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Abstract. Dynamic vegetation models forced with spatially
homogeneous biophysical parameters are capable of produc-
ing average productivity and biomass values for the Ama-
zon basin forest biome that are close to the observed esti-
mates, but these models are unable to reproduce observed
spatial variability. Recent observational studies have shown
substantial regional spatial variability of above-ground pro-
ductivity and biomass across the Amazon basin, which is be-
lieved to be primarily driven by a combination of soil physi-
cal and chemical properties. In this study, spatial heterogene-
ity of vegetation properties is added to the Integrated Bio-
sphere Simulator (IBIS) land surface model, and the sim-
ulated productivity and biomass of the Amazon basin are
compared to observations from undisturbed forest. The max-
imum RuBiCo carboxylation capacity (Vcmax) and the woody
biomass residence time (τw) were found to be the most im-
portant properties determining the modeled spatial varia-
tion of above-ground woody net primary productivity and
biomass, respectively. Spatial heterogeneity of these proper-
ties may lead to simulated spatial variability of 1.8 times in
the woody net primary productivity (NPPw) and 2.8 times in
the woody above-ground biomass (AGBw). The coefficient
of correlation between the modeled and observed woody pro-
ductivity improved from 0.10 with homogeneous parameters
to 0.73 with spatially heterogeneous parameters, while the
coefficient of correlation between the simulated and observed
woody above-ground biomass improved from 0.33 to 0.88.
The results from our analyses with the IBIS dynamic vege-
tation model demonstrated that using single values for key

ecological parameters in the tropical forest biome severely
limits simulation accuracy. Clearer understanding of the bio-
physical mechanisms that drive the spatial variability of car-
bon allocation,τw andVcmax is necessary to achieve further
improvements to simulation accuracy.

1 Introduction

Tropical forests play an important role in the global carbon
cycle, accounting for about one-third of the global net pri-
mary productivity and 55 % of total global forest carbon (Pan
et al., 2011; Malhi, 2010). The Amazon contains about 50 %
of the world’s tropical forests (Pan et al., 2011). It is highly
diverse in terms of climate, soil physical and chemical prop-
erties, and species composition (Davidson et al., 2012; Que-
sada et al., 2011; Fyllas et al., 2009; Phillips et al., 2004).
However, most global vegetation models represent Amazon
rainforests through a single set of parameters, which do not
vary in space and thus fail to represent its complex spatial di-
versity. Dynamic Global Vegetation Models (DGVMs) are
powerful tools for understanding past and potential future
carbon fluxes and stocks. An accurate representation of spa-
tial and temporal variability of the forest biophysical prop-
erties is essential for useful prediction of the future carbon
cycle of Amazon forests. In this work we investigate the im-
portance of representing spatial heterogeneity in vegetation
properties in a commonly used DGVM.
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Field observations from undisturbed old-growth Amazon
forest plots have recently quantified the regional variation
of many forest attributes such as geological history (Hig-
gins et al., 2011), soil properties (Quesada et al., 2011), fo-
liar physiological properties (Fyllas et al., 2009; Lloyd et
al., 2010), above-ground live biomass (Malhi et al., 2006;
Baker et al., 2004b), above-ground wood productivity (Malhi
et al., 2004), net primary productivity (Aragão et al., 2009;
Malhi et al., 2009), and residence time of plant components
(Phillips et al., 2004; Galbraith et al., 2013). These analyses
have shown a general east-to-west gradient of tree structure
and dynamics in Amazon forests. Forests in the west tend
to have higher above-ground productivity and lower above-
ground biomass, while those in the east and central Amazon
are slower growing with higher above-ground biomass (Que-
sada et al., 2012; Malhi et al., 2004; Baker et al., 2004a). The
east–west productivity and biomass gradient appears to be re-
lated to soil fertility and soil physical properties rather than to
climate variations (Quesada et al., 2011). The soil properties
appear to be related to geological history and the exposure of
more fertile Miocene-age marine or lacustrine sediments in
western Amazonia (Higgins et al., 2011).

Although the spatial variation in biomass and productiv-
ity has been measured and described and the relationship to
edaphic properties noted, the underlying mechanisms are still
not well understood (Malhi, 2012).

With respect to woody net primary productivity (NPPw)
a number of mechanisms have been discussed in the litera-
ture. It has been suggested that the variability in wood pro-
ductivity could be directly related to a shift in the balance
of carbon allocation between roots and wood and/or respi-
ration rate (Malhi et al., 2004). It is also possible that the
NPPw spatial variability could be driven by variability in
gross primary productivity (GPP) due to a potential limita-
tion of photosynthesis by soil P availability (Quesada et al.,
2012; Mercado et al., 2011; Lloyd et al., 2010). Data anal-
yses by Malhi et al. (2004) also suggest that carbon use ef-
ficiency (CUE = NPP/GPP) is higher in the west. This sug-
gests that, in addition to a potentially higher GPP in the west
there are also potentially higher autotrophic respiration rates
in the less fertile soils of central Amazonia, making the CUE
less efficient there. The direct effect of climate factors such
as temperature, shortwave radiation and precipitation have
been argued to be too small to explain the observed variabil-
ity in the productivity (Malhi et al., 2004; Senna et al., 2009;
Quesada et al., 2012; Galbraith et al., 2013).

The spatial variability of above-ground biomass across the
Amazon basin has also been discussed in the literature. Field
data have indicated the importance of wood density, canopy
height and plant allometry in biomass estimates (Baker et al.,
2004b; Malhi et al., 2006; Feldpausch et al., 2011). Woody
biomass residence time has been suggested to be an impor-
tant factor for better representation of above-ground biomass
in vegetation models (Delbart et al., 2010). Field data show
that the fast-growing forests in the western Amazon have

lower wood density, lower residence time and therefore lower
above-ground biomass than the slow-growing forests in the
central and eastern Amazon (Phillips et al., 2004). The mech-
anisms that determine the spatial variability in plant resi-
dence time are still unresolved (Galbraith et al., 2013). It may
be due to external factors such as soil physical properties,
disturbance (e.g. landslides and erosion on steep slopes), or
climate impacts on tree mortality rates, or intrinsic factors
such as high growth rates intensifying light competition and
associated tree mortality. Residence time is strongly corre-
lated with soil physical properties, and forest growth rates are
strongly related to available soil P and climate. However, the
large-scale variation in biomass appears not to be explained
by any of the edaphic properties alone (Quesada et al., 2012).

Dynamic global vegetation models predominately charac-
terize the Amazon forest with tropical broadleaf evergreen
trees as the plant functional type (PFT), which is represented
by a set of parameters that are invariant in space and time.
There is a growing awareness that such an approach is un-
able to capture spatial variations in key biophysical proper-
ties (Senna et al., 2009; Delbart et al., 2010; Fyllas et al.,
2012). In this paper we address this issue through data in-
tegration and model improvement. We derive the most im-
portant parameters for simulating the spatial variability of
above-ground woody net primary productivity and biomass.
We use the Integrated Biosphere Simulator (IBIS) DGVM
with spatially varying observational estimates of key bio-
physical parameters (woody biomass residence time (τw),
maximum ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO) carboxylation capacity (Vcmax), and NPP allo-
cation to wood) to simulate AGBw and NPPw and evaluate
model performance, in comparison to field data. We create
basin-wide raster data sets of the key parameters by extrapo-
lation of the site-specific heterogeneous parameters. Finally,
we evaluate the impact of using spatially varying parameters
on simulated AGBw and NPPw throughout the Amazon.

