusting the illuminance of one 

stimulus). The spatial juxtaposition is frequently a left-right comparison but top-bottom and 

centre-surround comparisons have also been used. All three modes of evaluation have been 

used in previous research of spatial brightness. For example, at photopic levels of adaptation 

Fotios & Levermore presented two stimuli simultaneously in side-by-side booths and used a 

matching task [Fotios & Levermore, 1997], Berman et al used a discriminating task and 

presented two stimuli in rapid sequential alternation at the same location [Berman et al, 1990], 

and Boyce & Cuttle presented stimuli separately in rooms and used a category rating task 

[Boyce & Cuttle, 1990]. 

 

Further experimental work was carried out to enable quantitative comparison of the two joint 

modes of evaluation in the context of lamp spectrum effects on spatial brightness. There are 



     

 3 

two reasons which suggest simultaneous and sequential evaluations could lead to different 

estimates of spatial brightness under different lamps. Firstly, the two evaluation modes may 

differently affect operation of the part of the visual system which mediates spatial brightness 

above and beyond the achromatic luminance response. In this case, the illuminance ratio of 

two stimuli at equal brightness would be different for the two evaluation modes. Secondly, the 

two evaluation modes may differently affect an observer’s ability to carry out the brightness 

matching task and will impose different types of bias. There is, for example, suggestion that 

simultaneous evaluations may enable more precise judgements to be made than with 

sequential evaluation [Uchikawa & Ikeda, 1986; Jäkel & Wichmann, 2006], and this would be 

seen as a smaller standard deviation. 

 

The joint evaluation in which the two stimuli are shown simultaneously at separate spatial 

locations is hereafter called the Simultaneous mode of evaluation; previous studies have 

also labelled this as a two-alternative or spatial evaluation.  The joint evaluation in which two 

stimuli are presented in succession, often, but not necessarily, at the same spatial location, is 

hereafter known as the Sequential mode of evaluation; previous studies have also labelled 

this as the two-interval or temporal evaluation. The sequential evaluation in which the stimuli 

are each presented only once is called a successive evaluation. 

 

2 EXPERIMENTAL BIAS 

Simultaneous and sequential evaluations may suffer from bias associated with the stimulus 

juxtaposition, a positional bias in simultaneous evaluations and an interval bias in sequential 

evaluations. The response tasks themselves invoke further sources of bias, such as biases 

associated with the adjustment procedure in the matching task [Fotios 2001 dimming; Fotios 

& Cheal 2007 r.c.b. ; Fotios, Houser & Cheal, 2008] and bias associated with stimulus range 

selection in the discrimination task [Fotios & Cheal, 2008; Teller, Pereverzeva & Civan, 2003]. 

 

2.1 Positional Bias 

Positional bias is found with spatial juxtaposition and means that one spatial location appears 

brighter than the other with a greater frequency than is expected, leading to an incorrect 

estimate of the relative brightnesses of the stimuli. Such bias can be easily seen in null 

condition trials, where stimuli of the same SPD and illuminance should appear equally bright, 

giving an illuminance ratio (left-hand/right-hand) of 1.0 in brightness matching. However, the 

results from some studies reveal an illuminance ratio (LH/RH) significantly different to unity. 

This bias may result from the inability for the experimenter to completely match the physical 

arrangement of two spaces, in particular when these are large fields simulating an office 

environment, or it may be that the test subject considers one spatial location to be brighter 

than the other regardless of the stimulus as was reported by Kinney [Kinney, 1955]. Whilst 

positional bias has caused an illuminance difference of up to 15% in previous work [Fotios, 

Houser & Cheal, 2008] some studies have shown that positional bias can be negligible 
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[Boyce, 1977]. In anticipation of a positional bias the spatial location of stimuli in the 

simultaneous evaluation should be counterbalanced. 

 

2.2 Interval Bias 

In sequential evaluations stimuli are presented in temporally sequential intervals and these 

are usually at the same spatial location. Interval Bias [Yeshurun, Carrasco & Maloney, 2008] 

is a consistent asymmetry in the direction of a certain response, for example a ‘brighter’ 

response which appears with a greater frequency than is expected, and is analogous to the 

positional bias of simultaneous evaluations. In their detection task, Jäkel and Wichmann 

found a strong bias to the second interval with successive evaluations whilst the simultaneous 

evaluation was virtually unbiased [Jäkel & Wichmann, 2006]. Other studies investigating a 

range of judgements indicate a bias toward the first interval [Yeshurun, Carrasco & Maloney, 

2008]. 

