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Abstract. Differential Evolution (DE) is a simple heuristic for global search. 
However, it is sensitive to certain control parameters and may not perform well 
if these parameters are not adjusted to suit the problems being optimized. 
Recent research has reported on methods to endogenously tune these control 
parameters during the search process. In this work, we develop and apply two 
DE variants as solution algorithms for continuous network design problems and 
illustrate with examples from the highway transportation literature.  
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1   Introduction 

The continuous network design problem (CNDP) involves the determination of 
capacity enhancements, measured as continuous variables, of existing facilities of a 
network in such a way that the decision is regarded as optimal [1].  This remains a 
challenging research area within transportation [2].   

In the literature, Genetic Algorithms (GA) [3] and Simulated Annealing (SA) [4] 
have been used to tackle the CNDP. Such stochastic search algorithms are capable of 
providing globally optimal solutions for many multi-modal optimization problems 
such as those encountered in the CNDP and its variants. 

In this paper, we investigate two variants of Differential Evolution (DE) [5], a 
stochastic search heuristic, as solution algorithms for the CNDP.  DE has already been 
used successfully in a multitude of applications to solve real world engineering 
problems. Like other stochastic search techniques, however, the performance of DE is 
susceptible to the choice of certain user defined control parameters. These control 
parameters are problem dependent; while one set of parameters may work well on 
some problems, they may not perform as well on others [6]. Thus, significant 
resources have to be devoted to adjusting these parameters. Hence many researchers 
have proposed adaptive DE algorithms where these control parameters themselves are 
evolved during the optimization process [6,7,8,9]. 

This paper is organized as follows. Following this introduction, Section 2 provides 
an overview of the CNDP. Section 3 then reviews the DE algorithm and a variant that 
allows endogenous parameter adaptation. Section 4 illustrates the performance of DE 



on two CNDPs from the highway transportation literature and finally Section 5 offers 
some conclusions and directions for further research.  

2   Continuous Network Design Problem (CNDP) 

The CNDP can be categorized as a Mathematical Program with Equilibrium 
Constraints (“bi-level programs”). These are mathematical programming problems 
with an equilibrium condition inextricably embedded in its formulation. Such 
programs are equivalent to Stackleberg or leader-follower games in which the leader 
chooses her decision variables so as to optimize her objective, taking into account the 
response of the followers who optimize their separate objectives [10].   

In this game, the leader is the network planner/regulator and the followers are the 
network users. The users treat the planner’s decision on capacity as exogenous when 
deciding their route choice. The usual assumption in the CNDP is that the route 
choice for a given level of capacity enhancement is based on Wardrop’s user 
equilibrium principle [11] where user equilibrium is attained when no user can 
decrease his travel costs by unilaterally changing routes.  

The difficulty with the bi-level program is that the leader cannot optimize her 
objective without considering the reactions of the followers. Even when both the 
leader’s problem and the follower’s problem separately consist of convex 
programming problems, the resulting bi-level problem itself may be non-convex [2]. 
Non convexity suggests the possibility of multiple local optima. Furthermore, 
additional capacity can counter-productively increase the total network travel time; 
this is the well-known Braess’s Paradox [12]. Hence attention must be paid also to the 
network effects of providing additional link capacity which road users do not consider 
in their route choice decisions.  

2.1 Model Formulation 

Let:  
: ( , )N X A  represent the transportation network with X nodes and A  links 

R : the set of all routes in the network 
H : the set of all Origin Destination (OD) pairs in the network 

hR : the set of routes between OD pair  ( )h h H∈

hD : the demand between each OD pair ( )h h H∈  

rf : the flow on route  ( )r r R∈
v : the vector of link flows, [ ] ( )av v a A= ∈  

( )a at v  : the travel time on the link , as a function of link flow  on that link 
only.  

a av

arδ  : 1 if the route  uses link (r r R∈ ) )(a a A∈ , 0 otherwise 
K : the set of links that have their individual capacities enhanced. ( ) K A⊆
β : the vector of capacity enhancements [ ], ( )a a a Kβ β= ∈  



max
aβ , min

aβ : the upper and lower bounds of capacity enhancements  ( )a a K∈

ad : the monetary cost of capacity increments per unit of enhancement  ( )a a K∈
0
aC : existing capacity of link  ( )a a A∀ ∈

