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Abstract 12 
Agricultural development in the Murcia autonomous region, Spain has led to overexploitation 13 

of groundwater resources and climate change will further increase pressures. Policy options 14 

to tackle the current unsustainable situation include the development of inter-basin water 15 

transfer (IBWT) schemes from wetter regions in the north and the introduction of taxation to 16 

further control groundwater abstraction. Under these scenarios farmers with current access to 17 

water could face higher water cost, whereas farmers in areas where water was previously not 18 

available could see first time availability of water resources. In this paper we combine 19 

discrete choice based interviews (DCI) with farmers in the Torrealvilla catchment, in which 20 

they indicate how they would adapt their land use under different scenarios, with an input-21 

output model to assess the aggregate effects of individual land use decisions on the economy 22 

and water consumption of the Murcia region. The paper presents steps taken in the 23 

development of an input-output table for Murcia, including disaggregation of the agricultural 24 

sector, accounting for sector water use, and consideration of back- and forward linkages. We 25 

conclude that appropriate taxation can lead to better water use efficiency, but that this is 26 

delicate as relatively small changes in prices of agricultural products can have significant 27 

impacts on land use and water consumption. Although new IBWT schemes would enable 28 

water to be used more efficiently, they would considerably increase regional water 29 

consumption and the regional economy’s dependence on water. As this is not sustainable 30 

under future climate change, water saving development pathways need to be explored.  31 

  32 

 33 

1. Introduction 34 

 35 
Provision of freshwater is one of the most important ecosystem services, which has in many 36 

areas of the world been compromised by unsustainable land management practises (MA, 37 

2005). Water resources are limited and need to be carefully managed to satisfy and safeguard 38 

continuous multiple needs of consumers, the economy and environment. Water scarcity, the 39 

temporal or spatial imbalance between available water resources and demand has been, and 40 

will increasingly become, a serious concern, exacerbated by overexploitation, environmental 41 

degradation, pollution and climate change (Hubacek and Sun, 2005).   42 

    43 

The Spanish Region of Murcia (Figure 1), despite being hot and dry, has witnessed 44 

remarkable agricultural development over the last decades. However, its agricultural sector is 45 

premised on heavy overexploitation of groundwater resources and reliance on the Tagus–46 

Segura inter-basin water transfer (IBWT) scheme, which was inaugurated in 1979 (Garrido et 47 

al., 2006; Grindlay et al., 2011) and is for 56 ± 15% used for irrigation (CREM, 2011) . The 48 

region has become known as a major producer of fruits and vegetables. This is reflected in 49 

the importance of agriculture in the economy (8.3% of regional employment and 5.8% of 50 
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regional gross added value against 4.5% and 2.6% at the national level, respectively), but 51 

most significantly by the fact that agricultural exports make up 35.4% of Murcia’s total 52 

exports (CREM, 2011). The paradoxical issue of the embedded ‘virtual’ water exports from a 53 

water-scarce region has drawn attention from many scholars (Ma et al., 2006; Velázquez, 54 

2006; Dietzenbacher and Velázquez, 2007; Downward and Taylor, 2007; Guan and Hubacek, 55 

2007; Chapagain and Orr, 2009; Zhao et al., 2009). For the past thirty years, regional water 56 

demand in the Segura basin has surpassed availability of renewable water resources as a 57 

combined effect of increased irrigation (87% of current water demand) and rapid urbanization 58 

(7%) (Grindlay et al., 2011). As a result, ironically, the IBWT scheme has only further 59 

aggravated the region’s chronic water shortage. 60 

 61 

Past and present perspectives on the region’s water shortage are well-documented by 62 

Grindlay et al. (2011). Oñate and Peco (2005) address the role policies have played in 63 

transforming land management in Murcia over the years, particularly how they are perceived 64 

to have driven land degradation processes in the Guadalentín basin, both in irrigated and 65 

rainfed areas. The water thirst of the region is stressed by many authors, with Garrido et al. 66 

(2006, p.347) classifying the Segura basin as ‘one of the most interesting cases of water 67 

conflicts in Spain, and perhaps worldwide’. The governance of the Tagus–Segura IBWT is 68 

based on the early summer water level of reservoirs in the headwaters of the Tagus, but does 69 

not take into account water needs in the conceding basin. Roughly 60% of the natural flow of 70 

the upper Tagus is committed to the Tagus–Segura IBWT, and as a consequence the 71 

minimum discharge is now less than 6 m
3
/s compared to 30 m

3
/s before the IBWT became 72 

operational (Hernández Soria, 2003). The rationale for developing the IBWT was that cities 73 

and tourism on the Mediterranean coast needed water to grow and irrigated agriculture in the 74 

sub-tropical zones of southern Spain achieves higher water productivity than in the interior 75 

regions. However, due to reduced flow levels, the Tagus is now among the most polluted 76 

European rivers (Hernández Soria, 2003), and growing water needs in the conceding region 77 

have led to bitter disputes. Ambitious but similarly highly contested plans for a further Ebro–78 

Segura IBWT scheme have for the time being been put on hold. Instead, desalinisation has 79 

been embraced as an alternative way forward as the capital and energy expenses have come 80 

down in recent years (Downward and Taylor, 2007). Simultaneously, the European Water 81 

Framework Directive (WFD) prescribes that water should be priced at full-cost recovery and 82 

water resources and fluxes should be systematically monitored. The WFD further stresses 83 

institutionalising environmental water demands at par with societal and economic water 84 

demands. As a consequence, the Tagus–Segura IBWT may be limited by allocating more 85 

water within the conceding basin (Martínez-Santos et al., 2008), and prices of groundwater 86 

extraction would also rise (Garrido et al., 2006). In this context, water users generally have 87 

great uncertainty over water availability and regulations governing its use.  88 

 89 

Whereas much research has focused on potential policy options to decrease water 90 

dependency, these options and the likely responses of individual land managers have rarely 91 

been analysed at both the farm and regional scale. These interconnections are important as 92 

policies will affect different farm types differently – with social and environmental 93 

consequences (e.g. de Graaff et al., 2008); studies focusing at the regional scale can only 94 

assume how farmers will react. As the agricultural sector is embedded in the regional 95 

economy, shifts in competitiveness of land uses can have important knock-on effects on other 96 

sectors; exclusively farm scale studies cannot take these effects into account. In this paper, 97 

we combine discrete choice based interviews (DCI) with an input-output model to attempt 98 

such integration. This combination not only allows assessing the direct aggregate effects of 99 

individual land use decisions, but also of indirect effects on the regional economy and 100 
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associated water use. In the remainder of this paper, we first introduce the methods used in 101 

the study. Subsequently, results are presented and discussed, and conclusions drawn.   102 

 103 
<<<Figure 1 about here>>> 104 

 105 

 106 

2. Methodology 107 

 108 
Two methods are used to assess regional effects of local responses: an input-output (I/O) 109 

model and discrete choice based interviews (DCI). The former requires several intermediate 110 

steps which are explained in more detail in the first seven sub-sections (2.1-2.7). Data 111 

requirements and assumptions are indicated in various places, but have also been brought 112 

together in a data appendix (provided as supplementary material). The DCI were obtained 113 

from a farm survey among farmers in the Torrealvilla catchment (Figure 1). The definition of 114 

DCI scenarios and upscaling procedure are provided in sub-sections 2.8 and 2.9. After these 115 

procedures, the effects of the DCI-elicited land use change scenarios can be assessed with the 116 

I/O model. Sub-section 2.10 explains how virtual water multipliers in an I/O framework will 117 

be used to triangulate the DCI responses.  118 

 119 

2.1. Input-Output model 120 

 121 

I/O analysis, initially developed by Wassily Leontief (1936) and still widely used today, is a 122 

method to analyse interrelations between sectors of an economy. To perform I/O analysis, 123 

one needs to construct an I/O matrix (usually provided by national statistical offices) which 124 

represents the intersectoral flows of products (usually in monetary terms and for a specific 125 

time period – i.e. a year) from each of the sectors (producer) to each of the sectors 126 

(purchaser) (Miller and Blair, 2009). These intersectoral flows are relatively stable: e.g. to 127 

produce a unit worth of margarine a more or less fixed quantity of oilseeds is needed. The 128 

stability of unitary intersectoral flows, which have become known as inter-industry technical 129 

coefficients, is a fundamental assumption of the I/O model. In addition to flows between 130 

industries there are sales to exogenous purchasers (e.g. household, government and foreign 131 

exports – together indicated as final demand). In the production process, a sector also pays 132 

for elements that are not purchased from other sectors (e.g. labour, capital and imports – the 133 

total of which is referred to as value added). Once an I/O matrix is constructed, I/O modelling 134 

entails the analysis of changes in final demand, inter-industry coefficients or value added 135 

through a system of linear equations. For a fuller introduction to I/O analysis, the reader is 136 

referred to Miller and Blair (2009). Subsequent developments to IO analysis have included 137 

social and environmental extensions and applications (Leontief and Ford, 1970). Guan and 138 

