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Abstract  

An investigation of the level of disturbance caused by reflections from a variety of 

display screens, including interactive whiteboards, has been carried out using three 

test methods: Luminance adjustment, category rating and reading. The results 

from the luminance adjustment test and the category rating test were consistent, 

both showing similar significant effects of lighting-display parameters on the 

disturbance caused by screen reflections. In contrast, the objective measure of 

task performance in the reading test was barely responsive to reflections on the 

screens. Two models have been developed, one to predict the luminaire luminance 

at which 95 percent of observers were not disturbed by the reflections and the 

other to predict the rating of disturbance caused by reflections from the screens. 

Both models are based on lighting-display parameters including the size and 

luminance of the reflected light source, and the specular reflectance, the effect of 

haze reflection, and the background luminance of the display screen. These 

models can be used, generally, to guide lighting recommendations and, 

specifically, to identify suitable luminaires to be used with given set of display 

screens or suitable display screens to be used with a given lighting installation.  

 

 



1. Introduction 
 

 

The introduction of computers has transformed the visual environment of offices 

since the 1970s. In the 21st Century, the same transformation is taking place in 

classrooms. This paper develops methods for judging the acceptability of lighting 

for use in classrooms where a variety of display screen equipment is in use.The 

reason why lighting in classrooms needs to be judged is the potential for reflections 

to occur in display screens. Such reflections are disturbing when they produce a 

high luminance contrast between the reflected object and the screen background1. 

The magnitude and form of these reflections depends on the reflection properties 

of display screens2,3, which are characterized by three components; diffuse, 

specular and haze4 (Figure 1). Diffuse reflection occurs when the reflected light is 

scattered equally in all possible directions; it produces a uniform luminance that 

decreases the contrast between the displayed material and its background. 

Specular reflection produces a distinct reflected image in the mirrored direction 

which can easily draw attention from the intended tasks. Haze reflection combines 

the characteristics of specular and diffuse reflection, giving a blurred edge to the 

image caused by specular reflection. Display screens using different technologies 

and surface treatments have these reflection components in different proportions. 

 

Disturbing reflection is caused by the presence of light sources within the reflected 

scene in a display screen. Therefore, the common recommendation in lighting 

guides to eliminate such reflection is to control the geometry between the display 

screen, light source and user, which is achieved by changing the position and 

orientation of the display screen. However, control of geometry between lighting, 

display screen and user is not always possible in real-world applications, 

particularly for big screens like interactive whiteboards which are viewed by 

multiple users at the same time. Therefore, many lighting guides found it necessary 

to specify quantitative standards for luminaires and surfaces reflecting light, these 

being the main sources of disturbing reflections in display screens. 

 

Quantitative guidance for limiting disturbing reflections on display screens takes 

the form of luminance maxima. For direct lighting, a maximum luminaire luminance 

is prescribed together with the angle of elevation from vertical where this limit is 



applicable. For indirect lighting, average and maximum luminances for major 

reflecting surfaces such as ceilings and upper parts of walls are prescribed. For 

lighting with direct and indirect components, both direct and indirect lighting 

luminance limit criteria are applied. Guidance documents that use this approach 

include the SLL Lighting Guide 7: Office Lighting, British Standard BS EN 12464-

1:2002 Lighting of Work Places and RP-1-04 American National Standard Practice 

for Office Lighting5-7. Although this approach is rational, it may be outdated 

because display screen technology changes rapidly. Over the last few years, there 

has been a rapid move from CRT displays to LCD and plasma displays. Further, 

classrooms have seen the widespread introduction of interactive whiteboards and 

large screen displays as well as individual monitors. These new technologies have 

different reflection properties and different screen luminances and are viewed at 

different distances. For this reason, a study has been carried out using a range of 

screens likely to be found in classrooms. The key objectives of this work were:  

 

• To determine the maximum acceptable luminance of a light source visible by 

reflection from display screens representative of those used in classrooms.  

 

• To identify the screen and lighting parameters that affect the acceptability of 

reflections. 

 

• To measure the effect of screen reflections on visual performance.  

 

• To develop models to predict the maximum luminaire luminance and the level of 

disturbance felt at different luminances based on known properties of the 

display and the lighting.  

 
 

2. Methods 
 

 

Two psychophysical test methods were used for the subjective assessment of 

screen reflections: Adjustment and category rating. These methods have been 

used in previous studies including those upon which current guidance is based2,3,8-12. 

Both methods can be used to identify the conditions when reflections on the 



display are just starting to be unacceptable for users. Agreement between the two 

methods suggests the results are robust. In addition to psychophysical tests, the 

influence of screen reflections on reading was examined.  

 

The adjustment measurements were made separately from the category rating and 

reading measurements, using two different panels of observers. However, the test 

environment, light box, display screens and viewing angles were identical in both 

sets of measurements. 

 

2.1 Test environment 
 

The test took place in a room 3.4m wide x 3.9m long x 3.2m high (Figure 2). The 

windows were sealed to prevent daylight entering the room. The surface 

reflectances were 0.60 to 0.80 (walls and window blinds), 0.69 (ceiling) and 0.17 

(floor). Ambient light was provided by two ceiling-mounted louvre luminaires. Each 

luminaire contained two T8 70W fluorescent lamps with a correlated colour 

temperature (CCT) of 3450K and a colour rendering index (CRI) of 54. The display 

screens and the observer’s seat were positioned so that no direct reflection from 

the ceiling luminaires was visible on any screen during the tests. The illuminance 

on the surface of display screens from the room lighting ranged between 180 lx 

and 231 lx. 

 

2.2 Light box 

 

Reflections on display screens were generated using a purpose-made light box 

(590mm length x 900mm width x 400mm depth). Inside the box there were eight 

fluorescent battens operating from dimming electronic ballasts (Figure 3). Each 

batten held two T5 21W fluorescent lamps with a CCT of 4000K and a CRI of 85. 

These lamps were dimmed with a three-turn potentiometer to reduce the possibility 

of giving a positional cue when it was used by an observer. The interior of the light 

box was painted with matt white emulsion. Light was emitted from the light box 

through a circular aperture fitted with an acrylic diffusing filter (transmittance 0.70 

and diffusion factor 0.46) to improve the uniformity of the luminance distribution 

(+5% over the central 80% diameter).  



Two sizes of aperture were used, 48mm and 480mm diameter. With these 

apertures and by moving the light box to various positions to suit different screens 

and test conditions, three angular sizes of light source were produced subtending 

1°, 10° and 15° at the eye of the observer. A pilot survey of lighting in classrooms 

suggested that the visual size of luminaires reflected from screens is typically less 

than 5° and that of windows ranges from 5° to 40°.  The aperture subtense of 1° 

was taken to represent the reflection caused by a small source (luminaire) and the 

aperture size of 10° was chosen to represent reflection caused by a large source 

(window). The 15° subtense was chosen as it was one of the sizes used for the 

compliance test for screen reflection according to BS EN ISO 9241-7:199813 and 

BS EN ISO 13406-2:200114 the other being the 1° subtense.  

 

2.3 Display screens 

 

Five types of display screen were used in the tests: Three types of PC monitor for 

individual use and two types of interactive whiteboards for whole-class display 

(Table 1 and Figure 4). An interactive whiteboard is a large interactive display 

consisting of two separated parts: a display device and a physical input (touch-

sensitive) device. Both parts are connected to a computer so that the integrated 

system is interactive. The computer can be controlled by touching the board 

directly or by writing on the board using a special pen. Figure 4 shows two types of 

interactive whiteboard used in the current study: front-projection interactive 

whiteboard (PIWP) and flat-screen overlay interactive whiteboard (OIWP).  