 

In sequential evaluations, observers have to retain their sensory impression of the preceding 

stimulus in mind while waiting for and then judging the current stimulus [Jäkel & Wichmann, 

2006]. Thus a possible explanation of interval bias is memory limitations: the observer either 

cannot or does not record an accurate sensory intensity in the first stimulus when making 

comparison with the second stimulus [Yeshurun, Carrasco & Maloney, 2008].  Mental 

representations of previously encountered physical stimuli tend to be lower (e.g. shorter in 

length, or less bright) than were the original stimuli [LaBoeuf & Shafir, 2006] as was found in 

the Uchikawa and Ikeda brightness matching results where stimuli were recalled as being 

darker with successive evaluation than with simultaneous evaluation [Uchikawa & Ikeda, 

1986]. 

 

Zheleznikova & Myasoedova [Zheleznikova & Myasoedova, 1995] used a successive 

matching task to compare brightness under two different types of lamp. Test participants 

entered the first of two rooms which was lit by one type of lamp, and then entered the second 

room which was lit by a second type of lamp. The amount of light in this second room was 

adjusted to match the brightness of the first room. The mean illuminance ratio (room-1/room-

2) was greater than unity and a first interpretation is that the second room tended to appear 

brighter than the first room. However, the result may also be interpreted to suggest a bias 

toward the second interval, or, due to lack of counterbalancing in the experimental procedure, 

a conservative adjustment bias. 

 

Previous research exploring interval bias tends to have used successive evaluations, in which 

the stimuli are presented only once each, with judgements being made after observation of 

the second and without the opportunity to see the first stimulus again. Two studies of spatial 

brightness have used sequential evaluation rather than successive. Berman et al presented 

three alternations of the two lamps, each being presented for five seconds at a time with a 
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dim period of 25ms in the 100ms changeover duration [Berman et al, 1990].  Vrabel et al 

presented their stimuli for three seconds each, with a two second dark interval, and observers 

were able to ask for as many repeat presentations as needed [Vrabel et al, 1998]. The 

repeated presentation of both stimuli may overcome interval bias due to memory affects as 

the internal brightness reference is repeatedly refreshed by observation of the external 

reference. However there are no null condition data within these studies with which to analyse 

bias effects. 

 

2.3 Precision  

Precision refers to the repeatability, or stability, of judgements, the degree to which test 

participants are able to make the same judgement on repeat observations of the same stimuli. 

Lower precision would lead to larger variance in the results. 

 

Uchikawa and Ikeda [Uchikawa & Ikeda, 1986] compared successive and simultaneous 

brightness matching tasks using a two-degree bipartite field. In the simultaneous task, test 

and comparison stimuli were presented simultaneously for one second with two-second 

intervals. For the successive task the test stimulus was shown first, for one second, and then 

the comparison stimulus was shown repeatedly for one second with two-second intervals; this 

matching task hence relies on memory when adjusting the second stimulus as there is no 

opportunity to see the first stimulus again. Results obtained using simultaneous evaluation 

were more stable than those using successive evaluation, the standard deviation for the 

successive being 20% and 130% greater than that for the simultaneous for their two 

observers. Jäkel & Wichmann also found lower precision with their successive detection task 

than with their simultaneous detection tasks [Jäkel & Wichmann, 2006].   

 

In contrast to this, Foster et al [Foster, Amano & Nascimento, 2001] found a lower variance 

between observers with sequential evaluations than with simultaneous evaluations in a colour 

matching task. In their sequential task, the stimuli were presented in continuous alternation for 

one second each with no dark interval. The difference in variance between the two evaluation 

modes was significant (p<0.05) when observers controlled both the luminance and 

chromaticity of the test stimulus but was not significant when they had control of chromaticity 

only. 

 

2.4 Summary 

Simultaneous evaluations may suffer from positional bias, and there is evidence from 

previous studies of spatial brightness that counterbalancing can offset this bias [Fotios, 

Houser & Cheal, 2008]. Sequential evaluations may suffer from interval bias: this may be 

stronger in the successive evaluation where stimuli are seen only once than in the sequential 

evaluation where stimuli are seen repeatedly, but previous studies of spatial brightness do not 
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present the null condition data which would quantify this. The data are inconclusive as to 

whether the precision of brightness judgements would differ for the two evaluation modes. 

 

3. PHYSIOLOGICAL RESPONSE 

When making a judgement between two stimuli of different SPD the evaluation mode will 

affect the SPD received at the eye. In simultaneous evaluations this is a mixed spectrum of 

the two stimuli, whereas in sequential evaluations it is the individual spectra in rapid 

succession. Two possible systems for mediating the SPD effect on spatial brightness are 

chromatic adaptation and pupil size. 

 

3.1 Chromatic Adaptation  

Spaces illuminated by lamps of different SPD can appear differently bright at the same 

illuminance because illuminance, as defined by The CIE Standard Photopic Observer (Vλ), is 

derived from a different visual process to that of brightness. The post-receptoral visual system 

is organized in three channels, one luminance channel where signals from the long- and 

medium-wavelength sensitive cone types are combined, and two colour channels where the 

differences between signals from different combinations of cone types are taken [Hunt, 1995]. 