θ :  conversion factor from monetary investment costs to travel times 
 
The CNDP seeks a K dimension vector of capacity enhancements that is optimal 

to the following bi-level program:  
 
The Upper level problem (Program U )  is given by 

Min ( , ) ( ) ( ( ), )aa aa a a
a A a K

U v v vt d
β

β β β β βθ
∀ ∈ ∀ ∈

= +∑ ∑  (1) 

Subject to  
min max
a a a a Kβ β β≤ ≤ ∀ ∈  (2) 

Where v is obtained by solving the following lower level problem (Program ):  L

0

Min ( , ))(
va

aav
a

L zt β
∀

=∑∫ dz  
(3) 

Subject to 

,
h

r h
r R

f D h H
∈

= ∈∑  (4) 

,a r ar
r R

v f aδ
∈

A= ∀ ∈∑  (5) 

0 ,rf r R≥ ∀ ∈  (6) 

Program defines the decision maker’s objective as the sum of network travel 
times and investment costs of link capacity enhancements while Program 

determines the user equilibrium flow, for a given

U

L β , based on Wardrop’s first 
principle of route choice [11], formulated as an equivalent minimisation problem [13].  
With β  fixed, Program can be solved via a traffic assignment algorithm.  L

The CNDP has been investigated by many researchers and various solution 
algorithms have so far been proposed.  These have included Augmented Lagragian 
(AL) marginal function method [14] and Karush Khun Tucker (KKT) approaches 
[15]; both of which are derivative based methods. An approximation to Program 

for an assumed U β can be derived and direct search (DS) heuristics (i.e. search 
techniques that do not require derivatives such as golden section search) iteratively 
applied to approximately solve the CNDP [16]. Stochastic optimization techniques 
have also been used; GAs were applied in [17] and the use of SA has been reported in 
[1].  



3 Differential Evolution Based Algorithms for CNDP 

Differential Evolution (DE) is a multi-population based search heuristic [5] and has 
already been applied to a variety of real-world problems [18-20].   

Our solution method using DE is as follows: At each iteration (“generation” in DE 
parlance), DE manipulates a population that comprises vectors of capacity 
enhancements ( β ) which are used to solve Program , to obtain the link flows to 
evaluate 

L ( )v
( , )U v β  and determine the “fitness” of a given β . A fitter vector implies a 

lower value for ( , )U v β since we aim to minimize ( , )U v β (equation 2). This 
population is then transformed via DE operations (discussed herein) to create a new 
population with improved fitness and the entire process is repeated. 

In this section, we outline two variants of DE. The first, which we refer to as 
“Basic DE” is the original DE version in [5] which operates with user specified 
control parameters. The second, which we refer to as “Adaptive DE”, endogenously 
tunes these control parameters. Table 1 shows pseudo code of the two DE variants. 
The processes of initialization, evaluation, mutation, crossover and selection are 
common to both variants and discussed next.  

Table 1. Comparison of Basic DE and Adaptive DE procedures in pseudo code 

Procedure Basic DE 
Generation = 1 
Initialization 
Evaluation 
REPEAT 
 Mutation 
 Crossover 
 Evaluation 
 Selection 
UNTIL(Generation = MaxG) 
 

Procedure Adaptive DE 
Generation = 1 
Initialization 
Evaluation 
REPEAT  
 Create Control Parameters 
 Mutation 
 Crossover 
 Evaluation 
 Selection 
 Update Control Parameters 
UNTIL (Generation = MaxG)  
 

 
Initialization 
 An initial population of size=  capacity enhancement vectors, known as the 

parent population in DE parlance, is randomly generated using equation 7 as follows: 
NP

max min min
, , ( ) , {1,2,..., }, .i a G a a arnd i NP a Kβ β β β= − + ∀ ∈ ∀ ∈  

rnd is a pseudo-random number [0,1]∈ . 