Hubacek (2008) review the application of input-output models to water resources, and 139 

present a body of research that has developed since the 1980s. 140 

 141 

The general structure of an input-output model is given by: 142 

 143 

X= (I-A)
-1

f         (1) 144 

 145 

Where: 146 

X = n x 1 vector of gross outputs 147 

I = n x n identity matrix 148 

A = n x n matrix of inter-industry technical coefficients 149 

f = n x 1 vector of aggregate final demand 150 



4 

 

 151 

Matrix A consists of elements aij (the technical coefficients) which characterise the 152 

percentage of sector j’s inputs that are provided by sector i. In the above model, (I-A)
-1

 is 153 

commonly known as the Leontief inverse matrix. The sum of each column in the Leontief 154 

inverse matrix represents the output multiplier for that sector. Leontief multipliers consider 155 

the combined effects of direct sector output and any indirect effects generated by increased 156 

demands for inputs from all sectors of an economy which are required to meet an increase of 157 

one unit in final demand for that sector. Leontief multipliers are thus demand-driven and 158 

quantify the backward linkages of a sector.  159 

 160 

It is also possible to quantify forward linkages using a supply-driven specification of the 161 

economy: 162 

 163 

X= (I-B)
-1

pi         (2) 164 

 165 

Where: 166 

B = n x n matrix of inter-industry distribution coefficients 167 

pi = n x 1 vector of primary inputs 168 

  169 

The matrix (I-B)
-1

 is the so-called Ghosh inverse matrix. Matrix B is made up of distribution 170 

coefficients bij representing the percentage of sector i’s gross output that is sold to sector j. 171 

Matrices A and B and their inverses can be calculated from an I/O table of intersectoral 172 

transactions. The remainder of the methodology will focus on the Leontief I/O model variant. 173 

The relation between matrices A and B and Leontief (L) and Ghosh (G) inverses is 174 

straightforward (Dietzenbacher, 2002):  175 

 176 
1ˆ  ˆ  XBXA

 

and 
1ˆG  ˆ  XXL       (3)

  

177 

 178 

Where the hat symbol (^) denotes that the vector X is diagonalized.  179 

 180 

A symmetrical set of I/O tables is available for Spain for 2005. It is produced by the National 181 

Statistics Institute (INE, 2009). The set of tables contain 73 x 73 sectors and report on total 182 

production, domestic production and import data respectively. Also calculated are technical 183 

coefficients and inverse matrix coefficients, both based on domestic and total inputs 184 

respectively. 185 

 186 

I/O tables have been constructed for many Spanish autonomous regions, but not for Murcia. 187 

Therefore we needed to construct a regional I/O table based on the national one. A well-188 

known problem in constructing regional I/O tables is that inter-industry technical coefficients 189 

are prone to be exaggerated as the propensity of sectors to import is inversely related to the 190 

size of the economy considered (Boomsma and Oosterhaven, 1992; Harris and Liu, 1998; 191 

Flegg and Tohmo, in press). We applied the method described by Flegg and Tohmo (in 192 

press), building on earlier work by the same author(s), which takes this issue into account. 193 

We subsequently tested the method by comparing the output multipliers from non-survey I/O 194 

tables based on various location quotient approaches with those from survey-based I/O tables 195 

which are available for the neighbouring autonomous regions Valencia and Andalucía. 196 

 197 

The following sections briefly explain the steps followed in constructing the regional I/O 198 

table. 199 

 200 
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2.2. Aggregating the 73-sector national level I/O table into 26 sectors 201 

The regional statistics office has data for 2005 on the Gross Domestic Product (GDP) of the 202 

regional economy subdivided in 26 sectors: 2 primary sectors (agriculture and fisheries), 15 203 

secondary sectors (comprising 14 industrial sectors and construction), and 10 tertiary service 204 

sectors (CREM, 2011). By relating the national I/O table to the CNAE93 system of accounts 205 

(INE, 2009) it was possible to produce a national I/O table considering the same 26 sectors as 206 

used for the regional economic accounts.  207 

 208 

2.3. Constructing regional I/O table based on location quotients 209 

The method described by Flegg and Tohmo (in press) requires the subsequent estimation of 210 

the local inter-industry technical coefficients using several location quotient approaches: 211 

SLQ, CILQ, FLQ and AFLQ.  212 

 213 

SLQ (Simple Location Quotient) is defined as (Miller and Blair, 2009): 214 











NN

i

RR

i
i

VV

VV
SLQ

/

/
        (4) 215 

Where 
R

iV and RV represent employment in sector i  in region R and total employment in 216 

region R respectively, while 
N

iV  and 
NV  are employment in sector i  in the whole country 217 

and total employment in the whole country.  218 

 219 

If the iSLQ is greater than or equal to one ( iSLQ ≥1), it implies that sector i  is at least as 220 

concentrated in region R as in the nation as a whole. In this case, the iSLQ is not used to 221 

update the national coefficient. Hence, for row i of the regional table (Miller and Blair, 222 

1985):  223 

 224 

)( R

i

N

ij

N

ijR

ij

SLQ

a

a
a







  
if

if

1

1




R

i

R

i

SLQ

SLQ
      (5) 225 

 226 

 227 

CILQ (Cross-Industry Location Quotient) is a variant of the SLQ which takes into account 228 

the relative sizes of sectors i and j (Miller and Blair, 1985):  229 

 230 

N

j

R

j

N

i

R

i

j

i
ij

VV

VV

SLQ

SLQ
CILQ

/

/
        (6) 231 

 232 

In analogy to the SLQ, CILQ is only used when smaller than one: 233 

 234 

)( R

ij

N

ij

N

ijR

ij

CILQ

a

a
a







  
if

if

1

1




R

ij

R

ij

CILQ

CILQ
      (7) 235 
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 236 

 237 

The FLQ (‘Flegg LQ’) proposed by Flegg et al. (1995) and refined by Flegg and Webber 238 

(1997) uses the SLQ and CILQ calculated as follows: 239 

 240 

* ijij CILQFLQ  for ji        (8a) 241 

* iij SLQFLQ  for ji        (8b) 242 

 243 

Where: 244 

   N

tot

R

tot VV 1log* 2 , with 10        (9) 245 

 246 

This method combines the CILQ and SLQ approaches and adds a scaling factor *  to take 247 

into account the relative size of regional purchasing and supplying sectors and the relative 248 

size of the region compared to the national level when determining the adjustment for 249 

interregional trade. The parameter δ is an unknown influencing the degree of convexity of the 250 

scaling factor *  (Flegg and Webber, 1997). CILQ is used everywhere in the matrix but on 251 

the diagonal (where the CILQ scaling factor equals to 1); here the SLQ is used instead as a 252 

more realistic approximation. 253 

 254 

Another modification can be made; this is the augmented FLQ (AFLQ) described in Flegg 255 

and Webber (2000), and evaluated in Flegg and Tohmo (in press). This method adds a 256 

specialization term to Equation (8a), allowing regional input coefficients to surpass the 257 

corresponding national coefficients in case of regional specialization: 258 

 259 

  jijij SLQCILQAFLQ  1log* 2
  

for








1jSLQ

ji

  (10)
 260 

 261 

The national level inter-industry coefficients are multiplied by the quotients obtained by 262 

employing the various approaches (SLQ, CILQ, FLQ, AFLQ) as discussed above to arrive at 263 

regional coefficients.  264 

 265 

2.4. Selecting the most appropriate location coefficient-based I/O approach 266 

Different theoretical considerations and empirical evidence exist to evaluate available 267 

approaches (Flegg and Tohmo, in press). Given the sometimes conflicting conclusions, and 268 

the fact that we cannot validate the approaches in absence of a survey-based I/O table for 269 

Murcia, we opted to apply the same methods described above to neighbouring Spanish 270 

autonomous regions Andalucía and Valencia for which I/O tables do exist: IEA (2010) and 271 

IVE (2008), respectively. We evaluated the approaches based on their relative success in 272 

estimating regional output multipliers using the following two methods: 273 

 274 

    
j jjj mmmn ˆ1001       (11) 275 

 276 

   
j jjj mmmn ˆ1002       (12) 277 

 278 

Where jm̂ is the estimated output multiplier for sector j using the various location quotients, 279 

jm is the survey-based multiplier (as provided by IEA, 2010 and IVE, 2008), and n is the 280 
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number of sectors in the symmetrical regional I/O table (n = 63 for Andalucía and 67 for 281 

