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Using Isabelle/HOL to verify first-order relativity theory
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Abstract Logicians at the Rényi Mathematical Institute in Budapest have spent
several years developing versions of relativity theory (special, general, and other
variants) based wholly on first-order logic, and have argued in favour of the physi-
cal decidability, via exploitation of cosmological phenomena, of formally unsolvable
questions such as the Halting Problem and the consistency of set theory. As part
of a joint project, researchers at Sheffield have recently started generating rigorous
machine-verified versions of the Hungarian proofs, so as to demonstrate the sound-
ness of their work. In this paper, we explain the background to the project and
demonstrate a first-order proof in Isabelle/HOL of the theorem “no inertial ob-
server can travel faster than light”. This approach to physical theories and physical
computability has several pay-offs, because the precision with which physical the-
ories need to be formalised within automated proof systems forces us to recognise
subtly hidden assumptions.

Keywords Isabelle/HOL · first-order relativity theory · hypercomputation ·
physics and computation

CR Subject Classification F.4.1 · J.2

1 Introduction

The Hungarian team of Andréka et al. have formalised a series of relativity theories
(including special and general relativity) using first-order logic [1,2]. These first-
order foundations ensure that their theories are easy to reason with, but also
introduce a number of nonstandard features. This school uses the intuition-friendly
and logically benign framework of first-order logic for formalizing and elaborating

M. Stannett
Department of Computer Science, University of Sheffield Regent Court, 211 Portobello,
Sheffield S1 4DP, United Kingdom, Tel.: +44-114-2221800, Fax: +44-114-2221810, E-mail:
m.stannett@dcs.shef.ac.uk,

I. Németi
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relativity theories. However, their proofs are often formulated in the intuitive,
informal language of model theory (as opposed to proof theory). Therefore, a
theoretical doubt may arise whether these proofs can always be pushed through
on the purely syntactical (i.e., proof theoretical) level. We have, therefore, recently
started a joint project verifying their theories using the Isabelle proof assistant [3].
We explain our approach below, and outline an Isabelle/HOL proof of the well-
known statement “no inertial observer can travel faster than light” [4,5].

While the initial encoding of the underlying axioms within Isabelle/HOL is
essentially straightforward, automating the proof proved unexpectedly challenging.
In Sect. 2 we explain the logical foundations of the proof construction, and show
how the axiom systems are encoded in Sect. 3. The proof itself is presented in
Sect. 4, and follow-on questions are discussed in Sect. 5.

An example of a situation where the correctness of a relativity theoretic proof
can be challenging is the following. In his seminal analysis of computation, Turing
[6] discussed the nature of human computation, and showed that certain tasks –
most famously, the Halting Problem (HP) – are not decidable by computational
means. Subsequent theoretical investigation by various researchers suggests, how-
ever, that physical systems may exist which can in fact decide HP by exploiting
cosmological phenomena [7–12]. We focus here on one particular scheme for cos-
mological hypercomputation [9,13], and consider the extent to which it rests on
secure logical foundations. Doing so we can rely on the above described FOL ax-
iomatic foundations of relativity theories. We return to this question in more detail
in Sect. 5.

2 Logical foundations

The statement we wish to prove (“no inertial observer can travel faster than light”)
says that when one inertial observer, m, sees another, k, at two distinct spacetime
locations e and f , the latter cannot be spacelike separated (see Sect. 4). To prove
this statement we turn to Andréka et al.’s [1,5] first-order formalisation of relativ-
ity theory. Our focus on first-order logic (FOL) is motivated by several important
considerations. Foremost is the Hungarian team’s desire to demystify relativity
theory by expressing its postulates and conclusions in a form that is intelligible to
as large an audience as possible. By choosing simple language and a very simple
axiom system, the underlying assumptions of the theory are made as straightfor-
ward as possible (see Sect. 3.2), while the use of first-order logic and its simple
reliance on Modus Ponens makes it relatively easy for newcomers to follow the
proofs. Having reformulated relativity in purely logical terms, the group is also
able to investigate which axioms underpin which results and which are superflu-
ous. Given the physical nature of the theory in question, this information can then
be reflected back into physics: if an axiom plays no role in establishing an experi-
mentally observed result, then that result can neither support nor undermine the
validity of the axiomatic property in question.