 

The screens chosen have different diffuse, specular and haze reflection properties. 

The reflection properties of the display screens are summarized in Table 2. The 

measurement of the reflection properties of the display screens was based on the 

methods given in BS EN ISO 9241-7:199813 and BS EN ISO 13406-2:200114. For 

consistency with previous studies2,12.15, the diffuse reflection properties of the 

display screens were characterized by diffuse reflectance, defined by Equation 1. 

The specular reflection properties were characterized by specular reflectance, 

defined by Equation 2. The haze reflection properties of display screens were 

characterized using the simplified method proposed by Howlett15, i.e., as the ratio 

between the measured reflected luminance with a large light source (15°) or LDS 

which combines specular, diffuse and haze reflection components, and the 



calculated LDS which combines only diffuse reflection and specular reflection 

(Equations 3 and 4). The ratio between these values indicates the haze reflection 

component. 

  

ELR DDd ππρ ∗=∗=       [1] 

 

ASSs LLR ==ρ        [2] 

 

Effect from haze reflection = Measured LDS / Calculated LDS [3] 

 

( ) ( ))()()( EXTASMLsEXTdDS LELCalculated ∗+∗= ρπρ   [4] 

 

Where:  ρd = Diffuse reflectance  

RD = Reflectometer value for diffuse reflection 

E  = Illumination on the display surface 

LD = Diffuse reflected luminance 

ρs = Specular reflectance 

Rs = Reflectometer value for specular reflection  

Ls = Specular reflected luminance of the display  

LA = Specular light source luminance  

Measured LDS = Total reflected luminance due to the 15° light source 

Calculated LDS = Total diffuse plus specular luminance 

E(EXT) = Illumination on the display surface due to the 15° light source  

ρs(SML)  = Specular reflectance for the 1° light source  

LA(EXT)  = Average luminance of the 15° light source  

 

In addition to the reflection characteristics it is necessary to consider the image 

polarity of the display. Image polarity is the term used to describe the screen 

condition; negative polarity is where lighter characters are displayed on a darker 

background (i.e. positive contrast), while positive polarity is where darker 

characters are displayed on a lighter background (i.e. negative contrast)6. While 

the majority of software used in classrooms tends to use positive polarity, there are 

some applications that feature a darker background. Such negative polarity images 

were expected to be more sensitive to ambient lighting so the tests were carried 



out for all five display screens in positive polarity and on two display screens with 

glossy surfaces in negative polarity. The two glossier screens were intended to 

represent the worse cases for comparison. Hence there were seven display screen 

conditions in total (Tables 1 and 2 and Figure 4). 
 

2.4 Viewing angles 
 

During the experiment, the test apparatus (light box, display screen and 

participant’s seat) was arranged so that the angle of viewing (or the angle of 

reflection) was equal to the angle of incidence formed by the projected line from 

the centre of the light box aperture to the centre of display surface and the normal 

of display surface (Figure 2). In ICT classrooms, some display screens, interactive 

whiteboards in particular, are viewed from various directions which may affect the 

acceptability of reflections on display screens. Two viewing angles were used: 15° 

and 30° from normal to display surface. 

 

 

3. Adjustment measurements 
 
 
3.1 Visual task  
 

The adjustment test was carried out with one participant and one screen at a time. 

During the test, the participant sat facing the display screen on test at a designated 

angle (15° or 30° from normal to the screen) as shown in Figure 2. The viewing 

distance for each test screen was calculated so that the angular sizes of displayed 

characters were the same for all screens. The display screen on test was turned on 

and adjusted to its maximum luminance and maximum contrast.  Presented at the 

centre of the screen was a slide of 50 unrelated English words in Courier font. The 

text on the screen was superimposed by circular reflection casted from the light 

box positioned at the angle equal to the viewing angle but on the opposite side of 

the screen. The distance between the light box and the display screen was varied 

so that the reflections were of the required size from the participant’s viewing 

position and in the middle of the screen. The centres of the display screen on test, 



the centre of the aperture of the light box and the eye level of the participant were 

aligned at a similar height above the floor (1.10m).  

 
3.2 Participants 

 

Forty participants were recruited to do the repeated-measures adjustment test, 

twenty aged 30 years or younger (mean age 27 years) and twenty aged 50 years 

old or older (mean age 63 years). The sample included female and male 

participants in equal proportion. Participants who normally wore spectacles or 

contact lenses were instructed to wear them during the experiment. 

 

3.3 Procedure 

 

The adjustment test was divided into 38 blocks, corresponding to the 38 

combinations of display screen (7 levels), size of light box aperture (3 levels) and 

viewing angle (2 levels). All display screens were tested with 1° and 10° apertures 

of the light box. The 15° aperture was tested with the 5 PC screens only (CRTP, 

LCGP, LCMP, CRTN and LCGN).  All pairs of display screen and aperture size 

were tested with both the 15° and 30° viewing angle. The order of these 

combinations was randomised.  

 

The adjustment procedure was adapted from the methods used in previous studies 

to find the disturbance borderline of subjects8.10 by adjusting the luminance of the 

screen reflection. In this study, there are three visual criteria used in the luminance 

adjustment: Disturbance, contrast and clarity borderlines. The disturbance 

borderline was defined as the level of discomfort that would be just disturbing and 

could be tolerated for 15 to 30 minutes but that would require a change in lighting 

condition for any longer period.  This criterion is similar to that used in previous 

studies by Hentschel et al.8 and Pawlak and Roll10 the latter being the referenced 

basis of BS EN ISO 9241-7:1998 and BS EN ISO 13406-2:200113,14. The contrast 

borderline was defined as the minimum luminance contrast of the text that would 

allow confident, immediate letter recognition without prolonged scrutiny. The clarity 

borderline was defined as the clarity of the text outline that would allow confident, 

immediate letter recognition without prolonged scrutiny. When assessing contrast 



or clarity of the text, the participants were told to base their judgement on the area 

of the text that coincided with the reflection. 

 

At the beginning of each adjustment trial the light box luminance was set at either 

the highest or the lowest level permitted by the dimming mechanism. This starting 

level was counterbalanced. The experimenter stated the visual criterion used for 

that trial and then asked the participant to read the text on the screen with the 

reflection superimposed and use his/her judgement to increase or reduce the light 

box luminance until the borderline was found. Having recorded the borderline level, 

the experimenter asked to participant to reset the light box luminance to the 

starting level and begin the trial for the next visual criterion. This process was 

repeated until all three adjustment trials were done. The test combination was then 

changed and the experimenter instructed the participant to begin another session 

of three adjustment trials. The process was repeated until all 38 combinations were 

completed.  

   

3.4 Results 

 

Table 3 shows the mean luminances and the associated standard deviations for 

the disturbance borderline for all the combination tested. However, means are not 

a very useful way to identify the borderline since, assuming a normal distribution, 

fifty percent of observers will find lower luminances disturbing. An alternative 

approach is to determine the luminance which only 5 percent of observers find 

disturbing, i.e. the luminance which 95% of participants find acceptable. These 

luminances are also given in Table 3. The use of 95% acceptance follows good 

ergonomic practice in that equipment is usually designed to meet the needs of 

those who fall between the 5th and 95th percentile of the population16. The 95% 

satisfaction threshold was also the criterion used in a previous study with a similar 

adjustment method10. 