(7) 

 
Evaluation 
Each member of the population is a K dimension vector of capacity enhancements 

( β ). The evaluation process involves solving Program L to determine the resulting 
link flows and enables evaluation of Program U for each member of this population;  



the member that results in the lowest objective function val ( , )a avue for U β is 

denoted the “best member” of the population ( ,
Best
a Gβ ) at gen rate ion

, )β

K

y : 

otherwise
ii a G

i a G
i a G

rnd CR i hm
y

β
⎧ ∈ ∨⎪= ⎨
⎪⎩

K

 G . 
 
Mutation 
The mutation process combines different elements of the parent population 

heuristically to generate a mutant vector ( ) in accordance with equation 8: , ,i a Gm
1 2

, , , ,, , , ,( ) (Best r r
i a G i a G i a G a Gi a G i a GQ Qm β ββ β= + − + −  

{1, 2,..., },i NP a∀ ∈ ∀ ∈  

(8) 

1, 2 {1, 2,..., }r r NP∈  are random integer and mutually different indices and also 
different from the current running index .   is a mutation factor that scales the 
impact of the differential variation. The mutation strategy shown in equation 8 is one 
of several variants proposed in [5].  

i iQ

 
Crossover 
On this mutant vector ( ) crossover is probabilistically performed to produce 

a child vector G ) according to equation 9 as follows
, ,i a Gm

( , ,i a

, ,
, ,

, ,

if [0,1]<    = 
{1, 2,..., },i NP a∀ ∈ ∀ ∈

K

 (9) 

{1,2,..., }h∈ : a random integer parameter index chosen to ensure that the child 
vector will differ from its parent by at least one parameter.  is the 
probability of crossover.  

, ,i a Gy  iCR

Crossover can produce child vectors that do not satisfy bound constraints in 
equation 2. Out of bound values can be reset to a point half way between its pre-
mutation value and the bound violated using equation 10 as suggested in [21].   

min
, , min

, ,

max
, , max

, , , ,

, ,

if
2

if
2

otherwise

i a G a
ai a G

i a G a
ai a G i a G

i a G

y

y y

y

β β
β

β β
β

⎧ +
<⎪

⎪
⎪ +⎪= >⎨
⎪
⎪
⎪
⎪⎩

 

(10) 

Selection 
Each child vector is compared against the parent vector. This means that 

comparison is against the same vector parent on the basis of 
whichever of the two gives a lower value for Program U .  Using this selection 
procedure also prevents the occurrence of Braess’s Paradox in using the DE based 
algorithm since only when the objective of Program U is reduced would it be 

th ( {1,2,..., })i i NP∀ ∈



regarded as fitter.  The one that produces a lower value survives to become a parent in 
the next generation as shown in Equation 11. 

, , ,, ,
, 1

,

if ( ( ), ) ( ( ), )
otherwise

i G a a i G i Gi G i G
i G

i G

y U v U vy y β β
β

β+

⎧ <⎪
⎨=
⎪⎩

 
(11) 

,i GS  : 1 if  ,0 otherwise , 1 ,i G i Gyβ + = (12) 

For basic DE the procedures continue until some pre-specified number of 
generations ( MaxG ) are over.  In Equation 12 is a dummy that takes on the 
value of 1 if the child vector survives or 0 otherwise. Equation 12 provides the link to 
Adaptive DE as will be shown next.   

,i GS

3.1 Adaptive DE 

In basic DE it is conventionally further assumed [5] that: 

{1, 2,..., } {1, 2,..., }i iQ Q i NP and CR CR i NP= ∀ ∈ = ∀ ∈   (13) 

In other words, in basic DE, it is assumed that the mutation and crossover factors 
are scalars. Thus basic DE requires 4 user-specified control parameters viz, , 

,  and
Q

CR NP MaxG . There are some suggested values for these parameters. For 
example values such as  = 0.5,  = 0.9 have been suggested in [5,21]. However, 
in practice, many trial runs are required to find optimal parameters for each problem 
setting. Research developing adaptive versions tend to direct efforts at ways to 
endogenously compute Q  and CR , leaving NP  and 

Q CR

MaxG  to remain user defined  
[6,7,8,9]. The latest contribution to a growing literature on parameter adaptation is in 
[9] which proposed the adaptive variant we discuss here. Other Adaptive DE versions 
can be found in [6,7,8].  