Valencia).  282 

 283 

The measure 1  can identify whether a multiplier is systematically under- or overestimated 284 

but may average out (large) positive and negative errors. The measure 2  accounts for all 285 

(positive and negative) deviations but cannot identify the direction of a possible bias. Note 286 

that we are interested in the best approximation of each multiplier, not a comparison of 287 

average estimated and survey-based multipliers for which a paired t-test would be 288 

appropriate. 289 

 290 

2.5. Disaggregating the agricultural sector of the regional I/O table  291 

We are interested in the effects of agricultural land use changes and therefore need to 292 

subdivide the single agricultural sector into a series of agricultural subsectors. These are 293 

defined based on importance of land use, extent of recent changes and differences in water 294 

use and economic dissimilarity: 1) grains and other annual field crops; 2) horticulture and 295 

fruit trees; 3) grapes; 4) olives and almonds; and 5) livestock. Various regional agricultural 296 

statistics were used to achieve this in the following steps:  297 

 First, the technical coefficients for sectors i supplying inputs to the agricultural sector 298 

were multiplied with the total value of agricultural output. 299 

 Second, total output from the newly defined 5 agricultural sectors was calculated from the 300 

aggregation of different individual agricultural enterprises and groups of enterprises. 301 

 Third, a list of quantities of the most important intermediate consumption categories was 302 

available (CREM, 2011).  Items such as feed (36.8%), seedlings (2.8%) and veterinary 303 

costs (2.4%) could easily be attributed to specific subsectors. In other cases, agricultural 304 

statistics and secondary data (CARM, 2005; 2007; Fleskens, 2005) were employed to 305 

distribute intermediate consumption items such as fertilizer (8.5%), phytosanitary 306 

products (7.4%) and energy/lubricants (6.6%) over relevant subsectors.  307 

 Fourth, for smaller categories of intermediate consumption for which no further data was 308 

available, with a known value of total agricultural output (from step 1), the regional I/O 309 

table with a single agricultural sector was (with some assumptions, i.e. proportionate 310 

allocation) used to balance remaining expenditure on intermediate consumption in the 311 

five subsectors. 312 

 Fifth, using subsector total output, the quantities of inputs were converted into technical 313 

coefficients. 314 

 Finally, constructing input to non-agricultural sectors from the 5 agricultural subsectors 315 

was relatively straightforward as the sum of subsector technical coefficients was required 316 

to remain equal to that of the non-disaggregated agricultural sector technical coefficient 317 

for each column. The distribution over subsectors for key-sectors with high volumes of 318 

agricultural inputs (i.e. agro-food, textile and leather, lumber and cork, and paper 319 

industries, and hotels) was informed by a comparison with data for the neighbouring 320 

Valencia autonomous region. The sub-matrix of distribution coefficients was used to 321 

balance the inter-industry input coefficients.     322 

2.6. Estimating regional final demand and sector output 323 
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Most required final demand data for Murcia were obtained from CREM (2011). National 324 

sector final demand scaled down using employment data was used to fill regional data gaps. 325 

For example, regional household final consumption was found to correlate very well (r
2 

= 326 

0.996; µ1 = 0.8%; µ2 = 3.8%) with national data for an aggregated number of consumption 327 

goods and services. Therefore, disaggregated household final demand could be obtained from 328 

the scaled down national data. One exception is the sector hotels and restaurants where the 329 

significantly lower regional household expenditure data was inserted. Similarly, capital 330 

formation for industries was derived from the scaled national data, and the entire expenditure 331 

structure of national public administration was used in deriving individual sector totals from 332 

the regional aggregate total.  Importantly, good regional data on exports were available. As 333 

expected, the regional and national level data bear little relation, both in overall size (regional 334 

exports were 20 times larger than the scaled national data) and structure (r
2
=0.07). After 335 

deciding on the location quotient method to employ, the regional total final demand vector (f) 336 

was entered in Equation (1) to estimate total regional output. Incomplete sector output data 337 

was available from CREM (2011), but appeared to be inconsistent in its definition of sectors 338 

and in relation to final demand. Agricultural sector output data was an exception, and these 339 

were used in further analyses (Equations 13-19) together with simulated output for industrial 340 

and service sectors.   341 

  342 

2.7. Creating water I/O table 343 

Some regional water statistics were available as a basis to calculate sectoral water use 344 

(CREM, 2011). Water statistics for agriculture were available for 2005, breakdown of 345 

industrial water use was only available for 1999, and specified water use of the service sector 346 

could not be found at all. To circumvent these incomplete data, data for 2007 from the piped 347 

water distribution network used in economic sectors yielded some piecemeal information, 348 

and the available statistics were used together with equivalent data from Andalucía 349 

(Consejería de Medio Ambiente, 1996) and Spain (INE, 2010) to calculate Direct Water 350 

Consumption (DWC) and to harmonise sectoral water consumption (Table 1).   351 

 352 

jj xwDWC 
        (13)

 353 

 354 

Where wj is the quantity of water directly used in sector j and xj the total output of sector j.  355 

 356 

Agricultural water productivity in Murcia is high in comparison with Andalucía and Spain. In 357 

the case of Murcia, grains and olives and almonds are hardly irrigated. The bulk of water is 358 

used in producing high value fruit and vegetable crops. The high DWC in Andalucía may 359 

stem from significant water use in low value crops (grains) and relatively wasteful irrigation 360 

techniques: 45% of irrigation is by gravity (Dietzenbacher and Velázquez, 2007). In contrast, 361 

in Murcia 85% of water is supplied to crops by drip irrigation (CREM, 2011). The exception 362 

to relative water use efficiency is the livestock sector which is intensive in Murcia and 363 

presumably less so in Andalucía (also note that the latter figures are considerably older).  364 

 365 

Data for industrial sectors for 1999 was updated by estimation of the 2005 level output using 366 

the input-output model. Total sectoral water use was subsequently updated where sector 367 

growth (positive or negative) had been such that DWC calculated with the 1999 water use 368 

would become questionable in comparison to national data. The largest water consumers are 369 
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the agro-food and chemical industries, although DWC is equally high in rubber and plastics 370 

and metallurgy. At the national level, DWC’s for industrial sectors are generally lower, 371 

although electricity, gas and water stands out as a relatively heavy water user. The very high 372 

DWC’s of the paper (including publishing and printing), chemical, and other manufacturing 373 

industries reported for Andalucía were not found in Murcia.   374 

 375 

Water use of the service sectors was redistributed according to the relative importance of 376 

water consumption of these sectors in Andalucía, while respecting the total service sector 377 

consumption for Murcia. Like with industrial sectors, the DWC’s thus obtained are lower 378 

than those in Andalucía. Water consumption is largest in the hotel and restaurants and real 379 

estate sectors, with the former having the largest DWC amongst the service sectors. 380 

 381 

A matrix Q is defined with water inter-industry input coefficients qij calculated as: 382 

 383 

ij

jj

ii
ij a

xw

xw
q 

 
 
(if wj > 0)      (14) 

384 

 385 

In analogy to Equation (1), the column totals of the inverse matrix (I-Q)
-1

 give the backward 386 

linkages water multipliers. Forward linking water distribution coefficients lij are calculated 387 

as:  388 

 389 

ij

ii

jj

ij b
xw

xw
l 

 
 (if wi > 0)      (15) 

390 

 
391 

The elements lij constitute matrix L; the row sums of the inverse matrix (I-L)
-1

 give the 392 

forward linkages water multipliers. Backward linkages water multipliers represent how much 393 

water is used indirectly in a given sector by considering the water consumption for its 394 

intermediate consumption in relation to direct water use. Forward linkages water multipliers 395 

represent the ratio of additional water use in purchasing sectors relative to the direct water 396 

consumption ‘embedded’ in output from the supplying sector considered.  397 

 398 

<<Table 1 about here>> 399 

 400 

2.8. Water scarcity scenarios and farmers’ land use responses in Torrealvilla catchment 401 

Interviews were administered with farmers within the Torrealvilla catchment (266 km
2
) of the 402 

Guadalentin Basin in Murcia. In total 110 interviews were carried out but in the end 11 403 

responses were discarded as they were incomplete. Sampling was done using the snowball 404 

method, making sure all land uses were covered and an endeavour was made to represent the 405 

heterogeneity of farmers in the area (Table 2). In terms of land use, in the sample livestock, 406 

vegetables and fruits, and grapes are overrepresented relative to Torrealvilla and the Murcia 407 

region as a whole. Small farms (< 2 ha) are heavily underrepresented, and medium farms (5-408 