 

Figure 5 compares the luminances at the disturbance, contrast and clarity 

borderlines of the seven display screens, satisfactory to 95% of the participants, for 

the 10° source at the 15° viewing angle. The overall trend evident is that the 

disturbance borderline luminances were typically lower than those of contrast and 

clarity borderlines. This means that as the light source luminance increases, the 



screen reflection will become disturbing before the contrast and clarity of the 

displayed text become unacceptable. The three borderlines were also strongly 

positively correlated; there were significant correlations between the disturbance 

and contrast borderlines (r=0.86, p<0.01), between the disturbance and clarity 

borderlines (r=0.87, p<0.01), and between the contrast and clarity borderlines 

(r=0.90, p<0.01). This means that it is likely that a display-lighting combination with 

a high disturbance borderline also has a high contrast borderline and a high clarity 

borderline. This suggests that the disturbance borderline should be the critical 

criterion in determining the limit of luminaire luminance. If the light source 

luminance is restricted to below the disturbance borderline, it is likely that the 

contrast and the clarity of the displayed text will still be acceptable to the 

observers.  

 

It can also be seen from Figure 5 that the luminances at the disturbance borderline 

for the seven different display screens are different. The borderline levels of the 

negative polarity screens (CRTN, LCGN) are lower than those for the low gloss, 

positive polarity screens (CRTP, LCMP and PIWP). Among the positive polarity 

screens, the borderline luminances for the high gloss screens (LCGP, OIWP) are 

lower than those for the low gloss screens (CRTP, LCMP, PIWP). The disturbance 

borderline luminances obtained at the 15° and 30° viewing angles follow the same 

trend. Table 3 also shows that the borderline luminances for all display screens 

decreased as the size of the source of reflection increased.  

 

These observations are supported by statistical analysis. A repeated-measures 

ANOVA was performed to determine the effect of display screen type, light source 

size and viewing angle on the disturbance borderline. Since the data were highly 

scattered, it was decided to apply a log transform to the luminances to reduce the 

effect of the extreme values. The analysis with seven screens, two viewing angles 

and two sizes of light source revealed statistically significant main effects of display 

screen type (p<0.01), light source size (p<0.01) and viewing angle (p<0.01). There 

were also significant interactions between the type of screen and the size of light 

source (p<0.01) and between the screen type and the viewing angle (p<0.01), It 

was interesting that the effect of viewing angle seems to be less sensitive than all 

other variables. There was no significant interaction between the viewing angle and 

the size of light source (p=0.77). 



 

A mixed design ANOVA was also carried out to determine the effect of age group 

on disturbance borderline. The analysis with seven screens, two viewing angles, 

two sizes of light source and two age groups showed that the main effect of age 

group was not statistically significant (p=0.87). In addition, there were no significant 

interactions involving age group. These results clearly indicated that the age group 

of the participants did not significantly affect their disturbance borderlines. 

 

 

4. Category rating and reading measurements 
 
 
4.1 Visual task 
 

During the category rating and reading measurements, the screen being assessed 

displayed a set of fifty random words for participants to read. Random words have 

been used in a number of studies in vision to provide a reliable and context-free 

measure of visual capacity17-19.  In all, ten sets of fifty words were used. The words 

in each set were randomly chosen from the ‘Spelling Bank: Lists of words and 

activities for KS2 spelling objectives, the Natural Literacy Strategy’20 which was 

designed for pupils aged between 8 and 11 years. To determine if the different sets 

of words influenced reading capacity, a pilot study was carried out with 20 

participants reading the ten sets of words in randomized order. Statistical analysis 

(ANOVA) did not suggest that the reading speed was significantly affected by the 

set of the words used (p=0.92). 

 

4.2 Participants 

 

Forty participants were recruited to do the repeated-measures category rating and 

reading tests, these being carried out simultaneously. Around three quarters of 

participants were university students. The age of participants ranged from 18 to 70 

years (mean 35 years). The sample included similar proportions of female (45%) 

and male (55%) participants. Nineteen participants wore corrective lenses during 

the trial. 

 



4.3 Procedure 

 

The arrangement of apparatus for the category rating and reading measurements 

was the same as for the adjustment test (Figure 2). The category rating and 

reading measurements were carried out together in the same experimental 

session. The experiment was divided into 16 blocks, corresponding to the 16 

combinations of display screen, size of light source and viewing angle. The 

measurements were made for seven display screens, each screen being examined 

for two sizes of light source (1° and 10°). These 14 combinations were examined at 

a 15° viewing angle. Two more combinations using a 30° viewing angle were 

added in order to study the effect of viewing angle on the two interactive 

whiteboards. The order of test condition combinations seen by the participants was 

counterbalanced. In each block, a participant was required to complete four trials of 

reading and rating tests with the reflection at four different luminances. These 

luminances were 2000, 5000, 10000 and 20000 cd/m2 for the 1° source and 500, 

1000, 3000 and 5000 cd/m2 for the 10° source. The order of the four luminances 

was also counterbalanced. The test was then repeated with other combinations 

until all sessions were done. There were 16 blocks or 64 (16x4) trials in total which 

took about 2 hours to complete. 

 

 To start the reading measurement, the experimenter set the light box luminance to 

a predetermined level. Once the participant was ready, he or she was instructed to 

click a mouse connected to a computer controlling the screen under test. Three 

countdown slides appeared, followed by a slide of the 50 words cued with a ‘beep’ 

sound. The participant then started reading aloud through the words as quickly as 

he or she could. If any word was read incorrectly, the experimenter gave an 

immediate signal that the participant must re-read the word again. Reading time for 

the set of 50 words was measured using a stopwatch.  

 
After reading the fifty words, the participant was required to do the category rating 

test. For each combination of light source size, viewing angle and display screen, 

participants gave their assessments about the conditions seen on the display 

screen by answering one question and giving three ratings, each along a 6-point 

scale.  

 



• Can you see any reflection on the screen?  Yes / No 

Participants reported whether they could see reflection on the screen on test. If the 

reflection outline was not well-defined but the participants could notice that there 

was a brighter area on the display screen, they were instructed to answer ‘Yes’.   

 

• Please rate the disturbance of the reflection while reading the text. 

Participants gave a ‘Disturbance’ rating from 1 (very disturbing) to 6 (not at all 

disturbing).  

 

• Please rate the acceptability of the contrast of the text shown on the screen. 

Participants gave a ‘Contrast’ rating from 1 (highly unacceptable or poor to read) to 

6 (highly acceptable or good to read). Participants were told to base their contrast 

ratings only on the part of the text that coincided with reflection.  

 

• Please rate the clarity or distinctness of the text shown on the screen.  

Participants gave a ‘Clarity’ rating from 1 (hazy or very blurred) to 6 (focused or 

very sharp). Participants were told to base their clarity ratings only on the part of 

the text that coincided with reflection.  

 

Note that in a pilot test it was found that the reflection caused by the 1° light source 

was too small for an accurate assessment of the contrast and clarity of the text to 

be made.  Therefore, for the combinations including the 1° source, the participants 

were required to give a rating for disturbance of the reflection only. 

 

Having finished the reading speed measurement, answered the Yes/No question, 

and given the category ratings, the participant informed the experimenter who then 

adjusted the light box luminance to the next predetermined level and let the 

participant click a mouse to start a new trial. This procedure was repeated until the 

reading and rating measurements were completed at four luminances for the given 

combination of light source size, viewing angle and display screen. After that the 

experimenter told the participant to rest their eyes while another block of trials was 

prepared. This process was repeated until all the experimental combinations had 

been examined.  