The first point of departure for adaptive DE is to dispense with the assumption in 
Equation 13. This is done by separately associating each member of the population 
with its own crossover probability and mutation factor. Then, as an extension of 
equation 12, we may define the following:  

, ,iQ G Q GQS S= ∪  if , 1i GS =  , ,Q G Q GS S ,=  otherwise. (14) 

, ,iCR G CR GCRS S= ∪ , 1i GS if =  , ,CR G CR GS S ,=  otherwise (15) 

 In other words,  and denote the set of successful mutation factors and 
crossover probabilities used at generation G . Let the mean of these sets be 
denoted and  respectively.  Adaptive DE differs from Basic DE only in the 
creation and adaptation of the control parameters; steps shown in italics in the right 
pane of Table 1. All other processes are the same in both variants. The question then 
is how to obtain the vector of mutation and crossover factors for use at each 
generation in equations 8 and 9. We describe the methodologies to do so next. 

,Q GS ,CR GS

,Q Gμ ,CR Gμ



Create Control Parameters 
In addition to the initialization of a population of capacities, the user also specifies 

initial values of = 0.7 and = 0.5 ( G =1). Then production of the control 
parameters were suggested as follows [9]:  

,Q Gμ ,CR Gμ

• generating  randomly from a normal distribution with mean 
 and standard deviation 0.1 truncated to be real numbers between 0 and 1; 

{1, 2,..., }iCR i NP∀ ∈

,CR Gμ

• generating one third of 1
3{1,2,..., }iQ i NP∀ ∈  randomly from a rectangular  

distribution as real numbers between 0 and 1.2; 
• and generating two thirds of 1 1

3 3{ 1, 2,..., }iQ i NP NP NP∀ ∈ + + randomly from a 
normal distribution with mean  and standard deviation 0.1 truncated to be 
real numbers between 0 and 1.2. 

,Q Gμ

 
Update Control Parameters 
Following mutation, crossover and selection, the following steps are carried out to 

update and for the next generation ,Q Gμ ,CR Gμ

1. Compute the Lehmer mean ( of using equation 16. )Lh ,Q GS

,

,

2

Q G

Q G

Q S

Q S

Q
Lh

Q
∈

∈

=
∑
∑

 

(16) 

2. Update using equation 17. , 1Q Gμ +

, 1 ,(1 )Q G Q Gc cμ μ+ = − + Lh , where (0,1)c∈  is a user specified constant (17) 

3. Compute Arithmetic mean ( CRS  ) of  ,CR GS
4. Update  using equation 18 as follows: , 1CR Gμ +

, 1 ,(1 ) CRCR G CR Gc cμ μ+ = − + S  where c  is as used in 17  (18) 

Once the means are updated, the generation method can be applied to create 
and parameters for the mutation and crossover processes. In summary, the 

main difference between adaptive DE and basic DE is the use of vector based control 
parameters; the parametric distributions used to generate these are iteratively adapted 
in the algorithm depending on the occurrence of successful selection.  

iCR iQ

4 Numerical Examples 

We report on the performance of basic DE and adaptive DE based algorithms for 
solving the CNDP with other reported solutions on two test problems. In addition, we 



used the Origin Based Assignment algorithm [22] to solve the Program during the 
evaluation phase of DE. Our reported results for the DE methods are the average 
upper level problem objective values i.e. 

L

( , )U v β and its standard deviation (SD) over 
30 runs. The results for other algorithms are taken directly from the cited sources.  

4.1 Example 1  

The CNDP for the hypothetical network of 16 links and 2 OD pairs is used as the 
first example. This network, its parameters and trip details are taken from [16]. All 16 
links were subject to capacity enhancements with min

aβ  = 0, = 20  ( for all links) 
and 

max
aβ

θ  = 1. For basic DE, we assumed  and to be 0.8 and 0.95 respectively. For 
adaptive DE, we assumed to be 0.01. In both cases = 20 and

Q CR
c NP MaxG =150. The 

results are shown in Table 2. Note that the gradient based methods [14, 15] can be 
mathematically shown to converge at least to a local optimum while both of our DE 
based methods are heuristics. As the CNDP is a non-convex problem [2], the ability 
of these former methods to locate the global optimum is dependent on the starting 
point assumed.  