The CIE Standard Photopic Observer is based on data collected primarily using flicker 

photometry and step-by-step brightness matching, techniques that tend to minimise activity in 

the colour channels; brightness perception is dependent on activity in all three channels 

[Lennie, Pokorny & Smith 1993, Wagner & Boynton 1972, Yaguchi & Ikeda, 1983].  

 

Chromatic adaptation is the gradual neutralisation of activity in the opponent colour channels 

as the eyes acclimatise to the stimulus. Complete chromatic adaptation takes up to two 

minutes to achieve [Fairchild & Reniff, 1995; Shevell, 2001], and the observer’s white point 

becomes the chromaticity of the stimulus, eliminating, or at least reducing, the brightness 

contribution from the opponent colour channels. In simultaneous evaluations the chromatic 

adaptation state of the observer is difficult to define. The observer does not adapt to the 

individual stimuli but to the mixed spectrum; Braun et al suggest “an adapting white point … 

should be chosen somewhere between the two adapting conditions being considered” [Braun, 

Fairchild & Alessi, 1996]. Studies of spatial brightness using sequential evaluation have 

presented the stimuli for up to five seconds each, showing both stimuli several times during 

each trial, and this would lead to approximately 60% chromatic adaptation [Fairchild & Reniff, 

1995; Shevell, 2001]. The observer’s white point would therefore swing between the 

chromaticities of the two stimuli, without reaching either. 

 

Therefore, both simultaneous and sequential evaluations render incomplete chromatic 

adaptation. There will still be some activity in the opponent colour system and thus lamp SPD 

can affect brightness. Whether the two evaluation modes lead to different judgements of 

brightness may depend on the duration of exposure and the point during presentation within 



     

 7 

the sequential mode that decisions are made: if participants make a decision at the onset of 

each stimulus, then the adaptation to these stimuli will be minimal and the brightness 

difference large, but if the decision is made toward the end of the presentation period of each 

stimulus then there will be a greater degree of chromatic adaptation to that stimulus and 

brightness differences may be diminished. Chromatic adaptation in sequential evaluations in 

which each stimulus is presented for longer than five seconds will tend towards that of 

separate evaluations, in which the chromatic contribution to brightness is reduced relative to 

that of joint evaluations [Fotios, 2006].  

 

3.2 Pupil Size  
Two studies have proposed that spatial brightness is mediated by pupil size [Berman et al, 

1990; Viénot et al, 2009]. While there is evidence that the pupil changes size in response to 

changes in illuminance and SPD there is no established mechanism to explain why a 

reduction in pupil size caused by changes in SPD should lead to the perception that 

brightness has increased. Viénot postulates an indirect mechanism might be in operation: 

although less light reaches the retina (when the pupil contracts) the observer “feels” that the 

illumination is brighter [Viénot et al, 2009].  

 

The pupil reflex is driven by the intrinsically photosensitive retinal ganglion cell (ipRGC) [Koga 

& Takao, 2009]. The ipRGC has a peak sensitivity to short wavelength light [Koga & Takao, 

2009] and thus as the short wavelength component of lighting increases, the signal from the 

ipRGC to the pupil increases. In one study this was attributed to CCT: stimuli of higher CCT 

were found to be brighter [Viénot et al, 2009] although other studies suggest that CCT does 

not correlate with brightness judgements [Boyce, 1977; Boyce & Cuttle, 1990]. In the second 

study the effect was characterised by the scotopic to photopic (S/P) luminance ratio [Berman 

et al, 1990]: the scotopic (rod) response also has peak sensitivity in the short wavelength 

region and therefore lighting of higher S/P ratio would appear brighter. For most white light 

sources, S/P ratios increase as CCTs increase. 

 

Berman et al report pupil sizes (area) for a range of S/P ratios at two different illuminances 

(64 lux and 106 lux) [Berman et al, 1997] and these provide a guide as to the range of pupil 

size differences expected in brightness judgements. The S/P ratios of the two light sources 

were chosen to be high (C75 lamp) and low (WW lamp) and pupil sizes were measured 

during observation of one of four screens of different colours. The smallest pupil size 

(10.69mm2; or 3.69mm diameter) was found with the C75 lamp at the higher illuminance 

when observing the white surface (S/P=2.25); the largest pupil size (19.13mm2; or 4.94mm 

diameter) was found with the WW lamp at the lower illuminance when observing the reddish-

brown surface (S/P=0.84).  
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Sequential and simultaneous evaluations of brightness will elicit different responses if the 

sequential evaluation allows sufficient time for a significant change in pupil size. The ipRGC 

responds to light slowly relative to the rapid response of rods and cones [Koga & Takao, 

2009]. Previous judgements of spatial brightness have used exposures of three seconds 