20ha) and fairly large farms (30-50 ha) overrepresented. Any bias in the sample is thus 409 

towards viable farms which could serve the purpose of this research well given that the 410 

number of farms in Murcia reduced by 29% between 1995 and 2005 (CREM, 2011). The 411 
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final number of respondents was 7 for grains, 24 for almonds and olives, 32 for grapes, 24 for 412 

horticulture and fruits and 12 for livestock. If we take agricultural census data of the Murcia 413 

region as a basis for estimation, the total number of farmers in the Torrealvilla catchment 414 

(which is unknown) could be 810. As extensive land uses are over- and intensive land uses 415 

underrepresented in the catchment relative to the region the average farm size is likely larger 416 

and the number of farmers smaller. The average farm size of our sample is 25 ha, against 17 417 

ha across the Murcia region. Using this figure, the total number of farms in Torrealvilla 418 

would be lower, around 560. Our sample of 99 farmers interviewed thus represents at least 419 

12% and perhaps 18% of the total population.     420 

 421 

In part, the interviews were intended to capture farmers’ responses to hypothetical scenarios 422 

that reflect future uncertainty of water availability. The scenarios were developed based on 423 

insights gained through discussions with farmers in the area during preliminary site visits. On 424 

the one hand, concern over groundwater depletion overshadows the future of the irrigated 425 

farming community. On the other hand, there have been a lot of discussions about farmers in 426 

the region desperate for more water to be transferred from the North. As such, different 427 

scenarios were presented to farmers who currently have access to water and those who do 428 

not. The former group of farmers was asked how the following will affect the future of their 429 

current principal land use:  430 

 Scenario A – No access to water for agricultural use (total water depletion – this could 431 

occur as a physical lack of water locally, or as water quality deteriorates beyond 432 

maximum tolerable salinity levels);  433 

 Scenario B – Government imposes tax on groundwater abstraction resulting in a water 434 

price higher than maximum willingness to pay for water (WTP – lowest €0.20 m
-3

; 435 

highest €0.60 m
-3

; average €0.31 m
-3

; standard deviation €0.08 m
-3

) by individual 436 

farmers; and 437 

 Scenario C – Government imposes tax on groundwater abstraction resulting in a water 438 

price of up to the individual farmer’s maximum WTP.  439 

The tax on water in scenarios B and C was presented as implying a higher price of water, a 440 

situation that could also be brought about without government intervention as farmers may 441 

need to pay more to obtain water in sufficient quantity and of sufficient quality. In the context 442 

of this paper the maximum WTP refers to a threshold beyond which the maintenance of 443 

present farming activity is perceived by individual farmers as no longer viable, making 444 

drastic change such as agricultural abandonment is highly likely. Individual WTP was used as 445 

cut-off point to avoid presenting multiple (fixed) price scenarios to each farmer and is 446 

justified by the fact that our purpose was not to elicit farmer WTP, but to explore potential 447 

land use change along a gradient of physical water scarcity (Scenario A), economic water 448 

scarcity (Scenario B) and economic water insecurity (Scenario C). Farmers’ responses were: 449 

1) no change; 2) conversion to other agricultural land uses; and 3) stop farming/abandonment.  450 

At this point it is important to note that respondents have an incentive to understate their 451 

WTP for water and/or to overstate land use changes (Carson and Groves, 2007; Schläpfer, 452 

2008). As stated above, eliciting the WTP itself is not an objective of this paper, and is not 453 

critical in the analysis. The fact that we ask farmers to state their hypothetical land use 454 

change decisions relative to self-declared WTP minimizes the risk of exaggeration 455 

(Schläpfer, 2008). Although the incentive to exaggerate may be more pronounced for water 456 

price than for land use change effects of scenarios, we cannot rule out that (some) responses 457 

are exaggerated; therefore the results presented should be regarded as potentially extreme 458 

land use change effects.  459 

 460 

In contrast, farmers who currently do not have access to water were asked how their principal 461 



11 

 

agricultural land use may alter if water became available, e.g. through IBWT. This led to a 462 

fourth scenario (D):  463 

 Scenario D1 – Water becomes available to previously non-irrigable areas. 464 

At this stage, we found that grain farmers demonstrated little dynamism as compared to olive 465 

and almond farmers. This is counter-intuitive, as conversion costs are considerably lower for 466 

the former group. As grain farmers may have been underrepresented in the sample, we 467 

therefore also defined an adjusted hypothetical scenario: 468 

 Scenario D2 – as Scenario D1, but for the grain farmers we adopted weights of 469 

conversion to irrigated farming as elicited from olive and almond farmers (resulting in 470 

increasing propensity of grain farmers to change). 471 

The responses registered in Scenarios D1 and D2 were: 1) no change; 2) increase production 472 

(expansion); and 3) conversion to irrigated agriculture. Note that for the purposes of 473 

expansion we assumed scrubland and fallow to be available, but not forest and other land 474 

uses. The effective area within the Torrealvilla catchment is thus reduced to the 140 km
2
 of 475 

UAA. Further details about the study area and the interviews can be found in Nainggolan et 476 

al. (in this issue).         477 

 478 

<<<Table 2 about here>>> 479 

 480 

 481 
2.9. Upscaling local scenario responses to the Murcia region 482 

As all interviews were conducted within the Torrealvilla catchment area, we must take into 483 

account the relative shares of each land use when upscaling to the Region of Murcia. We 484 

thereby assume that there are no differences in the agricultural production structure of 485 

subsectors between the local and regional area. 486 

 487 

A matrix of land use changes from land use i to land use j, is constructed with elements jiS  488 

defined as: 489 

  490 
INIT

ijiji SPS 
        (16) 

491 

 492 

Where jiP  is the expected probability of a change of current land use i to future land use j and 493 

INIT

iS is the initial area under that land use. 494 

 495 

The new area under land use j is subsequently obtained by summing over columns: 496 

 497 

 
j ji

NEW

j SS
        (17) 

498 

 
499 

A vector of agricultural subsector output change as a consequence of stated land use change 
500 

can then be obtained by multiplying the difference in area with the output per area unit xi
*
: 

501 

 
502 

  *

i

INIT

i

NEW

ii xSSx 
       (18)

 503 

 504 
Regional effects of the DCI-elicited responses to water uncertainty scenarios can now be 505 

assessed with the I/O tables. We use equations (1) and (2) with vector X given by elements 506 

Δxi . Total regional effects are defined as the sum of direct effects (i.e. X) and the combined 507 

backward and forward indirect effects (Grêt-Regamey and Kytzia, 2007): 508 
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  509 

(f – X) + (di – X)         (19) 510 

 511 

An analogous procedure (Equations 18-19) is followed to assess the direct and indirect 512 

effects of the changed total sector water demands Δwi . 513 

 514 

2.10. Effect of increased water cost on sector unitary output prices 515 

With the preceding steps, we can now simulate the impact of increased water costs on sector 516 

unitary output prices. We will assume that increased costs for water only apply to agricultural 517 

water use, assuming that other sectors already pay more for water (e.g. twice as much in 518 

neighbouring Almería province – Downward and Taylor, 2008). 519 

 520 

VWM’ = DWCp’ (I-A)
-1

        (20)  521 

 522 

Where the vector VWM is the Virtual Water Multiplier (the accent (’) indicates transposition) 523 

found by multiplying the vector DWCp – consisting of DWC for sectors where the water 524 

price will be raised (i.e. agricultural subsectors) and 0 for other sectors – with the Leontief 525 

inverse matrix. The VWM can subsequently be used to calculate a price increase by simple 526 

multiplication (the VWM can directly be interpreted as representing a price increase of €1). 527 

We will present the effects of a price increase of €0.10 m
-3

 – equal to the average incremental 528 

WTP (€0.04 m
-3

) plus one standard deviation (€0.06 m
-3

) to account for possible 529 

understatement (the range of incremental WTP was €0.00–0.25 m
-3

). The cumulative effects 530 

of the water price increase, through water input-output relations, on product prices can help to 531 

understand farmer responses to the discrete choice scenarios.     532 

 533 

 534 

3. Results 535 

 536 
3.1. Regional I/O Table for Murcia 537 

The regional I/O table constructed for Murcia was evaluated by applying the same method to 538 

neighbouring autonomous regions for which survey-based I/O tables were available: 539 

Andalucía and Valencia. Table 3 shows the results of different methods. The average regional 540 

multiplier is overstated by the SLQ and CILQ methods (in line with findings by others – 541 