2 Material and methods

The study area is the Amazon region (Fig. 1). The spatial
analyses applied are at 1◦

× 1◦ horizontal resolution. The
1◦

× 1◦ spatial resolution has been chosen as a compromise
between the spatial resolution of the model drivers (e.g. cli-
mate and soil properties) and computer run-time. In this sec-
tion we describe (1) the IBIS dynamic vegetation model
used, (2) the field data used in calibration and validation, and
(3) the sequence of model simulation exercises.

2.1 IBIS 2.6. Integrated Biosphere Simulator

IBIS is a comprehensive model of terrestrial biospheric
processes (Foley et al., 1996; Kucharik et al., 2000). The
model uses an integrated framework based on land sur-
face biophysics (canopy and soil physics, plant physiology),
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Fig. 1. Locations of the main field observation data: woody above-ground biomass (Malhi et al., 2006); woody net primary productivity
(Malhi et al., 2004); maximum carboxylation capacity of RuBisCO and specific leaf area index (Fyllas et al., 2009); total soil Pposphorus
(Quesada et al., 2010); woody carbon allocation (Malhi et al., 2011); woody residence time (Galbraith et al., 2013). Shaded areas include the
Amazonian sensu stricto (Amazon basin below 700 m a.s.l., light gray) with an estimated area of∼ 5.65 million km2, Amazon River basin
(light gray including southeast Planalto, western Andes in dark gray) and tropical forest areas in the north (Guiana, dark gray) (Eva et al.,
2005). Each field site that provided data is marked by a hexagon, which is divided into 6 wedges. Each wedge corresponds to a particular
variable (see key in lower right). If a particular field variable is available at a site, the wedge corresponding to it is black. For example if
woody above-ground biomass (AGBw) was collected at a particular site, the lower left wedge is black.

vegetation phenology, vegetation dynamics and competition,
terrestrial carbon and nutrient cycling. IBIS has been pre-
viously validated and applied to the Amazon (Senna et al.,
2009; Delire and Foley, 1999; Foley et al., 2002; Coe et al.,
2007). In those studies the model adequately simulated the
carbon, energy and water budgets of the basin. However, the
authors in those studies pointed out the need for better spa-
tial representation of parameters to improve model perfor-
mance in comparison with observations across the Amazon.
Detailed descriptions of the model can be found in those pub-
lications.

The IBIS land surface module is derived from the land sur-
face transfer model (LSX) (Thompson and Pollard 1995a,
b). Land surface processes are represented by two vegeta-
tion layers (woody and herbaceous plants), and six soil lay-
ers (to simulate the diurnal and seasonal variations of heat
and moisture in the total soil depth). The dynamics of soil

volumetric water content are simulated for each layer. The
soil water infiltration rate is based on the Green–Ampt for-
mulation (Green and Ampt, 1911; Li et al., 2005, 2006). The
model has 12 PFTs that compete for light and water, using
different ecological strategies. Nutrient competition is not
currently included. The model allows for one or more PFT
per grid cell that combined define a vegetation type. In IBIS
the Amazon basin is predominantly represented by the tropi-
cal broadleaf evergreen tree PFT. The goal of this study is to
clarify the importance for carbon cycle simulation of using
more detailed spatially-varying parameters within this single
plant functional type.

2.1.1 Model review

In this section we perform a brief review of the main
processes that involve NPP allocation,τw and Vcmax in

www.biogeosciences.net/10/2255/2013/ Biogeosciences, 10, 2255–2272, 2013
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simulated woody above-ground productivity and above-
ground biomass in the IBIS numerical model.

NPP allocation refers to the partitioning of new growth
into different plant tissues including wood, leaf and fine root.
Allocation is very important for simulating the carbon cy-
cle as it directly influences long-term carbon storage (Malhi
et al., 2011). Furthermore, the amount of carbon allocated
to leaves influences the total canopy photosynthesis, and the
amount of carbon allocated to roots influences the amount
of water uptake and nutrient acquisition, among other pro-
cesses. Carbon partitioning varies between numerical mod-
els. Some models use a dynamic carbon allocation, while
others are based on a predefined ratio between main plant
compartments fixed by each PFT (Malhi et al., 2011). The
original configuration of IBIS used a fixed partitioning of net
C of 50 % to wood (αw), 30 % to leaves (αl) and 20 % to roots
(αr) for the tropical broadleaf evergreen trees PFT (Eq. 1).

NPPi = αiNPP (1)

The biomass residence time (τ ) defines the lifetime of a unit
of biomass in the plant. Many global vegetation models as-
sume a predefined and constant value ofτ for each PFT and
for each plant compartment (wood (τw), leaf (τl) and fine root
(τr)). For tropical broadleaf evergreen trees in IBIS,τw is set
to 25 yr, while (τl) and (τr) are set to 1 yr. Other global vege-
tation models assume a constantτw for tropical forests, rang-
ing from 20 to 200 yr. The woody biomass residence time is a
key parameter for accurately simulating biomass stocks in an
ecosystem. The change in the biomass (M) of an individual
plant compartment (i: wood, leaf or fine root) over a period
of time is described in Eq. (2):

dM i

dt
= αiNPP−

Mi

τi

. (2)

α represents the fraction of net primary productivity (NPP)
allocated to biomass pooli, andτ is the residence time of
that pool, expressed in years (Foley et al., 1996).

Vcmax refers to the photosynthetic capacity of the plant. It
is the carboxylation capacity of the enzyme RuBisCO, which
catalyzes the CO2 reaction during its assimilation process in
leaves (RuBisCO is the CO2 receptor molecule in the Calvin
cycle). It is directly related to the GPP of the plant, and in
IBIS it is defined initially for tropical broadleaf evergreen
trees as 65 (µmol CO2 m−2 s−1).

2.2 Field observation database and basin-wide
extrapolations

We have assembled a wide range of published data from
field observations at several sites across the Amazon basin
(Fig. 1). The sites are all in undisturbed old-growth forest,
with most of them being part of the RAINFOR network
(“Rede Amaźonica de Inventarios Forestales”, Amazon For-
est Inventory Network; http://www.rainfor.org/). The RAIN-
FOR project is an international effort to monitor structure,

composition and dynamics of the Amazonian forest in or-
der to better understand their relationship to soil and climate
(Malhi et al., 2002; Peacock et al., 2007). The RAINFOR
field data are in generally based on one-hectare plots (see
references for more detailed information). In this study, plot
data are aggregated to the 1-degree horizontal resolution used
by IBIS.

2.2.1 Carbon allocation

There are few plot measurements of carbon allocation to
stems, roots, and leaves reported in the literature. Malhi et
al. (2011) compiled a carbon allocation database for tropical
forests worldwide. They report the partition of carbon be-
tween wood, fine roots and leaves for 10 plots in the Amazo-
nian basin that represent 6 sites at the 1◦

×1◦ grid cell resolu-
tion of the model (Table 1). The authors showed that in gen-
eral there is nearly equal allocation of new carbon between
wood, leaves and fine roots. Aragão et al. (2009) suggested
that the C allocation partition appears related to soil texture
rather than soil fertility. The authors identified that carbon al-
location to roots decreases with increasing soil clay content.
They argue that this happens because, in well-drained sandy
soils, roots grow with less resistance from the soil and have
faster water absorption. Following the hypothesis of Aragão
et al. (2009) we tested the correlation between percent sand
content with both fine-root and leaf carbon. We obtained a
similar correlation to their study (Fig. 2, Eq. 3 in Table 1).
The carbon allocation between wood, leaves and fine roots
for the whole basin is estimated based on the regressions
(Eq. 3, Table 1) applied to the soil texture map (Quesada
et al., 2010). The correlations between carbon allocation and
soil texture are available for a small number of sites, and may
be limited by other factors that are either not well known or
are not well represented by this limited database. Applying
Eq. 3 to the entire basin, the estimated woody carbon allo-
cation for the region varies between 30 and 40 % (Fig. 5a,
background map). This estimate does not reproduce the am-
plitude of the site-specific measurement of carbon allocation
(25–50 %) (Fig. 5a, bullets), which suggests that the assump-
tion of this hypothesis does not critically affect the final re-
sults (Supplement Table B).