Table 2.  Comparison of DE variants with other approaches for Example 1.  

Method KKT AL SA GA Basic DE Adaptive DE 
Source [15] [14] [1] [17]   
Objv 534.02 532.71 528.49 519.03 522.71 523.17 
NEval 29 4,000 24,300 10,000 3,000 3,000  
SD ------------Not Available----------- 0.403 1.34 0.97 
Note: Objv: value of ( , )U v β at end of run; NEval: number of Program L (traffic assignments) solved  

4.2 Example 2 

The second example is the CNDP for the Sioux Falls network with 24 nodes, 76 
links and 552 OD pairs. The network and travel demand details are found in [16]. 10 
links out of the 76 are subject to capacity enhancements; min

aβ  = 0, max
aβ = 25 (for all 

the 10 links) and θ  is 0.001. For basic DE, we assumed  and to be 0.8 and 0.9 
respectively. For adaptive DE,  was 0.01. In both cases = 20 and

Q CR
c NP MaxG =80. 

The literature does not indicate that GA has been used for this problem. The results 
are shown in Table 3.  

Table 3. Comparison of DE variants with other approaches for Example 2. 

Method DS KKT AL SA Basic DE Adaptive DE 
Source [16] [15] [14] [1]   
Objv 83.08 82.57 81.75 80.87 80.74 80.74 
NEval 12 10 2,000 3,900 1,600 1,600 
SD ---------------Not Available-------------- 0.002 0.006 

Note: Objv: Value of ( , )U v β at end; NEval: number of Program L (traffic assignments) solved 



Note that while this network is clearly larger and arguably more realistic, the 
problem dimension (number of variables optimized) is smaller than in Example 1, 
since 10 links are subject to  improvement compared to 16 in Example 1. This could 
explain why the number of Program problems solved are less than in Example 1.   L

5. Conclusions 

We developed and applied a basic DE and adaptive variant as solution heuristics for 
the CNDP. In our numerical tests, we applied these methods to a hypothetical 16 link, 
2 OD pair network and the Sioux Falls network with 76 links and 552 OD pairs.  

As a global optimization heuristic, it has been concluded [5] that DE is competitive 
with SA and GA. Our results support this view as the DE-based methods required a 
lower number of function evaluations to obtain/better the optimum found by GA and 
SA. The GA based [17] results in example 1 are better but at the expense of extensive 
function evaluations. In future work, DE could be hybridized with local search 
algorithms to home in on the global optimum as in [6]. Our results for the Sioux Falls 
network in example 2 are arguably better than any in the literature so far.   

Our results are also competitive against various derivative-based methods. 
Compared to the KKT methods in [15], DE required many more function evaluations 
but DE obtained a lower function value, suggesting DE managed to escape a local 
optimum. On the other hand, the gradient based AL method [14] required more 
function evaluations than the DE based methods but did not reach the optimum value.  

The low variance augments the view that the DE methods are also reasonably 
robust. Hence this implies that the DE based method should be able to consistently 
locate the region of the optimum in multiple trials. Furthermore, a population size  
much less than suggested in [5] was used to obtain the results shown in this paper.   

NP

It is difficult to compare the performance of Basic and Adaptive DE since both 
could provide solutions that are quite similar. Furthermore, the standard deviations of 
both are not too different. Nevertheless, we point out that we carried out extensive 
initial testing to decide the mutation and crossover parameters ultimately used for the 
Basic DE algorithm which attests to the primary advantage of the adaptive version.  

The downside of the adaptive variant is that further sensitivity analysis of the c  
parameter used for updating the crossover and mutation factors, needs to be carried 
out to examine its robustness with different test problems although [9] suggests that it 
is not critical. We conjecture that this parameter might be problem dependent. Further 
research is required to investigate this adaptive DE variant before firm conclusions 
can be reached.  

Another potential avenue for further research could be to apply such stochastic 
search heuristics to multi-objective optimization CNDPs where tradeoffs between 
objectives need to be examined.   
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