 

4.4 Reading speed results 



 

In the reading test, the participant responses to screen reflections were measured 

by the time taken to read aloud 50 random words which is the reciprocal of the 

reading speed. Figures 6 and 7 show the mean reading times for the different 

screens plotted against the luminances for the 1° and 10° light sources, 

respectively. It can be seen that as the luminance of the reflected light source 

increased, the mean reading times changed only slightly over a wide range of 

luminances for both sizes of light source and all screen types. Statistical analyses 

using ANOVA for the effects of screen types and luminance were carried out for 

the 1° and 10° light sources separately because different sets of four luminances 

were used for the two sizes of light source. The only statistically significant effect 

found was a main effect of luminance for the 1° source (p<0.01), this effect being a 

tendency to shorter reading times with higher luminances.  

 

For the interactive whiteboards which are normally viewed from a variety of angles, 

the effect of viewing angle on reading time was investigated using a repeated 

measures ANOVA with three independent variables of screen type (2 levels), 

angles of viewing (2 levels) and luminance (4 levels). The only statistically 

significant effect was a main effect of viewing angle (p<0.01). Specifically, the 

mean time taken to read the words when the screen was viewed at 15° was 

significantly less than the mean reading time when the screen was viewed at 30° 

from the normal to the screen. In other words, the reading speed was higher at the 

smaller viewing angle. It maybe that this effect was caused by the increase in 

difficulty of reading text as the angle from the display normal increased rather than 

any effect of disturbing reflections.  

 

4.5 Category rating results 

 

In general, the percentage of participants noticing reflections on seven test screens 

increased with luminance of the reflected light source. In most test conditions, 90-

100% of participants reported that they could notice reflections on the test screens, 

the exception being the LCMP and PIWP screens. For the LCMP screen, 5% to 

10% of the participant noticed reflections when the 1° light source was used, this 

percentage increasing when the 10° light source was used. For PIWP screen, the 



percentage of participants noticing reflections ranged between 60% and 80%, 

depending on the size and the luminance of the light source. 

 

Figures 8 and 9 show the mean ratings of disturbance for all the screens plotted 

against luminance, for the 1º and 10º light sources, respectively. Figures 10 and 11 

shown the mean ratings of contrast and clarity, respectively, for all the screens, 

plotted against luminance for the 10º light source. All these figures have a common 

trend: The mean ratings decrease in a non-linear manner as the luminance of the 

reflected light source increases. Wang observed a similar non-linear trend in his 

study which also used the category rating method11. 

 

It is apparent from Figures 8 to 11 that screens with different optical properties 

decline at different rates with increasing luminance. For screens with a more matt 

finish (LCMP, PIWP), the mean ratings decreased only a little with increasing 

luminance but screens with a gloss finish (CRTP, LCGP, OIWP, CRTN, LCGN), 

showed a greater decline in mean ratings with increasing luminances. This 

suggests that the relationship between the mean ratings and the luminance of the 

light source is associated with the reflection characteristics of display screens.  For 

screens with similar reflection properties but different display polarities (i.e. CRTP 

vs. CRTN or LCGP vs. LCGN), the reduction in mean ratings for the different 

polarities showed a similar trend but when seen in positive polarity the mean 

ratings were better than for the same screens seen in negative polarity, under the 

same lighting conditions. This also suggests the influences of reflection properties 

as well as display polarity on acceptability of visual conditions at display screens.  

 

Figure 12 compares the mean disturbance ratings obtained using two different 

sizes of light source, both at 5000 cd/m². It can be seen that the mean disturbance 

ratings for all screens decreased as the size of the reflected light source increased. 

 

Figure 13 shows the mean disturbance ratings for the 10° light source reflected on 

the two interactive whiteboards (PIWP, OIWP), which were tested at two viewing 

angles (15° and 30°). It can be seen that the mean disturbance ratings at 15° and 

30° angles for the same whiteboard are close but there is a large difference 

between the two whiteboards.  

 



Figure 14 compares the mean disturbance, contrast and clarity ratings for the 

seven screens using the 10° light source at four different luminances. It can be 

seen that at the lowest luminance (500 cd/m²), where the mean disturbance, 

contrast and clarity ratings were high on the 6-point scales, the three ratings were 

very similar. As the luminance increased, differences between the disturbance, 

contrast and clarity ratings became apparent for all seven display screens but it is 

obvious that the disturbance rating was typically lower than the contrast and clarity 

ratings. 

 

Analysis using Pearson’s correlation coefficient found very strong correlations 

between the disturbance and contrast rating (r=0.98, p<0.01), the disturbance and 

clarity ratings (r=0.95, p<0.01), and the contrast and clarity ratings (r=0.98, 

p<0.01). The significant correlations between the three category ratings suggest 

that it should be possible to use just one category rating (e.g. disturbance) to 

predict the other two ratings (e.g. contrast and clarity) with reasonable accuracy. 

Since the rating results suggest that the disturbance was the most sensitive 

criterion, it is likely that in the condition where the screen reflection becomes just 

disturbing, the contrast and clarity of the text would still be acceptable to users.  

This finding is consistent with that from the adjustment test which supports the idea 

of using the disturbance of the reflection as the main criterion to determine the 

luminance limit of the light source for environments where display screens are 

used. For this reason, it was decided to use the mean disturbance ratings to study 

the statistical significance of lighting and display variables on subjective responses.  

 

A repeated-measures ANOVA was use to study the effects of screen type (7 

levels) and luminance level (4 levels). Since the category ratings used different 

sets of four luminances for the two sizes of light source, the results of the tests with 

1° and 10° light sources were analysed separately. Both analyses showed the 

same pattern of statistical significance. There were significant main effects of 

screen type (p<0.01) and light source luminance (p<0.01). Also, there was a 

significant interaction between screen type and luminance (p<0.01) in that the 

effect of luminance depended on the type of display screen used. In order to 

determine the effect from light source size, a two-way ANOVA was carried out 

using the disturbance ratings at a fixed luminance of 5000 cd/m² for two sizes of 

light source and seven screens. There were significant main effects of the light 



source size (p<0.01) and screen type (p<0.01) as well as a significant interaction 

between the light source size and screen type (p<0.01). This interaction shows that 

the disturbance rating of the various screen types was affected differently by the 

size of light source. The effect of viewing angle on the disturbance rating was 

investigated using results from the two interactive whiteboards which were tested 

at two viewing angles. An ANOVA using the three independent variables of screen 

type (2 levels), angle of viewing (2 levels) and luminance (4 levels) was carried out. 

The results showed that there was a significant effect of viewing angle on the 

disturbance rating (p<0.01) but there were no statistically significant interactions. 

This indicates that the influence of the angle of viewing on disturbance rating did 

not change when varying other variables. 

 

 

 

 

5. Discussion 
 

The results presented above raise a number of issues. First, it is necessary to 

consider why there is the obvious effect of reflections on the two measures of 

disturbance and but very little effect on reading time. Second, the extent to which 

the two measures of disturbance show similar patterns of effects for the same 

variables needs to be assessed. Third, the performance of the interactive 

whiteboards relative to the conventional computer display screens is of interest. 

Fourth, it is useful to examine what levels of disturbance would be achieved for the 

various screen types if the recommended luminaire luminance limits were to be 

applied.  