2.2.2 Woody residence time (τω)

Woody biomass residence time (τω) has been estimated from
field measurements, and a strong spatial variability has been
reported (25–100 yr) (Phillips et al., 2004). Spatially varying
τω is included as an input parameterization in the model. In
this work we use the compiled data onτω from Galbraith et
al. (2013), which is in terms of carbon residence time, more
appropriate for this study. The data set includes analyses of
129 plots across Amazonia for 5–25 yr time series between
1971 and 2011 (Table 1) (Galbraith et al., 2013). There are 34
1◦

× 1◦ grid cells associated with these sites (Fig. 1). There

Biogeosciences, 10, 2255–2272, 2013 www.biogeosciences.net/10/2255/2013/
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Fig. 2. The relationship between fraction of NPP allocation to fine
roots and percentage of sand in soil(a), same for carbon allocation
to leaves and percentage of sand in soil(b) (Malhi et al., 2011;
Quesada et al., 2010).

are strong indications thatτω is correlated to soil physical
properties (Quesada et al., 2012); however the mechanisms
that would explain the spatial variability ofτω are not com-
pletely understood (Quesada et al., 2012, Galbraith et al.,
2013). For this reason we scale upτwto the entire basin, using
simple kriging interpolation of the field data points (Fig. 5b).

2.2.3 Total soil phosphorus (Ptot)

Phosphorus (P) is known to be a limiting factor for produc-
tivity of mature tropical forests (Vitousek, 1984; Lloyd et al.,
2010; Mercado et al., 2011); therefore it is used in this study
to represent the soil fertility limitation in our model. The to-
tal available P in this work is used to estimate the maximum
carboxylation capacity of RuBisCO. Quesada et al. (2010)
performed extensive collection and analyses of soil data at
71 sites with varying soil properties throughout Amazonia.
The 71 sites are grouped into 26 1◦

× 1◦ grid cells (Table 1,
Fig. 1). Based on field data (Quesada et al., 2010; 2011) we
defined a relationship between total soil P measured (average

to depth from 0 to 0.3 m) at the site level and the respective
soil class (Fig. 3). The relationship between total P and the
labile P pools is not linear and could depend on external fac-
tors such as soil texture for example. The P map estimate we
present here is focused on the large-scale variability of P in
soil where total P varies from 50 -500 mg Kg−1. The total
soil P correlates significantly (r2 = 0.65,p < 0.005) with P
in leaves.

Quesada et al. (2011) presented a map of basin-wide distri-
bution of soil coverage for each reference soil group. Based
on the relationship presented in Fig. 3 and the soil class map,
we created a spatial map of total soil P content (the average
by depth from 0 to 0.3 m) of each 1◦

×1◦ grid cell in the Ama-
zon (Fig. 4). Due to the large variability of soil types within
the grid cell, we expect to see discrepancies between the site
level measurement and the P content derived for the grid cell.
The derived total soil P map qualitatively reproduces the east
(100 mg kg−1) to west (450 mg kg−1) increase in fertility as
observed in the independent site level measurements. Lowest
total soil P occurs in northern Brazil and southern Venezuela,
which coincides with the highest values of soil sand con-
tent (Fig. 4). Total derived P values are estimated to exceed
300 mg kg−1 in a portion of central Amazonia, but there are
no observations to corroborate these estimates. Lacking fur-
ther field measurements to validate our map, we use it cau-
tiously in this study as a means of understanding the sensi-
tivity of simulated biomass to fertility variation.

2.2.4 Maximum carboxylation capacity of RuBisCO
(Vcmax)

Maximum carboxylation capacity of RuBisCO (Vcmax) and
specific leaf area index (SLA) are important properties for
simulating photosynthesis. We collected the existing data
on these to explore their spatial distribution in the Amazon
Basin and to use as input parameterizations in the model.
Fyllas et al. (2009) analyzed leaf properties at 62 RAIN-
FOR plots across the Amazon Basin. These data, when av-
eraged to our grid cell of 1◦ × 1◦, represent 22 data points
(Fig. 1, Table 1). The authors present data for leaf mass per
unit area (the inverse of SLA), and leaf concentration of the
main growth-limiting nutrients such as N and P. Their analy-
ses showed that soil fertility is one of the most important pre-
dictors for observed higher nutrient concentration in leaves.
Mercado et al. (2009) noted a correlation betweenVcmax ob-
served from the field and the concentrations of P in leaves.
We developed a similar regression equation to that of Mer-
cado et al. (2009, 2011) but betweenVcmax and total P con-
centration in soil instead of the P concentration in leaves
(Fig. 3b, Eq. 4 in Table 1).

The advantage of this empirical regression with respect to
soil P is the ability to estimateVcmax for the whole basin
based on Eq. (4) (Table 1) and the map of total soil P con-
centration (Fig. 4). TheVcmax spatial distribution shows the
same spatial structure as the P map, with a gradient from

www.biogeosciences.net/10/2255/2013/ Biogeosciences, 10, 2255–2272, 2013
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Fig. 3. (a)Total soil phosphorus aggregated by soil type, based on
field data from Amazonia, showing the average and standard devia-
tion for each soil class;(b) regression betweenVcmax (Mercado et
al., 2009) and total soil P (average depth from 0 to 0.3 m; Quesada
et al., 2010), excluding CUZ and SCR field site (Supplement D).

west to east (Fig. 5c). There is in general a good agree-
ment between field estimates ofVcmax (Mercado et al., 2009)
and the estimated map in this work (Fig. 5c). The San Car-
los do Rio Negro (SCR, Venezuela) site represents a sig-
nificant outlier, as the observedVcmax at this site (ranging
around 65 µmol m−2 s−1; Mercado et al., 2011) is consider-
ably higher than the estimated value based on soil P content
(ranging around 35 µmol m−2 s−1, Fig. 5c). The reason for
this difference is not clear but may be due to the large differ-
ences between foliar P (Fyllas et al., 2009) and soil P for this
specific site (Quesada et al., 2010). The limitation of the lin-
ear regression betweenVcmax and total soil P is that it does
not reproduce the saturation inVcmax due to high levels of
P content. One example of this is the highVcmax value esti-
mated in Cuzco Amazonico (CUZ, Peru) (Fig. 5c) due to the
elevated total soil P in this site (Fig. 4). Mercado et al. (2011)
suggested the use of a modified photosynthesis model that
includes both P and N limitation of the main photosynthetic

Fig. 4. Estimated total soil phosphorus map in mg kg−1 (average
depth from 0 to 0.3 m). The dots represent averaged field plot mea-
surements in one-degree grid cells (Quesada et al., 2010). The total
soil phosphorus map (background) is derived based on soil class
map and the relationship between site level total soil P content and
soil class (Fig. 3).

parameters, as described in Domingues et al. (2005, 2010).
More detailed physiological analyses are important for a bet-
ter definition of the relation betweenVcmax and the P limita-
tion. There are no clear relationships between SLA and other
biophysical properties; therefore we interpolated the site val-
ues to the entire basin using the kriging interpolation method
(Fig. 5d).