Boomsma and Oosterhaven, 1992; Flegg and Tohmo, in press), but more so for Valencia than 542 

for Andalucía. In contrast, FLQ and AFLQ methods lead to a general understatement except 543 

at low values of δ. The absolute average deviations from the regional multiplier show an error 544 

of 13.2-16.5% for SLQ and CILQ. FLQ and AFLQ methods with appropriate scaling factor δ 545 

can moderately reduce this error to about 12%. Contrary to findings by Flegg and Tohmo (in 546 

press), the AFLQ outperforms the FLQ in these two cases, although overall error reductions 547 

are not as large as these authors suggest. When zooming in on the accuracy of predicting the 548 

regional output multiplier for the agricultural sector, the overstatement errors of the 549 

conventional SLQ and CILQ approaches are larger than for the total regional economy. Both 550 

the FLQ and AFLQ can greatly reduce errors in estimating the agricultural output multiplier, 551 

to about 1%. Higher values of the scaling factor δ attain largest error reductions, whereby 552 

AFLQ is more prone to exaggerating the multiplier than FLQ. Taking into account: a) the 553 

need to have a low average absolute deviation of the average regional multiplier; b) a 554 

preference for a slight underestimation of the average regional multiplier; c) the trend 555 

observed in literature that smaller regions (such as Murcia) have a higher propensity to have a 556 

lower optimal value for δ; and d) that such a trend would place an optimal δ for Murcia’s 557 

agricultural sector in the FLQ approach below 0.15; as well as e) that the average absolute 558 
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percent error for the six data rows in Table 3 is lowest for FLQ with δ = 0.10 (see overall 559 

rank), we applied FLQ with δ = 0.10 to develop a non-survey based regional input-output 560 

table for Murcia. 561 
 562 

<<<Table 3 about here>>> 563 

 564 

3.2 The regional I/O Table with disaggregated agricultural sector 565 

Table 4 shows details about the disaggregation of agriculture in five subsectors at the regional 566 

scale. All subsectors except livestock occupy sizeable shares of the region’s agricultural area 567 

(11-36%). However, in terms of output value, grains (2%), grapes (5%) and olives and 568 

almonds (5%) contribute only modestly compared with livestock (22%) and especially 569 

vegetables and fruits (66%). As a result, productivity per area unit ranges widely. Production 570 

structures of the subsectors are therefore also expected to vary considerably. The backward 571 

output multipliers of individual subsectors of the disaggregated I/O table varied between 1.22 572 

for vegetables and fruits and 1.86 for livestock (Table 5). The first reflects that relatively little 573 

economic activity is generated by producing an Euro worth of horticultural produce, whereas 574 

the opposite holds for livestock. The disaggregated I/O table was also tested for its similarity 575 

with the aggregated version: when scaling the five subsectors, its combined agricultural 576 

sector backward output multiplier is in both cases 1.38. Similarly, the forward output 577 

multiplier of the current (2005) sector configuration is 1.60. Individual agricultural sectors 578 

have forward multipliers of 2.11-2.28, which demonstrates that much of their produce is sold 579 

to upstream industries. The vegetables and fruits subsector (1.31) is an exception, as produce 580 

is not processed in agro-industries but marketed to consumers and – importantly – exported. 581 

For all agricultural subsectors, forward linkages are higher than backward linkages. Agro-582 

food industries and construction are sectors with high backward linkages, whereas 583 

construction materials and lumber industries have high forward linkages.  584 

 585 
<<<Table 4 about here>>> 586 

<<<Table 5 about here>>> 587 

 588 

3.3. Regional I/O Table of water use 589 

Agriculture consumes about 80% of total (‘blue’) water use in Murcia: households consume 590 

about 15%; and other economic sectors together account for only 5%. Not surprisingly, 591 

technical coefficients of water use are a fraction of the technical coefficients based on the 592 

monetary value of intermediate consumption (cf. Equation 14). The water multipliers (both 593 

backward and forward) of the agricultural subsectors are thus low in comparison to output 594 

multipliers (Table 5). Livestock is the subsector with the highest backward water multiplier 595 

(1.65): its intermediate consumption relies on water-intensive inputs. Grains have the highest 596 

forward multiplier (1.28): the sectors grains are supplied to use a considerable amount of 597 

water, whereas water needs for grains are relatively low. Similarly, vegetables and fruits have 598 

the lowest non-zero forward water multiplier (1.03). Very little additional water is used to 599 

produce output in processing sectors (which moreover absorb only a limited part of total 600 

vegetables and fruits output). 601 

 602 

The modest water multipliers for agricultural subsectors contrast with some of the water 603 

multipliers in industries and services. Backward multipliers are very high for lumber and cork 604 

industries (33.71), agro-food industries (13.60), and paper, printing and publishing (10.74). 605 

These sectors thus require water-intensive inputs totalling several times their direct water 606 

demand. Machineries and mechanical equipment (23.06) and financial brokerage (18.46) 607 

have very high forward water multipliers: their output is produced with relatively low 608 
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amounts of water, but the output of purchasing sectors requires a multiple factor total water 609 

input.            610 

 611 

3.4. Discrete choices and land use change scenarios in Torrealvilla 612 

When farmers with current access to water were asked what their strategy would be if water 613 

resources would be completely depleted, the vast majority would give up farming (Figure 2, 614 

Scenario A). A sizeable minority (43%) of olive and almond farmers would not change land 615 

use, a strategy also followed by 3% of vineyard managers (these crops can be grown without 616 

irrigation, obviously with reduced productivity; for vineyards a change from table to wine 617 

grapes may be involved, as well as introduction of supplementary drip irrigation). Remaining 618 

farmers would resort to rainfed cropping. A similar pattern emerged when the same group of 619 

farmers was confronted with high (perceived) water taxation (Scenario B); again the most 620 

common response was abandonment. Continuation of the current land use was the preferred 621 

strategy of 36% of olive and almond farmers, 17% of livestock farmers, 12% of vineyard 622 

managers and only 2% of horticulturalists and fruit growers. Some vineyards and fruit 623 

orchards would convert to olive and almond groves and grains, respectively. Under low 624 

(perceived) water taxation (Scenario C) the majority (67% and 64%) of livestock and olive 625 

and almond farmers would continue current land use. However, 54% of vineyard managers 626 

and 52% of horticulturalists and fruit growers stated that they would abandon their 627 

enterprises. In both cases, 40% would continue. Some 17% of livestock farmers and 8% of 628 

horticulturalists and fruit growers would opt for a change to grains, and 5% of vineyard 629 

managers would switch to olives and almonds. These three discrete choice scenarios show 630 

that water availability and affordability is a crucial factor for all with current access to water. 631 

Horticulture and fruit growing, vineyards and livestock farming are the least likely to flourish 632 

under physical or economic water scarcity. 633 

Figure 2 also shows scenarios presented to farmers who currently do not have access to 634 

water. If a new IBWT project would be realized, some unused land would start to be 635 

cultivated to grains (8%) and olives and almonds (5%). Olive and almond groves would see 636 

considerable conversion to horticulture and fruit growing (24%) and vineyards (21%). 637 

Moreover, 14% of grain fields would be developed to vineyards. Overall, olive and almond 638 

farmers demonstrated the most dynamic choices. If the changes expressed above were to 639 

occur, land use in the Torrealvilla catchment would change as shown in Table 6. 640 

 641 

<<<Figure 2 about here>>> 642 

<<<Table 6 about here>>> 643 

 644 

3.5. Regional effects of land use change scenarios 645 

When we simulate the effects of the discrete choice scenarios in the input-output model, the 646 

land use change scenarios driven by uncertainty in water supply result in diverging effects on 647 

regional economy and water demand (Figure 3). The total water depletion scenario almost 648 

eradicates the agricultural sector, and when taking into account forward and backward 649 

linkages leads to a shrinking of the regional economy of 14%. As all irrigated agriculture 650 

disappears in this scenario, this scenario reduces the demand for water to about 18% of the 651 

current level. A high water tax has just slightly lower impact. A low water tax impacts the 652 

regional economic output by 7% while reducing water demand to almost half the current 653 

level. A new water transfer may lead to 4-5% economic growth while requiring 23-30% more 654 

water compared to current regional demand. The ratio of economic impact to water demand 655 

reveals interesting results. When left to abandonment because of a total depletion of water, 656 

with the loss of each cubic metre of water output decreases by €5.57. When introducing a 657 
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high water tax this ratio is reduced to €5.36 per m
3
, whereas a low water tax results in a loss 658 

of €4.85 per m
3
. Increased water availability similarly augments regional economic output by 659 