 

5.1 Disturbance and reading time 
 

Both the luminance adjustment method and the category rating method revealed 

statistically significant differences in disturbance caused by the various screen 

types and light source sizes but neither of these variables had a statistically 

significant effect on reading time. There are two plausible explanations for the lack 

of effect on reading time. First, reading time is a measure of the performance of a 

task that includes visual, cognitive and motor components. It is possible that the 



size of visual component in this reading task was small compared to the cognitive 

and motor components. Second, the stimulus presented by the text might have 

been on the plateau of visual performance, even in the presence of reflections. The 

Relative Visual Performance model shows that visual performance changes very 

little across a wide range of visual conditions until one or other of these variables 

reaches a low level where the visual performance decreases rapidly21,22. The 

reading materials used were representative of the sizes and luminance contrasts of 

materials found in classrooms. It is likely that although the luminance contrast of 

the text was affected by screen reflections, it remained within the range where 

visual performance was relatively stable. Hence, the change in reading time was 

minimal. 

 

The lack of effect of screen reflections on reading are consistent with the results of 

Wang11 and Kubota and Takahashi9 who found that some lighting-display 

parameters that explained subjective responses to disturbing reflections were not 

significantly associated with task performance in the presence of screen 

reflections. These factors included area, edge length and number of screen 

reflections11 and display polarity9. It is likely that the influences of screen reflections 

on observer responses are more subjective than objective. The observer may find 

screen reflections unacceptable before there is any reduction in task performance. 

For example, the rating test results suggested that for the 10° light source at a 

luminance of 5000 cd/m² (Figure 12), reflections on some screens (CRTP, CRTN, 

LCGP, LCGN, OIWP) were, on average, considered disturbing. Yet, at this 

luminance, the difference in task performance was barely noticeable. This 

suggests that lighting recommendations with regards to screen reflection should be 

based on the disturbance felt by users rather than task performance which is less 

sensitive to lighting-display conditions. 

 

5.2 Category ratings and adjustment luminances  
 

The results from the category rating method and the luminance adjustment method 

are mutually supportive. The rated disturbance and the maximum acceptable 

source luminance are both influenced by the same lighting and the display screen 

parameters, namely; the type of display screen and the size and the luminance of 

the reflected light source. The rated disturbance was also affected by the angle of 



viewing, though this variable did not seem to significantly interact with the other 

lighting-display variables. Further, the effect of light source size was consistent 

using both methods. The disturbance for the 10º light source was greater than for 

the 1º light source (Figure 12) and the source luminance considered acceptable by 

95% of participants was lower for the 10º light source than for the 1º light source 

(Table 3).  

 

5.3 Comparison of whiteboards 

 

One of the reasons for reopening the question of reflections from display screens 

was the increased use of interactive whiteboards in classrooms. The two 

interactive whiteboards examined (PIWP and OIWP) were both seen in positive 

polarity but were widely separated in the amount of disturbance they caused. The 

PIWP screen was consistently better than the OIWP screen in that, for the same 

visual conditions, it caused less disturbance (Figure 13) and had a higher light 

source luminance acceptable to 95% of participants (Table 3). This difference can 

be explained by the reflection characteristics of the two screens. The PIWP screen 

has a much higher diffuse reflectance, much higher background luminance, lower 

specular reflectance and lower haze effect (Table 2). In fact, the diffuse reflectance 

of the OIWP screen is so low that it might more accurately be called a blackboard 

rather than a whiteboard. Despite this, it is worth noting that the levels of 

disturbance and acceptable luminances for the two whiteboard screens fall within 

the values found for the conventional computer screens. There are conventional 

screens that are better and worse then either of the two whiteboards (see Table 3 

and Figure 12).   

 
5.4 Comparison with recommendations 

 

The SLL Lighting Guide 7: Office Lighting recommends luminaire luminance limits 

of  ≤ 1000 cd/m² for class I and II screens and ≤ 200 cd/m² for class III screens 

when seen  in negative polarity and ≤ 1500 cd/m² for class I and class II screens 

and ≤ 500 cd/m² for class III screens when seen in positive polarity5. A class I 

screen is defined as a screen suitable for general office use. A class II screen is 

suitable for most, but not all office environments. A class III screen requires a 

specially controlled luminous environment. These recommendations can be 



compared with the borderline luminances obtained by the adjustment method for 

the 1° light source since this source is about the same visual size as ceiling 

luminaires when reflected from the display screen. Based on these recommended 

limits, for positive polarity displays, there were four display screens (CRTP, LCMP, 

PIWP and OIWP) with disturbance borderline luminances much higher than the 

prescribed limit for class I and class II screens (≤1500 cd/m²). In particular, the 

disturbance borderline luminance of LCMP at around 12,000 cd/m² was more than 

eight times the recommended limit.   In contrast, the LCGP screen (class II), was 

found to have a disturbance borderline luminance lower than the recommended 

limit.  For displays in negative polarity, it was found that while the disturbance 

borderline of the class III CRTN screen was well above its prescribed luminance 

limit (≤200 cd/m²), the actual disturbance borderline of the class II LCGN screen 

was less than its prescribed limit (≤1000 cd/m²).  

 

The results of the adjustment test can also be used to estimate the percentage of 

the people who would not be disturbed by reflections of luminaires at the LG7 

recommended luminaire luminance limits. From the results obtained at the 15° 

viewing angle, it can be shown that at the LG7 recommended luminaire luminance 

limits, all or nearly all people would not be disturbed by the luminaire reflections in 

the following screens: CRTP (100%), LCMP (100%), PIWP (98%), OIWP (100%) 

and CRTN (100%). On the other hand, only about 65% of people would not be 

disturbed by reflections in the LCGP and LCGN screens. This means that following 

the LG7 luminaire luminance limits would lead to more than one third of the people 

using these two screens being disturbed.  

 

For all display screens, Lighting Guide 7 recommends that the average luminance 

of surfaces facing the display screen is ≤ 500 cd/m² with a peak surface luminance 

at ≤ 1500 cd/m². The 10° and 15° sources in the experiment can be considered as 

being of similar visual size to the bright surfaces reflected in display screen such as 

walls, ceiling, or windows. Based on these average surface luminance limits, the 

disturbance borderline levels of the LCGP, OIWP, CRTN and LCGP screens were 

lower than the recommended limit. Therefore, reflections on these screens may still 

be disturbing to observers even though the luminance of the bright surface was in 

accordance with the LG7 recommendations.  For the remaining screens (CRTP, 

LCMP and PIWP), the disturbance borderline luminances were higher than or just 



about the prescribed average surface luminance (≤ 500 cd/m²). From the results 

obtained at the 15° viewing angle for the 10° light source, it can be shown that at 

the LG7 surface luminance limit (500 cd/m²), 100% of the people would not be 

disturbed by reflections in the CRTP, LCMP and PIWP screens. At the same 

surface luminance limit, around 80% of the people would not be disturbed by the 

reflections in the OIWP and CRTN screens. For the LCGP and LCGN screens 

which have high gloss surface, the percentage of people who would not be 

disturbed by the reflections at the LG7 limit reduces to around 65-75%.  

 

These results demonstrate that although current lighting recommendations attempt 

to prescribe various luminance limits to suit different screen reflection classes, the 

limits do not match actual observer responses to disturbing reflections on display 

screens. For display screens with a low-gloss surface, the disturbance borderline 

luminances were higher than the guidance suggests which indicates that the 

luminance limit can be raised. Yet, for display screens with a high gloss surface, 

the current luminance limits were found to be too high to prevent disturbing 

reflections. This suggests that the current recommended luminance limits need to 

be revised to take account of developments in the optical characteristics of display 

screens.  