2.2.5 Above-ground woody net primary productivity
(NPPw)

The above-ground wood net primary productivity (NPPw)
field database is used in this work for comparison to the sim-
ulated NPPw. IBIS, like many other ecosystem models, sim-
ulates a generic woody biomass pool that includes all above-
ground wood and coarse roots. Therefore, to facilitate com-
parison with the field data, which is above-ground woody
productivity only, the simulated woody net primary pro-
ductivity was divided by 1.21 to remove the below-ground
coarse-root fraction of the simulated NPP wood as suggested
in Houghton et al. (2001). Malhi et al. (2004) present a large
data set of above-ground coarse wood productivity in 104
neotropical forest plots. Their sites are all located at an el-
evation lower than 1000 m, in mixed-age old-growth humid
forest, and with no human disturbance. For comparison with
our simulated results these data are aggregated to the 1◦

×1◦

grid cell resolution of this study, representing 25 grid-points
across Amazonia (Fig. 1, Table 1). There is high productiv-
ity in west and low productivity in central and eastern Ama-
zonia, varying in space from 0.15 up to 0.55 kg-C m2 yr−1,
with an overall variability of 260 % (or 0.55/0.15 = 3.6 times)
(Fig. 6a).
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Table 1. List of field data used in this study with the respective reference in the literature. The original number of plots from each study is
presented in column A, the respective number of grid cells at 1◦

× 1◦ resolution is presented in column B. The methods for upscaling and
the regression equations used are presented. The table is divided into field data used for input parameterization in the model and field data of
woody net primary productivity and woody above-ground biomass used for model output validation.

Property Paper # plots # grid cells in Method of Regression
[unit] studied region upscaling equations

(A) (B)

Model parameterization

Carbon allocation
to wood, leaves and
roots [fraction]

Malhi et al. (2011),
Aragão et al. (2009)

10 6 Use Eq. (3) to retrieve
carbon allocation as a
function of sand
fraction given by
Quesada et al. (2010)
soil texture map

Equation (3)
Croot = 0.0039· Sand[%] + 0.137
R2

= 0.97;p < 0.004
Cleaf = −0.0025· Sand[%] + 0.44
R2

= 0.69;p < 0.04
Cwood= 1− Croot− Cleaf

Woody biomass
residence time [yr]

Galbraith et al. (2013) 129 34 Kriging interpolation –

Soil total phos-
phorus content (P)
[mg kg−1]

Quesada et al. (2010) 71 26 Use relation obtained
(Fig. 3a) to retrieve
soil total P as a func-
tion of soil class
given by Quesada et
al. (2011) soil class
map

(Soil total P site level)× (soil
class site Level)
Fig. 3a

Maximum carboxy-
lation capacity of
RuBisCO (Vcmax)
[µmol CO2 m−2 s−1]

Fyllas et al. (2009)
(Phosphorus leaf site)

62 22 Use Eq. (4) to retrieve
Vcmaxas a function of
soil total phosphorus
map (defined above)

Equation (4)
Vcmax= 0.1013· P
[mg kg−1] + 30.037
R2

= 0.77p < 0.005

Specific leaf area
index (SLA)
[m2 kg−1]

Fyllas et al. (2009) 62 22 Kriging interpolation –

Model output validation data

Woody net primary
productivity (NPPw)
[kg-C m−2 yr−1]

Malhi et al. (2004) 104 25 – –

Woody above-ground
biomass (AGBw)
[kg-C m−2]

Malhi et al. (2006) 227 69 – –

2.2.6 Above-ground woody biomass (AGBw)

Malhi et al. (2006) present a synthesis of data on woody
above-ground live biomass of old-growth lowland tropical
forest for 227 plots across South America. This data was
rescaled to the one-degree grid resolution, resulting in 69
sites for comparison with our simulation results (Fig. 1,
Table 1). The spatial distribution of biomass shows high
biomass in the slow-growing central Amazonia forest and
Guyana, with low biomass in the western faster-growing
forests and the dryer southern and eastern margins. The ob-
served woody biomass ranges from 9 up to 20 kg-C m−2,

with a spatial variability of 120 % (or 20/9 = 2.2 times)
among forest sites (Fig. 6b).

2.3 Model configuration

In order to quantify the response of IBIS to spatially varying
parameters, we performed a suite of simulations in 4 different
categories (Table 2). The first category is a simulation over
the entire Amazon basin that uses the original configuration
of the IBIS model. This simulation serves as a reference to
the other experiments and is referred to as the control sim-
ulation (CA). The second simulation assumes the original
configuration CA but alters the allocation of NPP to wood,
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(a) (b)

(c) (d)

Fig. 5.Site-specific field data (dots) and the extrapolated map (background):(a) carbon allocation to wood [fraction], where the extrapolated
map is based on sand fraction map;(b) woody biomass residence time [years], where the extrapolation is by kriging interpolation of site
data;(c) maximum carboxylation capacity of RuBisCO [µmol CO2 m−2 s−1], where the extrapolation method is based on total soil P map;
(d) specific leaf area index [m2 kg−1], where the extrapolation is by kriging interpolation of site data.

(a) (b)

Fig. 6. (a)Estimated wood net primary productivity (NPPw [kg-C m−2 yr−1]) and(b) wood live above-ground biomass (AGBw [kg-C m−2]),
based on field data by Malhi et al. (2004) and (2006), respectively. Dots represent the average from measurement plots averaged to 1◦

× 1◦

grid cell.

foliage and roots so that it is more consistent with observa-
tions, allocating one-third for each component (34 %, 33 %
and 33 %, respectively) (SA3a) (Malhi et al., 2011). In these
tests, constant parameter values are assigned and fixed in
space for the entire Amazon basin (homogeneous parameter-
ization). The third simulation category referred to as the site
level simulation (SS) tests the importance of using the spa-
tially heterogeneous field data to represent the fundamental
parameters. In these simulations the model is run only at the

site level with the parameters from our database (Fig. 5, dots
and Table 1). Comparison of these simulations (SS) with CA
and SA3a and with observations provides an understanding
of the ability of the model to simulate the productivity and
biomass at individual locations. The fourth simulation cate-
gory uses the basin-wide spatially varying parameter values
(Fig. 5, background map and Table 1) derived in this study.
The results of this exercise (referred to as RS), when com-
pared to CA, SA3a and the observations, quantify the value
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of using best estimates of basin-wide parameters to derive
productivity and biomass values across the Amazon. We con-
sidered spatial variation in carbon allocation to wood, leaves
and fine roots, woody biomass residence time, maximum car-
boxylation capacity of RuBisCO (Vcmax) and SLA (Table 2).
The specific parameter values and simulation runs are sum-
marized in Table 2.

The model was forced with prescribed climate based on
the Sheffield et al. (2006) database, which is a combination of
global observation-based data sets and reanalysis data from
the National Center for Environmental Prediction – National
Center for Atmospheric Research (NCEP-NCAR). The data
set is available from 1970 to 2008 (39 yr), has one-degree
spatial resolution and 3 h time resolution, which was linearly
interpolated to one hour.