€5.63-5.86 per m
3
. 660 

 661 

<<<Figure 3 about here>>>     662 

 663 

3.6 Water price effects 664 

Table 7 shows the effects of ‘acceptable’ agricultural water price increase on the product 665 

price of each sector. Although the horticulture and fruits subsector uses more water, it 666 

produces more output per unit of water and hence the effects of water price increases are not 667 

as pronounced as for grapes and olives and almonds. The ‘acceptable’ water price increase 668 

represents almost 50% of the currently paid average price and leads to agricultural product 669 

price increases between 0.6 and 5.6%, with three out of five subsectors being affected by over 670 

3%. Agro-food (0.4%) and lumber and cork (0.1%) industries are the two non-agriculture 671 

sectors where a price effect is notable.    672 

 673 
<<<Table 7 about here>>> 674 

 675 

 676 

4. Discussion 677 

 678 
The I/O table for Murcia needed to be constructed first in order to enable subsequent scenario 679 

analyses. We evaluated several location quotient methods: SLQ, CILQ, FLQ and AFLQ. Our 680 

results concur with other studies that find conventional SLQ and CILQ methods to 681 

overestimate multipliers. Because the agricultural sector in Murcia and – to lesser extent – 682 

neighbouring regions is so dependent on exports, extra prudence proved to be required, and 683 

the appropriate scaling method (value of parameter δ = 0.10) for FLQ was well below the 684 

usual range (0.25 ± 0.05) reported by Flegg and Tohmo (in press), supporting their remark 685 

that individual cases need special scrutiny. Without availability of survey-based I/O tables for 686 

neighbouring regions, we would probably have run a high risk of substantially overstating 687 

impacts of scenarios. The methods described for disaggregating the agricultural sector and 688 

constructing the water I/O table can, given similar data availability, more confidently be 689 

applied in other contexts.  690 

 691 

The ratio of economic impact to water demand (Figure 3) can be interpreted as follows: when 692 

confronted with high barriers to water use (total depletion, high water tax), farmers tend to 693 

give up farming. In these cases the economic consequences are high in relation to changes in 694 

regional water demand. However, the introduction of a low water tax prompts a significant 695 

number of farmers to change land use instead of abandonment. As a consequence, reductions 696 

in water use are obtained, resulting in about 10% lower impact on the regional economy per 697 

unit of water saved than under a higher water tax scenario. Potential water savings are 698 

impressive: a low water tax can reduce total water demand by almost 50% (note this is only 699 

considering responses by agricultural agents) at a 7% cost to the regional economy. Tax 700 

revenues could be used to stimulate further water savings, or to develop economic activities 701 

with a low water use. Important gains can be achieved in setting the water tax level right: our 702 

study suggests that significant water savings can be achieved at relatively low expense to the 703 

regional economy by incentivising self-organizing capacity of the agricultural sector – i.e. 704 

through land use changes as described above. Stronger intervention (through higher taxation) 705 

fails to take advantage of this self-organizing capacity and although it may generate higher 706 

tax revenues, much of it will be necessary to recover from the inefficiency it created in the 707 



16 

 

first place.    708 

 709 

There may however be limits to the capacity of the system to self-organize and adapt to 710 

groundwater scarcity if this scenario is combined with future climate change. Increased 711 

temperatures would increase evaporation and evapotranspiration rates and hence further 712 

increase water demand. If climate change leads to reduced rainfall inputs, this would not only 713 

reduce groundwater recharge rates, perhaps hastening groundwater scarcity, but also limit the 714 

viability of switching from irrigated to rainfed agriculture.  715 

 716 

Given the questionable sustainability of groundwater extraction rates, it is of particular 717 

concern that agriculture in Murcia has become so heavily dependent on this finite and 718 

dwindling resource. Our results show that without groundwater and IBWT, about two-thirds 719 

of the region’s agricultural area would be abandoned. Agricultural output would be 720 

decimated to less than 5% of its current value. Even the introduction of a low water tax would 721 

still lead to about 35% of the agricultural area being abandoned, with an associated loss of 722 

more than half of the current output. Whereas our farmer survey using discrete choice 723 

scenarios may have led to exaggerated responses, this clearly illustrates how vulnerable 724 

respondents feel to uncertainty in water supply. Our data do not show margins on crops 725 

grown, but the intermediate consumption of the five subsectors we distinguished varied 726 

between 16% (horticulture and fruits) and 50% (livestock) of output value. When adding 727 

labour costs and imports, margins may be narrow. Any water taxation (or scarcity, for that 728 

sake) can under these circumstances lead to heated debate. Surprisingly, results of increased 729 

water prices (Table 7) have the highest impact on grapes and almonds and olives. This 730 

contrasts with the land use decisions elicited from DCI interviews, where horticulture and 731 

fruits are the first to be abandoned or switched. Although our results are not conclusive, this 732 

could indicate that the latter crops are perceived by farmers as more sensitive to water 733 

shortages.   734 

 735 

Additional water supply through IBWT may lead to a 10% expansion of the agricultural area, 736 

with an associated increase in agricultural output of 26-35%. Given the high export 737 

orientation and strong regional agro-food industry it is not unreasonable to assume this 738 

additional produce could be effectively handled (cf. Sánchez-Chóliz and Duarte, 2000). The 739 

ratio of economic impact to increased water demand of such an expansion is high (€5.63-5.86 740 

per m
3
), suggesting that additional water will be used efficiently and an accelerated growth 741 

may result. The economic multiplier is, at 1.75, higher than currently obtained, reflecting the 742 

combined effect of water and extra land as production factors. Although this sounds 743 

promising, it further increases water-dependency of the regional economy. It should be noted 744 

though that the assumption of stable technical coefficients inherent to input-output models 745 

might be too optimistic here as the best land is probably already irrigated and land onto which 746 

irrigation can be expanded may not be as productive as the currently irrigable area. 747 

Strikingly, the farmers’ discrete choices may reflect this fact, with only a minority of grain 748 

farmers and slightly over half of olive and almond farmers envisioning land use changes to 749 

horticulture and fruits or vineyards.  750 

 751 

We can also take a closer look at the currently operational Tagus–Segura IBWT scheme 752 

(Figure 4). In 1994/5 and 2005-7, the amount of water transferred was greatly reduced as a 753 

consequence of the distribution rules in place to cap transfer if the conceding basin 754 

experiences water shortage. In the latter period, the contribution of the IBWT to total 755 

irrigation dropped to 8% from 54% in 2002/3. This massive reduction is partly compensated 756 

for by increased pumping of groundwater resources, which are already heavily over-757 
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exploited. The drop in total irrigation may point at a number of potential issues: a) pumping 758 

capacity installed is too low to fully compensate for significant reductions in IBWT water; b) 759 

not all areas benefiting from the IBWT can switch to groundwater resources if required; or c) 760 

the economic cost of pumping exceeds (€0.12 – €0.54 m
-3

) by far the price (€0.09 m
-3

) paid 761 

for IBWT water (Tobarra González, 2002). Although a mix of these issues may have 762 

occurred, and farmers may also have adapted in anticipation of lower water availability, the 763 

clear peak of local irrigation (levelling off since 2008) clearly suggests that a sizable number 764 

of farmers have been willing to pay an additional €0.03 to €0.36 per m
3
 water. This is in good 765 

agreement with our field data. Alternative mobilisation of additional water resources is more 766 

expensive: the most cost-effective desalinisation plants may produce water at a cost of €0.45 767 

m
-3

, and the Ebro–Segura IBWT would charge an average of €0.31 m
-3

 along the pipeline, 768 

rising to an expected €0.75 m
-3

 in Almeria (Downward and Taylor, 2008). Desalinisation 769 

could be partly subsidised by the government as it can relieve social and environmental 770 

problems associated with the current IBWT and groundwater overexploitation. However, 771 

average energy demands of desalinisation are more than a factor of 3 higher than for the 772 

Tagus-Segura IBWT and lead to an increased environmental cost of CO2 emissions of €0.07 773 

per m
3
 of desalted water (Melgarejo and Montano, 2011), as well as increased coupling of 774 

water to volatile energy prices.    775 

 776 

<<<Figure 4 about here>>> 777 

 778 

As most of the additional output resulting from IBWT will leave the region with exports as 779 

virtual water, it is from an environmental perspective a questionable development pathway. 780 

Currently, the economy of Murcia produces €39.26 per m
3
 of water used – over 8 times as 781 

efficient as would be achieved with new IBWT development. As a consequence, the regional 782 

economic output per cubic metre of water would drop below €30. Compare that with the over 783 