[Vrabel et al, 1998] and five seconds [Berman et al, 1990] to each stimulus. Upon opening in 

the dark after adaptation to a large, bright (320 cd/m2) field, the pupil can dilate from a 

diameter of 2.9mm to 4.7mm in three seconds and up to 5.6mm diameter in five seconds, 

[Wyszecki & Stiles, 1982]. Contraction on exposure of a dark adapted eye to the same bright 

field reduces the pupil from a diameter of 8.0mm to 3.3mm in three seconds, and reaches 

3.1mm in 4.5 seconds. There may also be an initial delay (latency) in the response to stimulus 

onset of around 0.3 seconds [Kasthurirangan & Glasser, 2006; Feinberg & Podolak, 1965] 

and a momentary dilation due to the dark period between stimuli (darkness reflex) [Andreassi, 

2000]. Thus it is reasonable to expect that the change in pupil size following a change of 

illuminant in brightness matching tests would be complete within three seconds. 

 

For simultaneous evaluations the ipRGC is stimulated by the mixed SPD of the two light 

sources, and pupil size is modified to an arbitrary mid-way diameter between the diameters it 

would adopt if stimulated by the two sources separately. In this case, two stimuli of equal 

luminance but different SPD would appear equally bright because the pupil would have the 

same diameter for both. For sequential evaluations using three to five seconds duration per 

stimulus the pupil diameter has sufficient time to respond to the SPD of each stimulus, and 

thus the same two stimuli of equal luminance but different SPD would appear differently bright 

because the pupil would have a different diameter on exposure to each stimulus. What is not 

known is whether the change in pupil size is complete at the point within the stimulus 

observation at which the observer makes the judgement.  

 
3.3 Summary 
The chromatic and pupil size systems respond differently to sequential and simultaneous 

evaluations of brightness. If the chromatic system is the dominant system for spatial 

brightness then sequential and simultaneous evaluations will yield similar responses; if the 

pupil response is the dominant system then the two modes of evaluation will lead to different 

judgements of spatial brightness. Further research is needed to investigate the point within a 

sequential evaluation at which the brightness decision is made as this affects the degree of 

chromatic adaptation and completeness of the change in pupil size. 

  

4. METHOD  

The above discussions suggest that simultaneous and sequential evaluations of spatial 

brightness may yield different estimates of the magnitude of lamp spectrum effects and 

different levels of precision. Fotios & Cheal previously reported the results of brightness 

matching and brightness discrimination tests at mesopic levels, both using simultaneous 
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evaluations [Fotios & Cheal, 2007]. This work was repeated using sequential evaluation to 

enable quantitative comparison. Direct comparison of simultaneous and sequential brightness 

discrimination has been carried out at photopic levels [Fotios & Houser, 2009] and will be 

reported in a further publication. 

 

Previous simultaneous evaluations [Fotios & Cheal, 2007] used a pair of side-by-side booths, 

with separate light sources simultaneously illuminating each booth. Light was transported to 

the top of each booth through a light pipe, with an iris in the pipe to enable variation of 

illuminance. The sequential evaluations used only one of these booths (Figure 1). This was 

again observed from a distance of 1.0 metre which presented a visual field of approximately 

37° high and 38° wide. Light from two different lamps was transported to the booth through 

separate light pipes, again using irises to adjust the illuminance. Placed in series with each 

iris was a leaf shutter that provided rapid on-off switching of the source without affecting the 

dimming adjustment. Luminance measurements show negligible differences in spatial 

distribution between lamps, between light from the two light pipes and between levels of 

dimming. The interior surfaces were painted matt grey (Munsell N5, r=0.2) and contained 

coloured objects, these being four pyramids 60mm high, one each made from red, green, 

yellow and blue card. 

 

The two stimuli were presented in rapid succession: stimulus A for 5s; a dark interval of 

approximately 300ms; stimulus B (5s); dark interval (300ms); stimulus A (5s) etc. These 

durations were chosen to repeat the conditions used by Berman et al [Berman et al, 1990]. 

For the matching test this procedure was followed until the test participant was satisfied with 

their brightness match (typically three to eight repetitions). For the discrimination test the 

number of repetitions was limited to three, i.e. ABABAB. The on/off shutter (leaf shutter) was 

triggered manually with regard to a digital clock. The accuracy of the timing of this was 

determined using a video recording of the shutter and clock during a sample of trials. It was 

determined that the presentation duration of 5 seconds was accurate to within ±500ms.  

 

Four lamps were used; a standard high pressure sodium (HPS), a compact fluorescent (CFL) 

and two types of metal halide (MH1, MH2), as defined in Table 1, these being the same 

lamps as used in previous work [Fotios & Cheal, 2007]. Using the HPS as the reference 

source gave four lamp combinations including a null condition. The order in which lamp pairs 

were presented was balanced between subjects. 