The model simulations were run for a total of 680 yr
(1329–2008). The long simulation was required to allow the
slow carbon pools to come to equilibrium. There was an ini-
tial spin-up of 386 yr (from 1329–1715) under constant pre-
industrial atmospheric CO2 values (278 ppm). The spin-up
simulation started from near bare ground until soil carbon,
vegetation structure and biomass achieved an equilibrium
state. The runs were continued from 1715 up to 2008 with
increasing prescribed atmospheric CO2 concentrations (from
278 to 386 ppm). During the entire 680 yr run the prescribed
climate was applied cyclically.

Soil texture data was based on the IGBP-DIS global soil
and Quesada et al. (2010) data set. The control simulation
(CA) and regional simulation (RS) used the regional map
of texture, while the site level simulations used site level
soil texture information from Quesada et al. (2010). The soil
depth is considered homogeneous with 10 m in all simula-
tions. There are 6 soil layers with thicknesses from the top
layer to the bottom of 0.25, 0.375, 0.625, 1.25, 2.5, 5 m depth.

No land use changes or other disturbances (e.g. fire) were
incorporated in the simulations. Therefore, the results are for
potential vegetation conditions (the vegetation in equilibrium
with the prescribed soil and climate). Potential vegetation
simulations were chosen because they should be most com-
parable to the field data, which were collected in undisturbed
old-growth tropical forest plots

2.4 Statistical Analyses

The simulated variables are averaged for the last 10 yr of sim-
ulation (1999–2008) and compared to the field data within a
grid cell, which represent an average of the period of sam-
pling. For statistical comparison we use the correlation co-
efficient, linear regression and the index of agreement (Will-
mott, 1982). The index of agreement provides information on
how correlated and how distant the simulated data points are
from the reference (observation), while the correlation coef-
ficient might have a high value just because the data are well
correlated even if not necessarily close in absolute values.

The index of agreement varies from 0 to 1 where 0 means a
very poor agreement and 1 the maximum agreement.

3 Results

3.1 Comparison of simulations and field observations

We performed a series of sensitivity analyses with the model
to identify the factors affecting the spatial variability of IBIS-
simulated woody productivity and biomass (Supplement A
and B). The sensitivity analyses indicated that spatially vary-
ing values of maximum RuBisCO were important for ac-
curate simulation of NPPw (Supplement Table B). Woody
residence time was identified as the most relevant factor for
reproducing the spatial variability in above-ground biomass
(Supplement Table B). In this section we quantify how the
site-specific observed parameter information (SS, Table 2)
affected simulated productivity and biomass compared to
the homogeneous parameter assumption (CA and SA3a, Ta-
ble 2). These heterogeneous parameterization simulation re-
sults (SS) were compared to observations available for wood
productivity and above-ground biomass (Fig. 7).

3.1.1 Homogeneous parameterization

The simulated NPPw in the control simulation (CA, where
carbon allocation to wood is defined as 50 %,) is systemat-
ically overestimated compared to the observations (Fig. 7a,
dark square). The simulated NPPw in (SA3a, where carbon
allocation to wood is defined as 34 %) is in better agreement
with the average observed values (Fig. 7a, dark triangles).
The spatial variation of the observed NPPw was not repro-
duced in these simulations.

Similar analyses were performed for the above-ground
biomass comparison (Fig. 7b). The simulated biomass in the
control (CA) does not reproduce the spatial variation, but
average values are similar to the observed (Fig. 7b, dark
square). If only one of the parameters is corrected, for ex-
ample carbon allocation (SA3a, dark triangle), the estimated
biomass deviates strongly from the observations (Fig. 7b),
which is consistent with results with the DVM ORCHIDEE
(Delbart et al., 2009).

3.1.2 Heterogeneous parameterization

The results from simulations that include the combined ef-
fects of all site level heterogeneous parameterizations are
presented in this section (Fig. 7, red and black).

The NPPw analyses are made for two series of data. The
first considers only the data points where field estimates of
Vcmax are available (Fig. 7a and c, in red), hereinafter Se-
ries A. The second data series includes data points where
theVcmax has been extrapolated to all other locations where
there are NPPw measurements (Table 1), hereinafter Series B
(Fig. 7c, in black). The full set of NPPw that include sites
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Fig. 7. Comparison of IBIS-simulated values with field observations. Figures on the left(a, c)are comparisons of woody above-ground net
primary productivity. Figures on the right(b, d) are comparisons of woody above-ground live biomass.(a) and(b) are IBIS-simulated results,
only for grid cells where theVcmax (Series A) and woody residence time (Series B) are known; while(c) and(d) are the IBIS-simulated
results for the full series of data where NPPw and AGBw field data are available (Series A + B and C + D).

with knownVcmax from field and extrapolatedVcmax in this
work is called Series A + B (Fig. 7c, in red and black).

The NPPw from simulation SS with heterogeneous param-
eterization (Fig. 7a, red circles) shows better agreement with
the observations when compared to the previous homoge-
neous assumption SA3a (Fig. 7a, triangles). The coefficient
of correlation improves from 0.10 to 0.71, the regression
slope (error) improves from−0.04(0.03) to 0.6(0.2), and in-
tercept (error) from 0.35(0.05) to 0.16(0.07) (Table 3, Se-
ries A). The slope coefficient improves but is still low, in-
dicating that NPPw is overestimated by the model where ob-
served values are low (Fig. 7a). The NPPw simulated by IBIS
with the new spatial parameterization agrees better with the
observed spatial variability. The index of agreement (Fig. 7a,
Table 3) increases from 0 (SA3a, Series A) to 0.7 (SS, Se-
ries A).

The comparison of results of Series B (extrapolated pa-
rameterization) in simulation RS with SA3a (Table 3, Fig. 7c
in black only) shows that some locations are closer to the ob-
servations (index of agreement 0.4 compared to 0.3) but the

correlation is not improved (coefficient of correlation 0.66
compared to 0.79). This indicates, as expected, that the re-
gionalized parameter data are not as good as site-specific
field estimates. However, the conclusions for the regional-
ization of NPPw are still limited to a validation against only
10 data points that are not representative of the entire basin.

Similar to NPPw, AGBw comparisons were made for two
series: one including only the data points where woody resi-
dence time estimates are known (Fig. 7b, in red), referred to
as Series C. The second data series includes locations where
the woody residence time is extrapolated to all other AGBw
data collection points, called Series D (Fig. 7d, in black).
The full set of simulated AGBw values derived from both di-
rect measurements of residence time and the extrapolations
is called Series C + D (Fig. 7d, in red and black). The hetero-
geneous woody residence time data has the strongest influ-
ence on the simulated spatial variability of AGBw (Fig. 7b,
red circles). The data series SS captures the spatial vari-
ability of the AGBw much better than the SA3a simulation
with homogeneous parameterizations (dark triangles). The
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Table 2.Summary of the parameterization setup for each of the simulation experiments: the control simulation (CA) with the original IBIS-
prescribed homogeneous parameterization; the SA3a with corrected carbon allocation, with homogeneous parameterizations in space; site
level simulation (SS) with heterogeneous parameterizations represented; and the regional simulation (RS) with the upscale of the respective
parameters.