 

 

6. Modelling maximum source luminances 
 

 

The results of the adjustment method allow the development of a model to predict 

luminaire luminance at the disturbance borderline. To select the parameters to be 

used in the model, a large number of lighting–display variables were studied for 

their relationship with the luminaire luminance at the disturbance borderline for 

95% of users (LA). Some of these parameters were taken from other studies of the 

relationship between screen reflections and disturbance2,12. The parameters 

examined included specular reflectance, diffuse reflectance, blur width, effect of 

haze reflection, foreground luminance, background luminance, space-averaged 

luminance, luminance ratio, luminance contrast, display screen modulation, visual 

size of the reflected light source, and viewing angle from normal. Stepwise 

regression was used to construct the model. It was suspected that the relationship 



between lighting-display parameters and the luminance at borderline may not be 

linear. Therefore, a number of the stepwise regressions were carried out using the 

base-10 logarithm of the borderline luminance (Log10LA) as the dependent variable, 

as well as the borderline luminance.  

 

Three criteria were used to identify the best model. First, the chosen model should 

explain the most variance in the borderline luminance using the fewest variables. 

Second, the direction of the relationship between each variable in the model and 

the outcome should not contradict the results without a logical explanation. Third, 

the model should work for all the screen types and for both display polarities. 

Based on these three criteria, a model using four variables was found. The four 

variables were:  

 

• Specular reflectance of the display surface for the particular size of light source 

(ρs).  

 

• The effect of haze reflection (H).Haze reflection is the third component of 

reflection that causes blurry reflection that can be seen surrounding the 

specular component. The effect of haze reflection (H) parameter is adapted 

from the blur effect parameter proposed by Howlett15. The effect of haze 

reflection can be calculated using the parameters obtained when measuring 

the reflection on display screens according to British Standards 9241-7 which 

uses 1° and 15° light sources. 

 

• Background luminance of the display screen in cd/m² (LB). Background 

luminance of display screen gives information on the screen brightness as well 

as the display polarity of the display screen. This parameter can be measured 

following the method in BS EN ISO 9241-7:199813. 

 

• Size (angular area) of the reflected light source subtends at viewing position 

(Ω). This parameter determines the size of the light source from how it appears 

in reflection on the display screen to the observer.  The area is calculated as a 

solid angle in units of steradians.  

 



The stepwise regression process used to obtain the model is summarized in Table 

4. The model is defined by Equation 5: 

 

( ) ( ) ( ) )550.4(001.0043.0668.10013.310 Ω⋅−+⋅+⋅+⋅−+= BsA LHLLog ρ  

[5] 

 

Where:  LA = Disturbance borderline luminance (cd/m²) 

ρs = Specular reflectance for the particular size of light source  

H   = Effect of haze reflection 

LB = Background luminance of the display screen (cd/m²) 

Ω   = Area that the reflected light source subtends at the viewing 

position (sr) 
 

This model can explain up to 86% of the variance in Log10LA . The effects of the 

four variables are consistent with what is known about visibility. In order to be 

seen, the reflection on a display screen must have a luminous contrast with its 

background above threshold, the threshold depending on the size of the object and 

the adaptation luminance. The visibility of a reflection also depends on how its 

edges are. Blurred edges mean the luminance profile of the reflection changes 

gradually, thereby reducing its perceived or subjective contrast and making it less 

conspicuous1. The predictors in the models affect the luminance contrast and the 

edge sharpness of the reflections in ways makes them logical determinants of the 

disturbance caused by reflections on display screens. 

 

• Specular reflectance has a negative relationship with Log10LA (Figure 15) 

because the specular reflection contributes to the brightness (and luminance 

contrast) of the reflections and the distinctness of their edges. When the 

reflection is more distinct, the minimum luminance needed to notice and be 

disturbed by the reflection is therefore lower. 

 

• The effect from haze reflection relates positively with Log10 LA (Figure 15) 

because the haze reflection helps blur the edge and lower the peak luminance 

of the reflection. Both actions contribute to the reduction of perceived contrast. 

With less perceived contrast and blurred edges, the source of reflection could 

have a higher luminance before being considered disturbing. 



 

• Background luminance of display screen has a positive relationship with 

Log10LA (Figure 16) because the increased background luminance reduces the 

luminous contrast between the reflection and the background which makes the 

reflection less conspicuous and disturbing. The luminance of the source of the 

reflection therefore can be higher. The behaviour of the background luminance 

in the model justifies how display screens in positive polarity with higher 

background luminance (e.g. 100 cd/m²)  are less sensitive to reflections than 

the display screens in negative polarity with lower background luminance (e.g. 

0.1 cd/m²). 

 

• The size (area) of the reflected light source relates negatively withLog10LA 

(Figure 16). Increasing the size of the reflection reduces the contrast threshold 

for seeing the reflection.  This in effect lowers the luminance of the reflected 

source that the observers find disturbing.  

 

Figure 17 shows the predicted log luminance at disturbance borderline plotted 

against the actual log luminance at disturbance borderline satisfied by 95% of 

participants in the adjustment test. The model is able to predict the luminance at 

the disturbance borderline for a variety of screens in our test with high accuracy 

(r²=0.86). The r² values for individual screens vary between 0.73 and 0.99.  

 

 

7. Modelling disturbance rating  
 

 

The category rating results can be used to generate a model for predicting the 

average level of disturbance produced by a combination of lighting and display 

screen variables. Since the patterns of results produced by the adjustment method 

and the category rating method are similar it seems reasonable to suppose that the 

four variables used to predict source luminance at the disturbance borderline would 

be also be important for the prediction of disturbance rating. The mean disturbance 

ratings of 40 subjects for 56 different lighting-display combinations (2 sizes of light 

source, 4 luminance levels and 7 display screens), all for the 15º viewing direction  

were used in the stepwise regression. Mean ratings were chosen in the analysis 



instead of the ratings from individual participants to reduce variance within the 

sample. Table 5 summarizes the hierarchy in the stepwise regression analysis.  

It can be seen that the inclusion of each successive variable significantly improves 

the variance of the disturbance rating accounted for by the model. With five 

predictors (specular reflectance, logarithm of the luminance of the light source, 

haze, area of the light source and background luminance), the goodness-of-fit of 

the model was r²=0.85. The model is given by Equation 6. Note that a higher 

disturbance rating means a less disturbing screen reflection. 

 

( ) ( ) ( ) ( ) ( )BAs LHLLogRating ⋅+Ω⋅−+⋅+⋅−+⋅−+= 0014.0255.45083.0515.1263.22277.10 10ρ
[6] 

 

The behaviour of the model can be seen from the regression coefficients in 

Equation 6.  The disturbance rating increases (i.e., the reflections become less 

disturbing) as ρs decreases, Log10LA decreases, Ω decreases, H increases and LB 

increases. The directions of effect between each predictor and the disturbance 

rating are consistent with how human visual system functions. Disturbance by 

screen reflection depends on the visibility of the reflections to observers. Specular 

reflectance contributes to the brightness of reflections and the sharpness of their 

edges. More specular reflectance means more luminance contrast between the 

reflection and the display background and higher retinal image quality of the 

reflections. The reflections are thus more visible and disturbing to observers (i.e. 

lower rating). The effect of haze reflection contributes to the blurriness of the 

reflections, which reduces the perceived contrast of the reflection. Therefore more 

haze reflection makes the reflections less disturbing to observers (i.e. higher 

rating). Background luminance determines the state of the adaptation of the visual 

system and the luminance contrast between reflections and display background. A 

higher background luminance means a lower luminance contrast and less 

disturbance from screen reflections (i.e. higher rating). As for the size of the 

reflected light source, larger sources are more disturbing (i.e. lower rating). The 

luminance of the reflected light source increases the luminance contrast between 

reflections and display background. More source luminance therefore leads to 

more visible and more disturbing reflections.  