 

In sequential brightness matching trials one of the two lamps in a pair was set by the 

experimenter to the reference illuminance. The test participant used the dimming control, a 

three-turn rotary dial, adjusting the illuminance of the second stimulus so that the two were 

matched, as-near-as-possible, for equal brightness. This procedure was carried out four times 

by each test participant to counterbalance dimming application (applied to both lamps in the 
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pair) and dimming direction (starting from high and low initial illuminances). When the HPS 

lamp was used as the stimulus of fixed illuminance the reference illuminance was 7.5 lux, as 

measured at the centre of the floor of the booth. When the MH and CFL lamps were used as 

the stimulus of fixed illuminance the reference illuminance was 5.0 lux; this was expected to 

be approximately equally bright as the HPS at 7.5 lux and thus maintain a similar level of 

adaptation in both cases. 

 

In sequential brightness discrimination trials, lighting from one lamp in each pair was set to 

the reference illuminance and lighting from the second lamp was set to a range of 

illuminances. At each presentation the test participant reported which stimulus appeared 

brighter, a forced choice task. This procedure was repeated by each test participant to 

counterbalance lamp nomination as reference or variable stimulus. When the HPS lamp in a 

pair was used as the stimulus of fixed illuminance, this being 7.5 lux, the CFL and MH lamps 

were presented at 2.0, 3.0, 5.0, 7.5, 10.0 lux. When the MH or CFL lamps in a pair was used 

as the stimulus of fixed illuminance, this being 5.0 lux, the HPS lamp was presented at 3.0, 

5.0, 7.5, 10.0 and 15.0 lux. These ranges were chosen with expectation that the middle value 

would tend to appear the more equally bright as the fixed illuminance stimulus, thus avoiding 

a stimulus frequency bias [Fotios & Cheal, 2008], and are the illuminance steps of the S-

series of lighting classes for residential roads [BS EN 13201: 2003]. With each participant, the 

HPS reference source remained in the same housing (iris, shutter & light pipe), but across the 

participant sample this was balanced between the two housings. 

 

The HPS reference illuminance of 7.5 lux gave a mean luminance of 0.35 cd/m2 on the back 

wall of the booth. The range of mean luminances on the back wall experienced in trials was 

from approximately 0.10 cd/m2 at 2.0 lux to 0.70 cd/m2 at 15.0 lux. 

 

Twenty one naïve subjects were used, and these were paid for their participation. Thirteen 

were female and eight were male; nineteen subjects were aged between 18 and 44 years old 

and two were aged 45 to 54 years old. The size and breakdown of this sample is very similar 

to that used in the previous simultaneous matching trials [Fotios & Cheal, 2007]. Some 

subjects had been used in previous lighting experiments during which it was established that 

they had normal colour vision: for those subjects who had not previously participated in 

lighting experiments, normal colour vision was confirmed using the Farnsworth dichotomous 

D-15 test. 

 

5 RESULTS 
5.1 Brightness Matching Null Condition 
An examination of the null condition data is used to validate the experiment. In null condition 

trials, HPS lamps were used in both intervals, one being the reference and was set to 7.5 lux. 

Four matches were made by each test participant, with the dimming control operating both 
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lamps, each for two trials, starting from high and low initial illuminances. The two HPS lamps 

were nominally called the reference lamp (HPS), used as the reference for all trials, and the 

comparison lamp (HPSc), used as the second source for the null condition trials, but were 

otherwise identical. The mean illuminance ratio (HPSc/HPS) at equal brightness is 0.996 (std 

dev = 0.035, n=21), which is not a significant departure from unity (t-test). 

 

For approximately half the trials these lamps were placed in the left-hand or right-hand 

housings behind the booth. When the HPS lamp used the right-hand housing the mean 

illuminance ratio (HPSc/HPS) is 1.005 (std dev = 0.030, n=10) and when it was placed in the 

left-hand housing the mean illuminance ratio (HPSc/HPS) is 0.987 (std dev = 0.039, n=11). 

The difference between the groups is not statistically significant (t-test) which suggests 

negligible difference between the lamp housings. 

 

Previous work using simultaneous evaluations has revealed a conservative adjustment bias, 

in which the variable stimulus is set to a lower level than expected [Fotios, 2001; Fotios & 

Gado, 2005; Fotios, Houser & Cheal, 2008]. There is a common psychological tendency to 

adjust insufficiently in tasks that involve estimation via adjustment and it is manifest in a 

variety of sensory responses [LaBoeuf & Shafir, 2006]. To determine whether this bias was 

present in the current work the results are formatted as variable source and fixed source. The 

mean illuminance ratio (variable/fixed) is 0.992 (std dev = 0.039, n=21), which is not a 

significant departure from unity (t-test) and suggests that the conservative adjustment bias 

was not present in the sequential matching task. 