Homogeneous Heterogeneous
Parameterization Parameterizations

(CA)
Control simulation
IBIS original setup

(SA3a)
CA with change
in C allocation

(SS)
Site level simu-
lation Site-based
observation data

(RS)
Regional simulation
Regional estimated
data

Carbon allocation to wood,
leaves and roots

% Constant in space
50 % Wood
30 % Leaves
20 % Roots

Constant in space
34 % Wood
33 % Leaves
34 % Roots

Dots in Fig. 5a Map in Fig. 5a

Woody biomass residence
time

years Constant in space 25 Constant in space 25 Dots in Fig. 5b Map in Fig. 5b

Maximum carboxylation
capacity of RuBisCO
(Vcmax)

µmol CO2
m−2 s−1

Constant in space 75 Constant in space 75 Dots in Fig. 5c Map in Fig. 5c

Specific leaf area index
(SLA)

m2 kg−1 Constant in space 25 Constant in space 25 Dots in Fig. 5d Map in Fig. 5d

Table 3.Statistical summary of the comparison of woody net primary productivity between IBIS-simulated results and field estimates. The
table presents the number of data points within the studied area, mean and standard deviation, regression slope, intercept and correlation
coefficient, and index of agreement (d). The statistical analyses were made for all sites excluding four outliers (JEN, CAQ, SCR, CUZ,
discussed in Supplement D). The statistical analyses were divided in groups of data point as follows: Series A and B represent the series
of all data points that have available NPPw field information; Series A represents the series of data where theVcmax was estimated based
on field information; and Series B represents all other data points where NPPw field was known andVcmax was extrapolated based on the
methodology described in this work.

Woody NPP # data Mean a slope b intercept Correlation d index of
[kg-C m−2 yr−2] points (Stdev) (Stdev) (Stdev) coefficient R agreement

Willmott
et al. (1982)

Observed Series A 10 0.31 (0.06)
Observed Series B 9 0.27 (0.04)
SA3a Series A 10 0.34 (0.03) −0.04 (0.15) 0.35 (0.05) −0.1 0
SA3a Series B 10 0.36 (0.03) 0.49 (0.14) 0.22 (0.04) 0.79 0.3
SS Series A 9 0.34 (0.05) 0.58 (0.20) 0.16 (0.07) 0.71 0.7
RS Series B 9 0.34 (0.04) 0.62 (0.30) 0.17 (0.08) 0.66 0.4

coefficient of correlation of simulated woody above-ground
biomass improves from 0.22 with homogeneous parameteri-
zation (SA3a, Series C) to 0.80 with spatial varying param-
eters (SS, Series C). The regression analyses show a sig-
nificant improvement of the slope(error) from 0.05(0.05) to
1.06(0.18), and intercept(error) from 6.5(0.8) to−2.8(2.8)
(Table 4, Series C). The index of agreement in Series C im-
proved from 0 with homogeneous parameterization (Table 4,
Series C, SA3a) to 0.8 with heterogeneous parameterization

(Table 4, Series C, SS). Some outliers were identifyed and
are discussed in detail in Supplement D.

The statistical analyses of AGBw from Series D (with the
extrapolated woody residence time) provide a measure of the
value of the extrapolation adopted in this work (Table 4, Se-
ries D). The results show improvement of all statistical pa-
rameters comparing the regional simulation (RS, Series D)
to the homogeneous assumption (SA3a, Series D). The coef-
ficient of correlation improved from−0.006 to 0.52 and the
index of agreement from 0 to 0.6. As expected, the results
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Table 4.Statistical summary of the comparison of wood above-ground biomass between IBIS-simulated results and field estimates. The table
presents the number of data points within the studied area, mean and standard deviation, regression slope, intercept and correlation coefficient,
and index of agreement (d). The statistical analyses were made for all sites excluding three (CUZ, CHN and AMB, in Supplement D). The
statistical analyses were divided in groups of data point as follows: Series C and D represent the series of all data points that have available
AGBw field information; Series C represents the series of data where the woody residence time was estimated based on field information; and
Series D represents all other data points where AGBw field was known and woody residence time was extrapolated based on the methodology
described in this work.

Woody AGB # data Mean a slope b intercept Correlation d indice of
[kg-C m−2] points (Stdev) coefficient R agreement

Observed Series C 21 15.4 (2.3)
Observed Series D 42 14.3 (2.8)
SA3a Series C 21 7.3 (0.5) 0.05 (0.05) 6.5 (0.8) 0.22 0
SA3a Series D 42 7.6 (0.6) −0.002 (0.050) 7.6 (0.8) −0.006 0
SS Series C 21 13.7 (2.3) 1.06 (0.18)−2.8 (2.8) 0.80 0.8
RS Series D 42 13.1 (2.6) 0.44 (0.71) 6.9 (1.1) 0.52 0.6

derived from extrapolated parameters (RS, Series D) are in
poorer agreement with the results derived from SS Series C
where residence time is site measured, with a lower slope
(0.44) and intercept of 6.9 and larger variance of the distri-
bution differences (6.5 compared to 3.3 in Series C).

3.2 Regional Simulation Analyses (RS)

In this section we present the basin-wide simulated woody
above-ground productivity and biomass (simulation RS),
based on our maps of spatially varying parameters (Ta-
ble 1, Fig. 5). Quantitative validation of simulated NPPw and
AGBw was discussed in Sect. 3.1 (Table 3, Series B; Ta-
ble 4, Series D) at the specific locations in the basin. Quali-
tatively, there is much greater spatial variation of the NPPw
and AGBw across the basin in the RS simulation (Fig. 8c and
d) compared to CA (Fig. 8a and b).

The simulated NPPw spatial variability (Fig. 8c) follows
the soil total phosphorus map patterns (Fig. 4). There is
higher productivity in the west where the fertility is higher
and also in central west Amazonia where P content is higher
and the soil is silt. The productivity decreases in central and
east Amazonia and increases again in the northeast. There
is a region of low NPPw in northern Brazil and southern
Venezuela due to the low estimated soil fertility in that area.
A qualitative comparison of this simulation with a published
satellite-derived map of NPP in Amazonia (Nunes et al.,
2012) suggests similarities in spatial variability. A detailed
analysis of the comparison of these simulations including
land use change and other disturbances and comparison with
satellite products is in progress and will be addressed in a
different study.

The biomass map shows a west-to-east trend of higher
biomass in central and northeastern Amazonia (RS, Fig. 8d)
that is qualitatively consistent with the observed field data.
The simulated spatial variability is linked to the woody resi-
dence time map. The biomass map (Fig. 8d) can be qualita-

tively compared to the estimated biomass map from Malhi et
al. (2006). Both maps suggest higher biomass occurs in the
central and northeastern Amazon and lower biomass in the
west and south. In the central Amazon the highest biomass
values in the Malhi et al. (2006) data set are clustered around
the sites of measurement, which is most likely an effect of
extrapolation from the few data points available (Malhi et
al., 2006). The gradient of biomass in the transition to the sa-
vanna environment in the southeast diverges in the absolute
values from the Malhi et al. (2006) estimates. There is little
field data for this region, making validation difficult.

4 Discussion

From this modeling exercise we have identified six major
points regarding the controls on and importance of spatial
variation in above-ground productivity and biomass.

4.1 Homogeneous parameterizations and climate alone
do not capture the spatial variability of woody
above-ground productivity (NPPw) and biomass
(AGBw) present in the field data

The results suggest that models may be able to simulate av-
erage NPPw and AGBw in reasonable agreement with ob-
servations but sometimes because of compensation of errors.
For example, in simulation CA (the woody carbon allocation
parameter is 50 % and the woody residence time is 25 yr)
the resulting average biomass is in relatively good agreement
with observations (Fig. 7b, dark square). As discussed earlier,
those parameter values, although commonly used, have been
shown by observations to be incorrect. Using a high woody
allocation rate (50 % vs 34 % observed) and low residence
time (25 yr vs. 25–100 yr observed) causes a large carbon
allocation each year but low turnover rate and coincidently
total biomass in good agreement with observations. In addi-
tion, the simulated results using homogeneous parameters do
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Fig. 8. Woody above-ground net primary productivity (left column, NPPw [kg-C m−2 yr−1]) and the woody above-ground live biomass
(right column, AGBw [kg-C m−2]). The first row presents the regional simulation under the control scenario (CA). The second row presents
the IBIS-simulated map based on the upscaled parameterization (RS).

not capture the observed spatial variability of NPPw (260 %,
the highest value is 3.6 times higher than the lowest value;
Malhi et al., 2004) and AGBw (120 %, highest value is 2.2
times higher than the lowest value; Malhi et al., 2006) across
the Amazon basin (Fig. 7a and b dark square).