 



Figure 18 shows the predicted disturbance rating plotted against the actual mean 

disturbance rating obtained from the experiment. The variance explained is r²=0.85 

for the analysis with all screens included. For individual display screens, r² values 

vary between 0.71 and 0.93.  

 

 

8. Applications of the models 
 

 

There are a number of applications for the models in lighting design, both specific 

and general. An obvious specific use of the models is identification of the 

appropriate lighting to match chosen or existing display screens. If the optical 

properties of the display screens are known or can be measured, for a given 

specular reflectance (ρs), effect of haze reflection (H) and background luminance 

(LB), the models can be used to determine the limit of luminaire luminance (LA) that 

can be used without producing disturbing reflections, for a given size of light source 

(Ω).  For example, for a glossy LCD with ρs of 0.033, H of 1.31 and LB of 250 cd/m², 

the permissible luminance for a circular luminaire with a diameter subtending 1° (Ω 

=2.39*10-4 sr) is around 884 cd/m². It is worth noting that both models can be used 

in this way, the maximum luminance model can be used directly while the category 

rating model can be used indirectly by assuming an acceptable value of the mean 

disturbance rating. For guidance, a comparison between the results from the 

luminance adjustment test and the category rating test revealed that, at the 

disturbance borderline where 95% of the people were not disturbed by the 

reflection, the disturbance rating was between 5 and 5.5, depending on the size of 

the light source23. The standard rating can be set lower on the scale but the 

percentage of people disturbed by the reflection will be increased.  

 

One benefit of these models is that they allow a trade-off between the luminaire 

luminance limit and the size of the light source. Therefore on the condition that the 

luminaire has a high luminance, the appropriate size of the luminaire can be 

calculated in order to keep the reflection from being disturbing. Reduction of the 

apparent size of the luminaire can be achieved by locating it further away from the 

display screen, using appropriate louvres or by shielding the luminaire. 

Alternatively, if the visual size of the luminaire is fixed, the model can work out the 



borderline luminaire luminance so that the lamps are dimmed accordingly and 

disturbing reflections are avoided. It should be noted that the models were 

developed in experimental settings using a luminaire with uniform luminance, as is 

required by BS EN ISO 9241-7:199813 and BS EN ISO 13406-2:200214 to test 

screen reflection, whereas real luminaires often have a range of luminances. In 

order to ensure that disturbing reflections are avoided, it is recommended to 

consider the worst case and apply the model on that basis. That is, when using the 

model to determine the permissible luminaire luminance (LA), the outcome should 

be treated as the maximum or the peak luminance of the luminaire that can be 

used for the specified screen. The most disturbing reflection comes from the light 

source with largest visual size and highest luminance. If the reflection coming from 

this light source is not disturbing, the reflections of other sources with smaller 

visual sizes and lower luminances are unlikely to be disturbing. 

 

Another specific application of the models is the identification of the appropriate 

display screens to match existing lighting: For a given average luminance and size 

of light source, the models can be used to determine suitable combinations of 

display screen properties. Since the models are based on luminance, it is a 

relatively easy task to quantify any existing luminous environment using a 

luminance meter or HDR camera system. The light source in the models does not 

have to be a luminaire, but may be generalised to other bright surfaces seen 

reflected in the display screen or even windows. Again, it should be noted that the 

models were developed based on a single luminaire of a certain size whereas a 

real room often has more than one light source and their visual sizes vary. To 

apply the models to a real room, it is recommended to consider the worst case and 

then use the model to find out display screen properties to suit that situation. The 

most disturbing reflection will be experienced when looking at a screen with a low 

background luminance and a high specular reflection and little haze effect. If the 

reflection seen with this screen is not disturbing, it is unlikely that reflections from 

other screens will cause disturbance. 

 

A general application of the models is to assist in the setting of lighting standards 

and recommendations. By making measurements of a number of screen types 

representative of those in widespread use, it would be possible to identify the 

luminaire luminance limits to be recommended for each screen type. In principle, 



these recommendations could be easily updated as screen technology changes. 

An alternative general approach in which the models would be useful would be to 

identify what screen types are most suitable for use with particular types of lighting.  

 

 

9. Conclusions 
 

 

The results presented in this paper have shown that the recommended luminaire 

luminance limits in current lighting guidance cannot ensure that disturbing screen 

reflections are prevented in all types of screen. For some screen types, including 

the interactive whiteboards now widely used in classrooms, the current 

recommendations for luminaires are too strict whilst for others, they are too lax. 

Partly, this is because of the rapid development in screen technology and partly 

because of the need for recommendations to be simple to understand. To rectify 

this situation, the results have been used to construct two empirical models. One 

model expresses the relationship between four variables related to the lighting and 

the screen characteristics (size of light source and specular reflectance, effect of 

haze reflection and background luminance of the screen) and the luminance of the 

light source that would be acceptable to 95% of observers when reflected in the 

screen. The other expresses the relationship between five variables (luminance 

and size of light source and specular reflectance, effect of haze reflection and 

background luminance of the screen) and the level of disturbance expressed by 

observers on a six point rating scale. Both models can be used to assign luminaire 

luminance limits to ensure disturbing reflections are not seen in specific screens or 

to identify which screens can be used with specific lighting without disturbing 

reflections. Given information about a range screen types currently in use, the 

models could also be used as the basis for generating more general 

recommendations on luminaire luminance limits, limits that could easily be updated 

as display technology changes. 

 

However, before any of this can be done there is a need for independent testing 

and hopefully, validation of the models. The models have been developed from the 

data reported here so they can be expected to fit these data well. What is 

necessary is for the models to be used to make predictions for other screen types 



than those tested here and for those predictions to be compared with actual 

measurements of the 95% disturbance borderline or the mean rating of disturbance 

made by other observers. Some validation of the disturbance rating model was 

carried out by using the model to predict the conspicuity rating of screen reflection 

collected in a previous study by Miller24. To do this required estimation of the effect 

of haze reflection (H) from the blur width of the test screens measured by Miller. It 

was found that the R2 between the predicted disturbance rating and the actual 

conspicuity rating varied between 0.70 and 0.90 depending on the type and polarity 

of the screen. This suggests that the predictors used in the model can actually 

predict subjective responses to reflections on display screens in an independent 

set of data, although further tests are needed that actually use measured values of 

the variables rather than estimated values. 

 

As well as different screen types, the predictions of the models should be tested 

with more people and for real luminaires with non-uniform luminances. This latter 

factor might indicate how to determine the effective size of the luminaire as regards 

the luminances likely to cause disturbing reflections when the luminaire luminance 

is not uniform. At the very least it would suggest whether or not further work is 

needed to establish how to quantify the effective area of a luminaire as a source of 

disturbing reflections.    
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Table 1 Description of the display screens and polarity conditions used.  
 

 

No. Description of screen Initialism 

1 Viglen 17” CRT display screen in positive polarity. CRTP 

2 Sony VGN-NR21M laptop with 15.4” X-black LCD widescreen with anti-

reflective treatment and glossy surface, in positive polarity. 

LCGP 

3 Viglen TS700 17” LCD display screen with matt anti-glare surface, in 

positive polarity. 