 

Analysis of the results from the null condition trials carried out to validate the experimental 

procedure suggests that any bias in the brightness matching procedure was negligible. 

 

5.2 Brightness Matching Between-Lamps  

Results of the sequential brightness matching tests are shown in Table 2. The set of 

illuminance ratios within each lamp pair (including the null condition) were examined to 

determine whether they appeared to be drawn from a normally distributed population by 

examination of central tendency, dispersion, graphical representation and statistical analysis. 

It was concluded that the data are drawn from a normally distributed population and hence 

statistical analysis employed parametric tests. For each lamp pair, Table 3 shows that the 

mean illuminance ratio (test/HPS) is less than unity, and analysis using the t-test suggests 

that these differences are significant (p<0.01). 

 

Table 2 also shows the results of the previous brightness matching study using simultaneous 

evaluations and the same set of lamps. [Fotios & Cheal, 2007]. In those trials, each of 21 test 

participants carried out the matching task four times for each lamp pair, counterbalancing the 

lamp to which dimming was applied and the initial illuminance of the variable stimulus. The 
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trials were carried out at three reference illuminances (2.0, 7.5 and 15 lux); the results shown 

in Table 3 are those from the 7.5 lux reference illuminance, but the conclusions drawn are 

identical if the mean data across all three reference illuminances were used. Application of 

the t-test suggests the mean illuminance ratio in each lamp pair departs significantly from 

unity (p<0.01). There is little difference between mean illuminance ratios obtained using 

simultaneous and sequential matching.  

 

The null condition data suggested no evidence of the conservative adjustment bias. The 

between-lamps data are broken down in Table 3 according to which lamp was varied by the 

test participant. Participants applied the dimming to both lamps in the pair on successive 

trials, and for each the trial commenced with the variable lamp set to both high and low initial 

illuminances. The results shown in Table 3 are derived from the mean of the results obtained 

with the high and low initial illuminances. The trend is for lighting from the variable stimulus to 

be set to a higher than average illuminance, an exaggerative response rather than a 

conservative response. However, this effect is significant for only one (CFL/HPS) of the three 

lamp pairs (p<0.05). Together with the null condition data, this suggests that the sequential 

matching task did not suffer from conservative adjustment bias as has been found in 

simultaneous matching tests. In these tests the application of dimming was counterbalanced, 

so the effect of any bias associated with the application of dimming, whether conservative or 

exaggerative, was averaged out in the results. 

 

5.3 Precision in Brightness Matching 

Comparison of the standard deviations for simultaneous and sequential evaluations in each 

lamp pair as reported in Table 2 does not suggest a difference in the precision between 

subjects. This same conclusion is drawn if the standard deviations are derived from all 84 

trials for each lamp pair (21 subjects x 4 repeats). 

 

However, there may be a difference in precision within subjects. Table 4 shows the mean 

within-subjects standard deviations: for each test participant the standard deviations of their 

four trials per lamp pair were determined and Table 5 shows the means of these. These data 

suggest a lower within-subjects standard deviation for the sequential evaluations than for 

simultaneous evaluations. 

 

An individual test participant is better able to make the same setting on repeat trials with the 

sequential match, but the difference between subjects of this setting is not affected and both 

evaluations yield a similar mean response with the same precision. 

 

5.4 Brightness Discrimination Null Condition  

In null condition discrimination trials participants compared two identical lamps, the reference 

HPS lamp (HPS) and the comparison HPS lamp (HPSc). One lamp was set to provide an 
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illuminance of 7.5 lux and the second to provide 3, 5, 7.5, 10 or 15 lux in random order. Both 

lamps were used as the fixed illuminance stimulus, and thus there are 42 discrimination 

judgements at each illuminance combination. 

 

When the two stimuli provided different illuminances, the stimulus of higher illuminance was 

judged to be brighter for 100% of trials. When the two stimuli were of equal illuminance, 55% 

of the judgements reported that the HPSc lamp was brighter. According to analysis using 

Dunn Rankin variance stable rank sums [Dunn-Rankin et al, 2004] the difference between the 

HPS and HPSc lamps is not significant which suggests negligible bias. 

 

5.5 Brightness Discrimination Between-Lamps  

In these trials one lamp was presented at a fixed illuminance and the second lamp at five 

different illuminances, the middle illuminance predicted to be the least different in brightness 

with the fixed illuminance stimulus.  

 

Where the CFL, MH1 or MH2 lamps were presented at equal or higher illuminance than the 

HPS lamp, then these were judged to be brighter for almost 100% of the trials (of these 252 

comparisons, there was only one judgment that HPS lighting at 5 lux was brighter than MH1 

lighting at 5 lux). When the CFL, MH1 or MH2 lamps were presented at an illuminance two or 

three steps of the S-series below that of the HPS lamp, then the HPS was judged to be 

brighter on almost 100% of the trials (of these 252 comparisons, again only one judgment 

corresponded to CFL lighting at 3 lux being brighter than HPS lighting at 7.5 lux).  