There is relatively large spatial variation in the Amazon
climate. However, field data analyses have shown poor cor-
relation between climate variables and large-scale variation
of productivity and biomass patterns in the basin (Malhi et
al., 2004; Quesada et al., 2012; Galbraith et al., 2013). An
analysis of the spatial patterns of productivity (Malhi et al.,
2004) found no obvious relationship between the spatial dis-
tribution of wood productivity and precipitation, dry season
length, or radiation, but the authors did find some decline in
woody productivity with increasing temperature. However,
the lower temperature in western Amazonia is indirectly cor-
related to higher soil fertility in that region, making it diffi-
cult to directly correlate temperature and productivity given
the strong correlation between productivity and soil fertility.
In analyses of basal area spatial patterns, Malhi et al. (2006)
found some correlation with dry season length and precipi-
tation. The decline in basal area, however, was evident only
with extreme water stress and long dry season length (more
than 4 months).

The spatial variation of climate in the Amazon basin im-
parts simulated productivity and biomass variation of 35 %

and 45 % from the basin average minimum (Table B). IBIS
and most numerical models underestimate or do not explic-
itly consider mortality rates due to short- or long-term dis-
turbances such as temperature extremes, drought or flooding
(Phillips et al., 2010; Galbraith et al., 2013). However, be-
cause the observed data were collected at sites specifically
chosen to be free of recent disturbance, lack of climate-stress
mortality is not a factor in the simulated low sensitivity to
climate variation. Therefore, the low variability as a func-
tion of climate in the IBIS simulations appears to be a robust
indication of the scale of the actual variability imparted by
climate.

4.2 Maximum carboxylation capacity of RuBisCO
activity (Vcmax) as a function of soil fertility is the
primary variable controlling the simulated
variation of woody above-ground productivity
across the Amazon

Observations suggest that soil fertility plays an important
role in creating spatial variation of productivity across the
Amazon basin, but little is known about the specific pathways
(Quesada et al., 2012; Aragão et al., 2009, Malhi et al., 2004).
Some of the possible factors that have been explored are dif-
ferences in gross primary productivity, respiration rates, and
carbon allocation between carbon pools.
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Malhi et al. (2004) suggest that carbon allocation may be
related to the spatial variability of NPPw, due to shifts in
allocation to roots in less fertile soils. Alternatively the au-
thor’s data analyses also suggest that carbon use efficiency
(CUE = NPP/GPP) is higher in the west, which suggests that
in addition to a potentially higher GPP in the higher fer-
tility soils of the western Amazon, there are also poten-
tially higher autotrophic respiration rates in the lower fer-
tility soils of central Amazonia. We found that alteration of
GPP and autotrophic respiration achieved through a change
in leaf photosynthetic capacity (related to maximum car-
boxylase capacity of RuBisCO) is the strongest candidate to
explain the spatial variability of productivity. The sensitiv-
ity tests show that spatial variation of RuBisCO (from 75–
40 µmol CO2 m−2 s−1, SA5, Table A) leads to a simulated
60–80 % change in NPPw (Table B). A shift in woody car-
bon allocation from 50 % to 25 % imparts a 60 % change in
NPPw (Table B). Our analyses suggest thatVcmax driven by
soil fertility plays a stronger role than carbon allocation in
the spatial variability of NPPw.

4.3 Heterogeneous parameterizations of key
biophysical properties based on site-specific data
improves the simulated woody above-ground
productivity compared to homogeneous
parameterizations

We estimated the maximum carboxylation capacity of Ru-
BisCO as a function of site-observed total soil P from Que-
sada et al. (2010). This estimate was based on the established
correlation betweenVcmax and leaf P content (Mercado et
al., 2009, 2011), and the understanding that leaf nutrients
are directly related to soil nutrients (Fyllas et al., 2009), The
spatial heterogeneity of other parameters of minor effect in
the NPPw calculation, such as carbon allocation, woody res-
idence time, and specific leaf area, were also derived based
on published site field data. The IBIS-simulated NPPw using
heterogeneous parameterization was compared to NPPw field
data (Malhi et al., 2004).

As presented in the Results (Sect. 3) the use of hetero-
geneous parameterizations in IBIS based on field data sig-
nificantly improved the simulation of NPPw (correlation co-
efficient −0.1 to 0.71, respectively, for the homogeneous
and heterogeneous parameterization, Table 3). The simu-
lated NPPw values at the lower end of the observations were
not well captured by the model as indicated by a slope of
0.58± 0.20 and an offset of 0.16± 0.07 (Table 3). This could
be due to an overestimation of theVcmax for low-fertility
sites or by other factors that are not captured by the model.
For example, lowland areas may have higher respiration rates
than what the model predicts, due to the higher temperatures
and/or the higher respiratory costs due to slower plant growth
in less fertile soils (Malhi et al., 2004). These effects may not
be fully represented in IBIS and may contribute to the overes-
timation of the low end of NPPw, in central and east Amazo-

nian sites. A detailed analysis of field information on the res-
piration rates, available biomass in decomposition state and
how the model reproduces these processes needs to be ad-
dressed in the future. A factor that may be contributing to a
general overestimation of NPPw is the simulated Leaf Area
Index (LAI). The LAI in the model is systematically higher
than the observations, which would cause an increase in sim-
ulated NPP. Each year, because of increasing atmospheric
CO2 there is more carbon to allocate, and the allocation in
the model is constant in time as is the residence time of the
leaves. Therefore, the LAI in the model increases with time.
The assumption of constant allocation and residence time is
probably too simplistic, but the right balance of changes in
carbon allocation between the plant components in space and
time is poorly known.

In our analyses we observed that the differences of sim-
ulated NPPw from the observations do not appear to be re-
lated to misrepresentation of carbon allocation. For example,
if we define woody carbon allocation to a value that min-
imizes the NPPw error, then the carbon allocation to wood
would have to be unrealistically low (0.15–0.25 compared to
the observed values 0.25–0.5). There are most likely other
unknown factors contributing to the lack of good agreement,
including shorter timescale variability of parameter response
to drought, fertility and disturbance for which we do not
yet have data. Further improvements of these parameters are
clearly required and are discussed in suggestion for future
work below.

4.4 Woody residence time is the most important
mechanism affecting the magnitude and spatial
distribution of simulated AGB w

Our results of the IBIS sensitivity analyses suggest that
woody residence time is the most important mechanism af-
fecting the magnitude and spatial distribution of simulated
AGBw. This result is in agreement with the analyses of
Senna et al. (2009) and Delbart et al. (2010). Spatial varia-
tion of woody residence time within the range of 25 to 100 yr
changes simulated AGBw by 180 % from the basin minimum
(Table B).