€90 per m
3
 that results from the low water tax and it is clear that better alternatives are 784 

available. Admittedly, the first option leads to regional economic growth of 4.4% while the 785 

latter to a contraction of 6%, but intermediate solutions should be available that warrant 786 

growth while improving water use efficiency. 787 

 788 

 789 

5. Conclusion 790 
 791 

Agriculture in the Region of Murcia has increasingly become dependent on blue water 792 

resources. Current water availability for irrigation is threatened by continuous 793 

overexploitation of groundwater resources, increased competition from non-agricultural (and 794 

in some cases illegal) uses, and conflicts over inter-basin water transfer – all in the context of 795 

global environmental change. The regional government has a tremendous challenge to reduce 796 

overexploitation of water resources and reduce vulnerability of the regional economy to water 797 

scarcity. At the same time, the region’s farmers feel trapped in water-dependent productivity 798 

and fear any reform that negatively affects their resource base. We evaluated the effects of 799 

farmers’ responses to discrete choice scenarios on the regional economy and water demand 800 

by means of input-output modelling. Our results confirm that agriculture is heavily dependent 801 

on blue water resources, and farmers see no option to continue farming if confronted with 802 

complete water depletion (physical water scarcity) or high levels of water taxation (economic 803 

water scarcity). These scenarios would lead to very large reductions in water use by 804 

agriculture, but also result in a contraction of the regional economy by more than 13%. A low 805 

water tax scenario indicated that some farmers may change land use as a result. Although still 806 

leading to a contraction of the regional economy by 7%, this scenario suggested that the 807 
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agricultural sector has a self-organizing capacity to deal with some of its water use 808 

inefficiency. Any water tax reform should take stock of this capacity and create synergy 809 

between incentives for water use efficiency and government intervention. Resolving water 810 

scarcity through new IBWT development may lead to regional economic development (4-811 

5%) but only increases the region’s dependency on water. By linking survey-based data from 812 

individual land users and an input-output model, a regional impact analysis can be performed. 813 

In doing so, we were able to show that although water taxation only has relatively minor 814 

effects on product prices, it has the potential to lead to dramatic land use changes with 815 

considerable economic impact. Likewise, considerable environmental benefits seem within 816 

reach as reduced water use in the economy will benefit areas of ecological importance and 817 

might replenish some of the depleted groundwater resources, which could be crucial to 818 

prepare for future environmental change.         819 

 820 
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Table 1. Direct water consumption of sectors. 909 

Sectors 

Water consumption calculated 

with available data 
 

Harmonized water 

consumption data 

Murcia* Andalucía* Spain*  Murcia 

DWC (litre €-1)  DWC (litre €-1) DWC (103 m3) 

Agriculture 274 - 395  274 563,096 

   Grains 190 1833  -  190 6,979 

   Horticulture and fruits 345 683  -  345 468,832 

   Grapes 505 695  -  505 52,440 

   Olives and almonds 179 655  -  179 17,836 

   Livestock 37 15  -  37 17,009 

   Fisheries  0 0 0  0 0 

Industry 2.4 - 0.7  2.1 21,770 

   Extractive industries and combustibles a 1.2 - 0.9  0.9 757 

   Electricity, gas and water a  - 1.2 2.1  1.6 1,589 

   Agro-food industries 3.5 3.3 0.9  3.3 9,242 

   Textiles and leather industries 0.9 3.3 0.4  0.6 347 

   Lumber and cork industries 0.1 3.6 0.2  0.3 27 

   Paper, printing and publishing 0.3 38.3 0.4  0.2 90 

   Chemical industry 8.1 25.0 1.3  4.5 6,374 

   Rubber and plastics 3.6 2.0 2.1  4.7 1,038 

   Construction materials (non-metal) b - 4.7 0.8  1.7 262 

   Metallurgy 2.4 3.6 0.5  2.6 1,692 

   Machineries and mechanical equipment b 0.2 1.5 0.2  0.1 71 

   Electronics and optical products b - 0.4 0.2  0.1 26 

   Manufacturing of transport materials b - 1.5 0.3  0.1 81 

   Other manufacturing industries 0.3 9.5 0.3  0.6 174 

Construction  - 2.4 0.2  0.2 208 

Services 1.5  - 0.7  1.5 31,209 

   Trade (incl. servicing of vehicles)  - 1.7  -  0.4 1,173 

   Hotels and restaurants c 10.4 18.3  -  3.8 8,358 

   Transportation and communications  - 4.2  -  0.9 2,094 

   Financial brokerage  - 0.9  -  0.2 214 

   Real estate and enterprise services  - 5.0  -  1.0 6,703 

   Education d  - 5.0  -  2.0 2,018 

   Health and social services d  - 5.0  -  2.0 3,173 

   Public administration d 2.0 4.7  -  2.0 3,288 

   Other community and personal services  - 13.3  -  2.8 4,188 

   Domestic personnel 0 0  -  0 0 

* Sources: Murcia – authors’ calculations based on available statistics (CARM, 2010); years of estimates vary: 2005 for agriculture, 1999 910 
for industry, and 2007 for services. Andalucía – based on Consejería de Medio Ambiente (1996), using a conversion rate of 1 EUR = 166 911 
ESP. Spain – based on INE (2010). 912 
 a Combined estimate for extractive industries and electricity, gas and water 913 
b Combined estimate for machineries and ‘other’ industries 914 
c If all water for services attributed to hotel sector 915 
d Estimate for public administration includes education and health services 916 
  917 
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Table 2. Characterization of the farm sample in relation to local and regional land use and regional farm size 918 
distribution.  919 

 920 
 921 
 922 
 923 
 924 
 925 
 926 
 927 
 928 
 929 
 930 
 931 
 932 
 933 
 934 
 935 
 936 
 937 
 938 
 939 
 940 
 941 
 942 
 943 
 944 
 945 
 946 
 947 

Source: calculated from farm survey data (sample), satellite imagery (current land use Torrealvilla) and regional 948 
statistics (Murcia). 949 
  950 

 Sample Torrealvilla Murcia 

UAA (km2) 25 140 5924 

    

Land use (%)    

Livestock   2.7   1.0   1.7 

Vegetables & fruits 21.6 10.3 18.9 

Grapes 10.1   2.7   5.8 

Olives & almonds 18.4 27.2 17.5 

Grains 18.5 35.2 10.2 

Non-used UAA 28.8 23.4 45.9 

    

Farm size class (%)    

< 1 ha   6.1 na 21.3 

1 – 2 ha   8.1 na 18.1 

2 – 5 ha 29.3 na 27.2 

5 – 10 ha 23.2 na 12.6 

10 – 20 ha 17.2 na   9.5 

20 – 30 ha   4.0 na   3.6 

30 – 50 ha   7.1 na   3.2 

50 – 100 ha   3.0 na   2.6 

> 100 ha   2.0 na   1.9 
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Table 3. Performance of location quotient methods in predicting regional multipliers from national I/O data.          951 

 Location Quotient method, and value of δ if applicable
 

 SLQ CILQ  FLQ  AFLQ 

    0.20 0.15 0.10 0.05  0.20 0.15 0.10 0.05 

 Average percent error of the estimated regional multiplier 
a 

Andalucía 2.32 7.09  -11.30 -9.13 -5.34 -1.50  -10.26 -7.33 -3.88 0.22 

    (rank) (3) (6)  (10) (8) (5) (2)  (9) (7) (4) (1) 

Valencia 7.29 12.06  -10.23 -6.67 -2.33 3.01  -8.01 -4.08 0.95 7.06 

    (rank) (7) (10)  (9) (5) (2) (3)  (8) (4) (1) (6) 

             

 Average percent error of the sum of absolute deviations from the regional multiplier 

Andalucía 13.18 13.37  13.77 12.59 11.76 11.84  13.23 12.10 11.67 12.12 

    (rank) (7) (9)  (10) (6) (2) (3)  (8) (5) (1) (4) 

Valencia 15.03 16.45  13.67 12.55 12.26 13.30  12.85 12.25 12.91 15.01 

    (rank) (9) (10)  (7) (3) (2) (6)  (4) (1) (5) (8) 

             

Percent error of the output multiplier from the agricultural sector 

Andalucía 14.29 14.79  -1.00 1.50 5.07 9.21  1.50 4.57 8.64 13.29 

    (rank) (9) (10)  (1) (3) (5) (7)  (3) (4) (6) (8) 

Valencia 18.61 13.87  -3.21 -0.51 2.92 7.45  -1.09 2.12 6.42 11.75 

    (rank) (10) (9)  (5) (1) (4) (7)  (2) (3) (6) (8) 

             

Avg abs% error 11.79 12.94  8.87 7.16 6.61 7.72  7.82 7.07 7.41 9.91 

Overall rank (9) (10)  (7) (3) (1) (5)  (6) (2) (4) (8) 

Source: authors’ calculations based on IVE (2008), INE (2009), and IEA (2010).  952 
a 
Bold numbers indicate best performance.  953 