LCMP 

4 Front-projection interactive whiteboard system: 48” SMART Board 640 

Becta and Epson EMP-S5+ LCD projector. The projector has image 

brightness of 2000 ANSI lumen. The projection interactive whiteboard 

was used in positive polarity. 

PIWP 

5 Flat-screen interactive whiteboard system: NEC 42XP10 42” Plasma 

(PDP) screen with SMART PX342 overlay on the top to make the screen 

surface interactive.  The overlay interactive whiteboard was used in 

positive polarity. 

OIWP 

6 Viglen 17” CRT display screen, similar to a screen (1) but in negative 

polarity. 

CRTN 

7 Sony VGN-NR21M laptop with 15.4” X-black LCD widescreen, similar to 

a screen (2) but in negative polarity. 

LCGN 

 

 



 

Table 2 Summary of the display screen reflection properties. 

  

Display screen CRTP LCGP LCMP PIWP OIWP CRTN LCGN 

Diffuse reflectance (ρd) 0.0587 0.0142 0.3334 0.9414 0.0582 0.0587 0.0142 

Properties at 15° from display normal        

Background luminance (LB) 77.51 146.30 188.00 409.40 90.45 0.05 0.13 

Foreground image luminance (Lf) 1.49 1.05 1.88 13.12 2.53 74.50 142.30 

Specular reflectance for 1° source (ρs) 0.0050 0.0382 0.0004 0.0001 0.0052 0.0050 0.0382 

Specular reflectance for 10° source (ρs) 0.0272 0.0438 0.0321 0.0271 0.0912 0.0272 0.0438 

Specular reflectance for 15° source (ρs) 0.0333 0.0442 0.0392 0.0370 0.1025 0.0333 0.0442 

Effect from haze reflection (H) 3.98 1.15 14.73 1.22 11.28 3.98 1.15 

 



 
Table 3 Disturbance borderline luminances of seven display screens. 

 

Viewing 
angle 

Light 
source 

Disturbance 
borderline 
criterion 

Positive Polarity  Negative 
polarity 

CRTP LCGP LCMP PIWP OIWP  CRTN LCGN 

15° 1° 

95% satisfied 

observers 2676 720 12633 3387 2380 

 

592 427 

  Mean  14110 7387 23935 21885 16265  11800 8250 

  STDEV 8779 8818 4119 7232 8534  8965 10353 

15° 10° 95% satisfied 

observers 963 326 1754 645 361 

 

349 316 

  Mean  4069 2016 7641 5530 1642  2160 1490 

  STDEV 3071 2505 4217 4079 2234  2767 1910 

15° 15° 95% satisfied 

observers 687 334 1154 

 

n/a* 

 

n/a* 

 

309 306 

  Mean  2935 2153 5334 n/a* n/a*  1722 1340 

  STDEV 2719 3118 3543 n/a* n/a*  1980 1780 

30° 1° 

95% satisfied 

observers 1762 451 14742 4153 3106 

 

709 399 

  Mean  13239 6391 24100 22627 16624  9610 6648 

  STDEV 8993 8910 3326 6480 8080  9048 9516 

30° 10° 95% satisfied 

observers 950 348 1836 494 345 

 

336 319 

  Mean  3773 1440 6771 5017 1642  2177 1082 

  STDEV 3029 1758 3625 3573 2422  2482 1352 

30° 15° 95% satisfied 

observers 495 302 967 

 

n/a* 

 

n/a* 

 

329 286 

  Mean  2755 1064 4618 n/a* n/a*  1663 953 

  STDEV 1881 1176 2947 n/a* n/a*  2373 1216 

*Interactive whiteboards were not tested with the 15° light source due to limitations of the 

apparatus. 

 

 



Table 4 Summary of the stepwise regression process of the models to predict 

luminaire luminance at the disturbance borderline. 

Model R R² R² Change p 

Specular reflectance 0.701 0.491 0.491 <0.01 

Specular reflectance, haze,  0.877 0.770 0.278 <0.01 

Specular reflectance, haze, background 

luminance 

0.908 0.824 0.054 <0.01 

Specular reflectance, haze, background 

luminance, area of light source 

0.927 0.860 0.036 <0.01 

 



Table 5 Summary of the stepwise regression process of the model to predict the 

disturbance rating. 

 

Model R R² R² Change p 

Specular reflectance 0.595 0.353 0.353 <0.01 

Specular reflectance, Log10LA,  0.750 0.562 0.209 <0.01 

Specular reflectance, Log10LA, haze,  0.850 0.723 0.161 <0.01 

Specular reflectance, Log10LA, haze, area 

of light source 

0.910 0.828 0.105 <0.01 

Specular reflectance, Log10LA, haze, area 

of light source, background luminance 

0.924 0.853 0.025 <0.01 

 



 
 

 

Figure 1  Diffuse, specular and haze components of screen reflection. 

 
 
 
 
 

 
 
 
Figure 2 Plan of the test environment showing the arrangement of the apparatus. 

(DSE = Display Screen Equipment) 

 
 
 



 

 
Figure 3 Section through the light box. 

 
 
 
 

 
 
 
Figure 4 The display screens used in the tests. The reflection in these images is 

that from the light box with a 10° aperture. 



 
 
 
 

 
Figure 5 Luminances at the disturbance, contrast and clarity borderlines tested 

with the 10° light source at 15° viewing angle, showing the luminances satisfactory 

to 95% of participants.  

 

 

 

 

 
Figure 6 Mean time taken by participant to read aloud 50 random words on 7 

display screens, tested with the 1° light source. 



 
 

 

Figure 7 Mean time taken by participant to read aloud 50 random words on 7 

display screens, tested with the 10° light source. 

 

 

 
 

Figure 8 Mean disturbance rating of seven display screens, tested with the 1° light 

source. 

 



 
 

 

Figure 9 Mean disturbance rating of seven display screens, tested with the 10° 

light source. 

 

 

 
 

Figure 10 Mean contrast rating of seven display screens, tested with the 10° light 

source. 

 



 

 
 

Figure 11 Mean clarity rating of seven display screens, tested with the 10° light 

source. 

 

 

 
Figure 12 Mean disturbance rating of seven display screens tested with different 

sizes of light source at 5000 cd/m². 

 



 
 

Figure 13 Mean disturbance ratings of two types of interactive whiteboard at two 

different viewing angles.    

 

 

 



 
Figure 14 The mean disturbance, contrast and clarity ratings for 7 display screens, 

using the 10° light source at 4 different luminances (500, 1000, 3000 and 5000 

cd/m²).  

 

 



 
 

Figure 15 Specular reflectance plotted against the predicted luminance at the 

disturbance borderline for two sizes of light source, 2.39*10-4sr and 2.39*10-2 sr.  

Each curve is for different values of haze effect, H=1, H=4 and H=8. The display 

background luminance is fixed at 200 cd/m². 

 

 

 

 

 
 

 

Figure 16 Area of the reflected light source plotted against predicted luminance at 

the disturbance borderline for two specular reflectances, ρs=0.005 and ρs=0.01. 

Each curve is for different background luminance of display screen, LB=0.1 cd/m², 

LB=100 cd/m² and LB=200 cd/m². The effect of haze reflection is fixed at H=4.  



 

 
Figure 17 Predicted Log10LA plotted against actual Log10LA that satisfied 95% of 

participants in the adjustment test.  

 

 

 
 

Figure 18 Predicted disturbance ratings plotted against the actual disturbance 

ratings for all screen types. 
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