4.5 Heterogeneous parameterizations of key
biophysical properties based on site-specific data
improves the simulated woody above-ground
biomass when compared to homogeneous
parameterizations

We used field data available for 21 sites across the Ama-
zon basin to represent the spatial heterogeneity of woody
residence time (Phillips et al., 2004; Galbraith et al., 2013).
The spatial variability of other parameters of minor effect
in AGBw such as carbon allocation,Vcmax, and specific leaf
area index were also included in the simulation of AGB.
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The comparison of the simulated AGBw with observations
showed an improvement in the coefficient of correlation from
0.22 in the homogeneous experiments (SA3a) to 0.80 in the
heterogeneous ones (SS) (Table 4). The regression fit is much
closer to the 1 : 1 relation. The good agreement comes from
two factors: one is that the AGB simulated by the model
was based on residence times estimated from field data; the
other is that most of the sites for comparisons of biomass
come from direct measurement of individual trees (Baker et
al., 2004b). As a result, both model and field measurement
methodologies used the most accurate information available.

4.6 The regional maps of key parameter values
developed in this study significantly improve
simulated AGBw compared to simulations using
homogeneous parameterization assumptions

The quality of the regional maps of the physiological proper-
ties depends on three factors: (1) the number of site level data
points available; (2) how representative these sites are of the
larger scale; and (3) how well we understand what drives the
spatial variability of these properties. We developed a set of
extrapolations of the observed field data to the entire Ama-
zon basin in order to introduce greater heterogeneity into the
simulations of NPPw and AGBw. Unfortunately there are rel-
atively few field data sites (Table 1) and the processes that
govern the spatial variability are not completely understood,
which makes our regional maps somewhat speculative.

TheVcmaxwas extrapolated to the entire basin using a soil
map of P and the regression equation between field-based
Vcmax and P (Table 1, Fig. 5c). The comparison of simulated
NPPw (from the extrapolatedVcmax) with observations was
represented by a few points (n = 9). Although the simulated
results for some of the individual data points were improved,
it was not significant (p > 0.5) considering the small size of
the sample.

We estimated woody biomass residence time for the en-
tire basin based on a simple kriging interpolation (Fig. 5b).
The large-scale spatial variability showed a trend of lower
τw in west than in central and east Amazonia, which is in
qualitative agreement with the observations. The compari-
son of the basin-wide simulations suggests that this first at-
tempt at spatially varying biophysical parameters improved
the simulations. For example, the coefficient of correlation of
simulated AGBw with observations at 46 locations increased
(0.52, RS) compared to the more standard homogeneous pa-
rameters (∼ 0, CA) (Table 4). The results showed that the
proposed map of woody residence time, despite its uncer-
tainties, was a better option than a homogeneous assumption
for the entire basin.

Given the importance of the woody residence time in sim-
ulating the AGBw, it is fundamental to understand the factors
that govern its spatial distribution. However there is no single
mechanism that is known to control its geographic pattern.
Many authors have explored this topic including Quesada et

al. (2012) who have argued that woody residence time is cor-
related with soil physical properties such as soil depth, soil
structure and topography. However, residence time has also
been found to be well correlated with soil fertility within
the Amazon (Phillips et al., 2004; Galbraith et al., 2013).
There are also other soil conditions, such as rooting depth
limitations, low drainage capacity, poor soil structure, and
topographic position that might affect woody residence time
(Quesada et al., 2012). Delbart et al. (2010) presented an al-
ternative solution of dynamic estimation of woody residence
time as a function of NPP, whereby the function was de-
fined based on the empirical correlation between them. This
NPP-based assumption is, however, only valid for a forest in
equilibrium, and the NPP needs to be well estimated by the
model. This combination of poorly known governing factors
makes it difficult to mechanistically determine residence time
across the Amazon. We believe that our prescribed approach
using a simplified interpolation is a good starting point, al-
though we cannot assume residence times will remain un-
changed under future scenarios of climate change.

5 Conclusions

This work has presented efforts at incremental improvement
of numerical modeling of tropical broadleaf evergreen forests
in the Amazon. It has identified some of the most impor-
tant and relevant parameters for the simulation of C fluxes
and stocks by a DGVM and shown the importance of spatial
and temporal representation of functional diversity of trop-
ical ecosystem modeling. This project has also helped iden-
tify several areas of research in data collection and model de-
velopment that could lead to further improvements in model
representation of tropical forest environments.

Accuracy of regional simulations is still limited by data
scarcity of field data. Data needs include (1) expansion of the
network of field data monitoring to a better characterization
of the basin, (2) examination of the physiological processes
that govern the spatial variability of the main parameteriza-
tions, and (3) development of new satellite and airborne mea-
surements of key biophysical properties and mechanisms.

Accuracy is also limited by poor numerical representation
of several important biophysical properties. Model improve-
ments include (1) dynamic representation of disturbances
such as land use change and fire, (2) improvement of model
biophysical processes such as photosynthetic response to nu-
trient limitation and tree mortality as a function of drought
stress, and (3) development of more-dynamic representations
of PFTs to better characterize the functional diversity of trop-
ical forests.

Continued stepwise improvement in models and data col-
lection such as those described here will yield greater un-
derstanding of the spatial and temporal variations of forest
carbon stocks throughout the tropics.

www.biogeosciences.net/10/2255/2013/ Biogeosciences, 10, 2255–2272, 2013



2270 A. D. A. Castanho et al.: Improving simulated Amazon forest biomass and productivity

Supplementary material related to this article is
available online at: http://www.biogeosciences.net/10/
2255/2013/bg-10-2255-2013-supplement.pdf.
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F. J., Neill, D. A., Silva, N., Prieto, A., Rudas, A., Silviera, M.,
Vieira, I. C. G., Lopez-Gonzalez, G., Malhi, Y., Phillips, O. L.,
and Lloyd, J.: Basin-wide variations in foliar properties of Ama-
zonian forest: phylogeny, soils and climate, Biogeosciences, 6,
2677–2708, doi:10.5194/bg-6-2677-2009, 2009.

Fyllas, N. M., Quesada, C. A., and Lloyd, J.: Deriving Plant
Functional Types for Amazonian forests for use in vege-
tation dynamics models, Perspect. Plant Ecol., 14, 97–110,
doi:10.1016/j.ppees.2011.11.001, 2012.

Galbraith, D., Malhi, Y., Affum-Baffoe, K., Castanho, A. D. A.,
Doughty, C. E., Fisher, R. A., Lewis, S, Peh, K. S. H., Phillips,
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Lloyd, J., Patĩno, S., Paiva, R. Q., Nardoto, G. B., Quesada, C.
A., Santos, A. J. B., Baker, T. R., Brand, W. A., Hilke, I., Giel-
mann, H., Raessler, M., Luizão, F. J., Martinelli, L. A., and Mer-
cado, L. M.: Optimisation of photosynthetic carbon gain and
within-canopy gradients of associated foliar traits for Amazon
forest trees, Biogeosciences, 7, 1833–1859, doi:10.5194/bg-7-
1833-2010, 2010.

Malhi, Y.: The carbon balance of tropical forest regions,
1990–2005, Curr. Opin. Environ. Sustain., 2, 237–244,
doi:10.1016/j.cosust.2010.08.002, 2010.

Malhi, Y.: The productivity, metabolism and carbon cycle of trop-
ical forest vegetation, J. Ecol., 100, 65–75, doi:10.1111/j.1365-
2745.2011.01916.x, 2012.

Malhi, Y., Phillips, O. L., Lloyd, J., Baker, T., Wright, J., Almeida,
S., Arroyo, L., Frederiksen, T., Grace, J., Higuchi, N., Killeen,
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