  954 



23 

 

Table 4. Summary data of agricultural subsectors. 955 
 Output

a 

(M€) 

Area 

(10
3
 ha) 

Productivity 

 (€ ha
-1

) 

Water use 

 (Mm
3
) 

 

(m
3
 ha

-1
) 

 

(m
3
 €

-1
) 

Livestock 455.5  10.0
b
  45550

b 
17.0

c 
1701 0.04 

Vegetables & fruits 1357.1 111.9 12129 468.8 4190 0.35 

Grapes 103.9 34.2 3041 52.4 1535 0.50 

Olives & almonds 99.7 103.9 960 17.8
 

172
 

0.18 

Grains 36.7 60.6 606 7.0 115 0.19 

Total 2052.9 311.1  563.1   

Source: based on various regional statistics (CREM, 2011) and secondary data.  956 
a 

Agricultural services (2.2%) have been added proportionally over categories and 1.4% output from non-957 
attributable land use (plantations) was divided equally over categories (except livestock).   958 
b 

Livestock farming is intensive (i.e. not land-based, two-thirds of output value is pork) and does not appear in 959 
regional land use statistics. A nominal area of 10,000 ha has been assumed for this subsector.  960 
c 
Water use for livestock estimated based on per animal water needs (eco-efficiency data on CREM, 2011). 961 

 962 
  963 
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Table 5. Output and water multipliers for regional economy of Murcia. 964 
Sectors Output multipliers Water multipliers 

 Forward Backward  Forward Backward 

Agriculture (current land use configuration) 1.60 1.38  1.09 1.06 

   Grains 2.28 1.48  1.28 1.17 

   Horticulture and fruits 1.31 1.22  1.03 1.02 

   Grapes 2.18 1.36  1.07 1.10 

   Olives and almonds 2.27 1.41  1.14 1.11 

   Livestock 2.11 1.86  1.23 1.65 

   Fisheries  1.15 1.27  1.00 1.00 

Industry      

   Extractive industries and combustibles
 

1.75 1.41  5.81 1.47 

   Electricity, gas and water
 

1.79 1.56  4.80 1.43 

   Agro-food industries 1.31 1.80  1.81 13.60 

   Textiles and leather industries 1.29 1.30  2.15 3.50 

   Lumber and cork industries 1.96 1.60  10.40 33.71 

   Paper, printing and publishing 1.76 1.41  11.50 10.74 

   Chemical industry 1.50 1.41  2.71 1.26 

   Rubber and plastics 1.68 1.53  1.89 1.50 

   Construction materials (non-metal)
 

1.90 1.60  1.49 1.51 

   Metallurgy 1.74 1.49  2.51 1.35 

   Machineries and mechanical equipment
 

1.45 1.34  23.06 4.89 

   Electronics and optical products
 

1.40 1.16  12.43 6.30 

   Manufacturing of transport materials
 

1.18 1.25  4.36 5.28 

   Other manufacturing industries 1.28 1.61  2.22 3.88 

Construction 1.44 1.77  3.13 4.60 

Services
 

     

   Trade (incl. servicing of vehicles) 1.31 1.41  11.49 3.59 

   Hotels and restaurants
 

1.08 1.25  1.05 1.74 

   Transportation and communications 1.65 1.45  3.66 1.65 

   Financial brokerage 1.58 1.28  18.46 2.31 

   Real estate and enterprise services 1.51 1.25  2.35 1.36 

   Education
 

1.04 1.12  1.12 1.18 

   Health and social services
 

1.07 1.29  1.14 1.36 

   Public administration
 

1.00 1.26  1.00 1.30 

   Other community and personal services 1.26 1.37  1.28 1.52 

   Domestic personnel 1.00 1.00  1.00 1.00 

Source: input-output model results; see main text for procedures and assumptions made. 965 
  966 
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Table 6. Current and future land use (area percentage) in Torrealvilla and Murcia under different scenarios.  967 
 Percentage of total land  Percentage of current land use (=100) 

A B C D1 D2 A B C D1 D2 

Torrealvilla:            

Livestock 0.0 0.2 0.7 2.0 2.8  0.0 19.7 68.9 196.7 275.4 

Vegetables & fruits 0.0 0.2 4.2 17.1 23.1  0.0 1.9 40.3 164.0 221.5 

Grapes 0.1 0.3 1.1 13.4 13.4  3.6 10.9 40.1 488.0 488.0 

Olives & almonds 12.1 9.9 17.6 15.3 15.3  44.5 36.4 64.7 56.2 56.2 

Grains 36.0 35.6 36.2 31.8 24.9  102.3 101.2 102.9 90.4 70.8 

Non-used UAA 51.8 53.8 40.2 20.5 20.5  221.2 229.8 171.7 87.6 87.6 

Murcia:            

Livestock 0.0 0.3 1.1 2.3 2.5  0.0 17.8 65.1 136.2 148.0 

Vegetables & fruits 0.0 0.4 7.6 23.1 24.9  0.0 2.1 40.2 122.2 131.8 

Grapes 0.2 0.7 2.3 10.9 10.9  3.5 12.1 39.9 188.9 188.9 

Olives & almonds 8.2 6.6 11.6 11.4 11.4  46.7 37.6 66.1 65.0 65.0 

Grains 11.7 11.0 12.0 12.0 10.0  114.3 107.5 117.2 117.2 97.7 

Non-used UAA 79.9 81.1 65.3 40.2 40.2  174.2 176.8 142.4 87.7 87.7 

Source: scenario results calculated from discrete choice interviews. See main text for description of scenarios. 968 
  969 
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Table 7. Impact on output price as a result of price increases for agricultural water use.    970 
Sectors Virtual Water Multiplier 

(litre €
-1

)  

 Impact on product price of a water 

price increase of €0.10 m
-3

 (%) 

Agriculture    

   Grains 221.96  2.22 

   Horticulture and fruits 353.95  3.54 

   Grapes 558.36  5.58 

   Olives and almonds 379.69  3.80 

   Livestock 62.12  0.62 

   Fisheries  0.43  0.00 

Industry    

   Extractive industries and combustibles
 

0.03  0.00 

   Electricity, gas and water
 

0.05  0.00 

   Agro-food industries 43.50  0.44 

   Textiles and leather industries 1.13  0.01 

   Lumber and cork industries 11.81  0.12 

   Paper, printing and publishing 1.84  0.02 

   Chemical industry 0.30  0.00 

   Rubber and plastics 0.97  0.01 

   Construction materials (non-metal)
 

0.12  0.00 

   Metallurgy 0.09  0.00 

   Machineries and mechanical equipment
 

0.05  0.00 

   Electronics and optical products
 

0.03  0.00 

   Manufacturing of transport materials
 

0.04  0.00 

   Other manufacturing industries 0.89  0.01 

Construction 0.20  0.00 

Services
 

   

   Trade (incl. servicing of vehicles) 0.60  0.01 

   Hotels and restaurants
 

2.69  0.03 

   Transportation and communications 0.13  0.00 

   Financial brokerage 0.05  0.00 

   Real estate and enterprise services 0.17  0.00 

   Education
 

0.25  0.00 

   Health and social services
 

0.25  0.00 

   Public administration
 

0.38  0.00 

   Other community and personal services 1.01  0.01 

   Domestic personnel 0.00  0.00 

Source: input-output model results; see main text for procedures and assumptions made. 971 
 972 
 973 

  974 
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975 
Figure 1. Location of Murcia Region and the neighbouring autonomous regions of Andalucia and Valencia in 976 
Spain. Also indicated are the Tagus (Spanish share) and Segura catchments, the upper Tagus subcatchment 977 
feeding the Tagus-Segura IBWT, and the field case study area – the Torrealvilla (sub-)catchment.  978 
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 979 
 980 
Figure 2. Land use changes under different scenarios in Torrealvilla catchment as recorded from individual 981 
discrete-choice interviews. Changes are expressed in percentages of current land use that changes to (or 982 
remains) livestock farming (pink), horticulture and fruits (dark green), grapes (magenta), olive and almond 983 
(olive), grains (pale brown) and non-used UAA (ecru). Scenarios: A. Total water depletion; B. Higher water tax; 984 
C. Low water tax; D1/D2: Water transfer to new areas (for further details see main text).  985 
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986 
Figure 3. Direct and indirect effects of scenarios on the regional economy and water demand. Pale, medium and 987 
dark colours represent direct, forward- and backward multiplier effects respectively (forward and backward 988 
multiplier effects are combined for ratio of economic impact to water demand).  989 
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 990 
Figure 4. Historical data of water obtained from inter-basin water transfer Tagus–Segura. Source: CREM 991 
(2011). 992 
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