 

Table 5 shows the results of the brightness discrimination trials when the HPS lamp was set 

to 7.5 lux and the CFL, MH1 or MH2 lamps were set to 5 lux.  This condition was experienced 

twice by each test participant, once when the HPS lamp was fixed at 7.5 lux and once when 

the test lamp was fixed at 5.0 lux, and hence these results are derived from 42 observations. 

For the CFL/HPS and MH2/HPS the distribution of judgements for brighter stimulus were 

close to equally distributed for both stimuli. For the MH1/HPS however, the HPS was judged 

to be the brighter stimulus in the majority of trials. Analysis using Dunn Rankin variance stable 

rank sums [Dunn-Rankin et al, 2004] suggests that the difference between the two lamps is 

not significant in all three pairs. These conclusions replicate those drawn from the results of 

the discrimination test previously carried out using simultaneous evaluations [Fotios & Cheal, 

2007]. 

 

Hence these results suggest that following a reduction in illuminance from 7.5 to 5.0 lux, one 

step of the S-series, a space lit by the CFL, MH1 and MH2 lamps will not appear different in 

brightness to a space lit by HPS lamps at 7.5 lux. This supports the illuminance reduction 

permitted when lighting in residential streets in the UK [BS5489-1:2003]. 
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6 DISCUSSION 

Table 6 shows the mean illuminance ratio for equal brightness under each lamp pair, for the 

tests using sequential evaluation as reported in this article, and for the tests using 

simultaneous evaluation as were previously reported [Fotios & Cheal, 2007]. For the 

brightness matching tests these are simply the mean illuminance ratios derived from the test 

results. For the brightness discrimination tests, the mean illuminance ratios for equal 

brightness were determined using the four-parameter logistic equation [Menon & Bhandarkar, 

2004].  

 

Two observations are drawn from Table 6. Firstly, there appears to be little difference in 

illuminance ratio for a particular lamp pair between sequential and simultaneous evaluation 

modes, for both the matching and discrimination tasks. Analysis using the two-tailed t-test to 

the brightness matching results does not suggest that differences between simultaneous and 

sequential matching tasks are significant. This suggests that the evaluation mode did not 

significantly affect operation of the visual mechanism responsible for spatial brightness at the 

mesopic illuminance at which these trials were conducted. Secondly, the brightness 

discrimination data suggest illuminance ratios that depart slightly further from unity than do 

those from the matching task: the one-tailed t-test suggests these differences are significant 

(p<0.05).  

 

Table 6 suggests one possible difference, for the CFL/HPS lamp combination, where the 

illuminance ratio for the simultaneous discrimination task (0.59) is lower than for the other 

methods. This value was determined from the simultaneous discrimination trials carried out at 

7.5 lux: if data from the trials carried out at 2.0 and 15 lux are included the CFL/HPS 

illuminance ratio would be 0.65, much closer to the other values. For the MH1/HPS and 

MH2/HPS lamp pairs there was little difference between illuminance ratios determined from 

any of the three reference illuminances used in the simultaneous discrimination tests. 

 

Comparison of the standard deviations found in simultaneous and sequential matching (Table 

2) suggest little difference in precision of the mean illuminance ratio determined using the two 

modes of evaluation. One advantage of the sequential matching task is that it does not 

appear to exhibit the conservative adjustment bias previously found in simultaneous 

matching. Advantages of the simultaneous matching task are that, anecdotally, test 

participants tended to prefer it, and it can be carried out in less time than sequential 

evaluations. 

 

It was suggested above that if the chromatic system was the dominant system for judgements 

of spatial brightness then sequential and simultaneous evaluations of brightness would yield 

similar responses, but that if the pupil response was the dominant system then the two modes 

of evaluation would lead to different judgements of spatial brightness. The experimental 
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results do not suggest a difference between the sequential and simultaneous evaluations of 

brightness and therefore that any change in pupil size has not significantly affected the 

brightness judgement. A similar conclusion was drawn from tests carried out at photopic 

levels of illumination [Houser, Fotios & Royer, 2009].  

 

All subjective evaluations of a physical stimulus are biased; good experimental design should 

seek to remove the effect of bias from the recorded data. In continuation of previous work 

[Fotios, Houser & Cheal, 2008] this article has identified the need to counterbalance the 

location (left-right) or interval (first-second) in which stimuli are presented, the application of 

dimming control to both stimuli, and to commence the dimming process from high and low 

initial illuminances. Null condition trials should be employed to quantify the magnitude of bias. 

Multiple methods of comparing stimuli should be used: if each method points toward the same 

conclusion despite bias unique to each method, then more confidence can be placed in the 

conclusion. 

 

7 CONCLUSION 

The objective of this work was to compare brightness matching and discrimination 

judgements using sequential and simultaneous modes of evaluation. Comparison of the 

results gained from these tests suggests no difference in either the illuminance ratio required 

for equal brightness nor the precision of this estimate. Therefore, we suggest that both modes 

of evaluation have equal validity. 

 

The test results provide further evidence that lamp SPD affects judgements of spatial 

brightness at mesopic levels of illumination. In the current work, brightness under the CFL, 

MH1 and MH2 sources was judged brighter than under HPS of equivalent illuminance: there 

was a difference in illuminance of approximately 70% between the CFL, MH1 and MH2 lamps 

and the HPS lamp for equal brightness. 
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Lamp CRI CCT (K) S/P 

HPS, 
HPSc  70W SON-T Pro 25 2000 0.51 

CFL  55W PL-L 82 3000 1.42 

MH1 70W CDO-TT 83  2800 1.13 

MH2 70W CDM-T 92 4200 1.65 

 
Table 1. Lamps used in sequential brightness judgements. These are the lamps as used by 
Fotios & Cheal in previous brightness matching and discrimination tests [Fotios & Cheal, 
2007]. S/P ratios calculated from SPDs measured in the booth: CCT and CRI as reported in 
lamp manufacturer’s literature.  
 

 
 
 
 

 Lamp combination 

CFL/ HPS MH1/ HPS MH2/ HPS 

Sequential matching    

mean illuminance ratio 0.704 0.752 0.710 

std dev 0.085 0.080 0.089 

n 21 21 21 

departure from unity (t-test) p<0.01 p<0.01 p<0.01 

Simultaneous matching    

mean illuminance ratio 0.718 0.733 0.724 

std dev 0.070 0.091 0.086 

n 21 21 21 

departure from unity (t-test) p<0.01 p<0.01 p<0.01 

 
Table 2. Results of brightness matching tests; mean illuminance ratio at equal brightness. 
Results of simultaneous matching task as previously reported [Fotios & Cheal, 2007]. 
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Variable 
stimulus 

 Lamp pair (test/HPS) 

CFL/HPS MH1/HPS MH2/HPS 

Test lamp  
(CFL, MH1, 
MH2) 

Mean illuminance ratio 
(test/HPS) 

0.731 0.760 0.732 

std dev 0.112 0.099 0.123 

n 21 21 21 

HPS lamp Mean illuminance ratio 
(test/HPS) 

0.677 0.744 0.689 

std dev 0.082 0.102 0.100 

n 21 21 21 

Difference (t-test) p<0.05 n.s. n.s. 

 
Table 3. Results of brightness matching trials broken down according to the application of 
dimming. (n.s. = not statistically significant.) 
 

 
 
 
 

 Mean within-subjects standard deviation 

 HPSc/HPS CFL/HPS MH1/HPS MH2/HPS 

Simultaneous evaluations 
[Fotios & Cheal, 2007] 

0.078 0.088 0.117 0.123 

Sequential evaluations 
(current work) 

0.070 0.073 0.087 0.092 

 
Table 4. Mean within-subjects standard deviations for sequential and simultaneous 
brightness matching tests. (Note: for HPSc/HPS simultaneous, 18 subjects carried out 8 trials; 
for all other cases, 21 subjects carried out 4 trials). 
 

 
 
 

Lamp pair CFL/HPS MH1/HPS MH2/HPS 

Percentage of votes for 
HPS brighter 

55% 74% 52% 

Percentage of votes for 
test lamp brighter 

45% 26% 48% 

Difference between lamp 
brightnesses 

n.s. n.s. n.s. 

 
Table 5. Results of brightness discrimination tests when the illuminances were 5.0 lux for the 
test lamp and 7.5 lux for the HPS lamp. Difference between lamps tested using Dunn Rankin 
variance stable rank sums: n.s. = not significant. 
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Response 
method 

Evaluation 
mode 

Illuminance ratio at equal brightness 

HPS/ HPS CFL/ HPS MH1/ HPS MH2/ HPS 

Brightness 
matching 

Sequential 1.00 0.70 0.75 0.71 

Simultaneous 0.99 0.72 0.73 0.72 

Brightness 
discrimination 

Sequential 0.99 0.67 0.69 0.67 

Simultaneous 1.00 0.59 0.68 0.64 

 
Table 6. Comparison of illuminance ratios for equal brightness determined using matching 
and discrimination tasks with simultaneous and sequential modes of evaluation. Simultaneous 
data as previously reported [Fotios & Cheal, 2007]; these values are derived from the tests 
carried out at 7.5 lux. All values rounded to two decimal places. 
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Figure 1. Diagram of the test apparatus. The two light pipes are aimed towards the same 
point in the roof of the integrating box.  
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