It is important to note, however, that the use of first-order logic has impor-
tant consequences when attempting to model physical phenomena, because FOL
is not powerful enough to characterise the real number field, R – the numbers
typically used to represent coordinates, masses, and so forth, in physical models.
Consequently, many of the real-number properties we take for granted in physics,
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like the existence of suprema of bounded sequences, are unavailable in a rigorous
first-order logical proof (this existence condition is called the Continuity Axiom in
the mathematical and logical literature).1 In particular, the statement that any
decreasing sequence of real numbers, bounded below, has a greatest lower bound is
not a first-order statement, because it refers to ordered sets of real values.2 More-
over, as Andréka and her colleagues have shown, many interesting theorems for
relativity can be proven using less restrictive fields like the rationals, Q, for which
the real-number property every positive number has a positive square root fails3 (such
fields are said to be non-Euclidean), cf. [14].

2.1 The need for formal verification

Given that “first-order numbers” need not exhibit the properties typically expected
of them by physicists, it is important that we treat traditional explanations of
relativistic phenomena with caution. To this end, as part of a Royal Society Inter-
national Exchanges Scheme project, researchers in Sheffield joined forces with the
Hungarian team at the start of 2012, to develop a comprehensive formal frame-
work for relativity theory, with full machine-verification of all derived theorems.
To the best of our knowledge, this is the first time such a large-scale physical
theory has been treated in this way (but cf. [15,16]), and it is hoped that the
lessons learned will be useful in extending the approach more widely. The project
has been planned in four main stages, and it is hoped that the end result will
be a formal machine-verified proof of the controversial claim that the power of a
computational system depends on the nature of its spacetime environment, with
super-Turing capabilities emerging in the context of more complex spacetime ge-
ometries.

The project itself has four broad aims:

Goal 1. Implement first-order axiomatizations of general relativity using the
proof assistant Isabelle [3];

Goal 2. Add a general model of computational mobility to the theory, to enable
the modelling of computations carried out by machines travelling along specific
spacetime trajectories;

Goal 3. Consider how the power of these computational systems changes ac-
cording to the underlying topology of spacetime [17];

Goal 4. Select a recursively uncomputable problem P (for example, the Halting
Problem) and machine-verify the following claims:
(a) in simpler relativistic settings, P remains uncomputable;
(b) in some spacetimes, P can be solved.

1 For completeness, we note that this difficulty can be solved within FOL in many ways,
e.g., it can be solved by focussing attention on definable sets.

2 There are fields which have the same first-order properties as R, but which contain infinites-
imals. In such a field, the bounded decreasing sequence 1

1
> 1

2
> 1

3
> . . . has no greatest lower

bound. For suppose α were its greatest lower bound; then given any positive infinitesimal ǫ,
the value (1+ ǫ)α would be a slightly larger lower bound, thereby contradicting the definition
of α.

3 The statement cited is first-order: (∀x).((x > 0) → (∃y.((y > 0) ∧ (y × y = x)))).



4 Mike Stannett, István Németi

Taken together, these steps are intended to add weight to the claim that the
computational power of a device may depend on the physical setting in which it
finds itself.

3 The theories and their implementation

There are various versions of relativity theory, depending on what is being mod-
elled. For special relativity (SpecRel) the two key axioms (suitably formalised)
are [4]:

Principle of relativity: The laws of nature are the same for every inertial
observer;

Light postulate: Any ray of light moves in the ‘stationary’ system of co-
ordinates with the determined velocity c, whether the ray be emitted by a
stationary or by a moving body;

while for general relativity (GenRel) we add the

Equivalence Principle: It is not possible to distinguish locally between
the effects of acceleration and those of gravity.

In addition to special and general relativity, Székely and his colleagues have
made a detailed study of accelerated observers (with or without the equivalence prin-
ciple in place). The corresponding theory, AccRel, provides a convenient stepping
stone from special to general relativity [14].

Our Isabelle implementation4 has been constructed in three parts, a pro-
gram structure that ensures that different versions of relativity theory can eas-
ily be added later. For example, to add GenRel we would simply add a new file
GenRel.thy which merges the required axiom classes and includes proofs of relevant
theorems. We focus here on the first-order theory SpecRel of special relativity.
This theory is 2-sorted, the sorts being Quantities (the values used to specify
coordinates, speeds, masses, etc) and Body (bodies or test particles).

3.1 Background geometry (SpaceTime.thy, approx. 830 lines)

This Isabelle/HOL code file models the geometric structures common to all models
of spacetime (Vectors, Points, Lines, Planes, Cones), each represented as a sepa-
rate record structure with axioms attached. The axioms describe basic geometric
relationships including, for example, what it means for three points to be collinear,
what it means for two vectors to be orthogonal, and so forth. In particular, a key
lemma for our main proof is the assertion that distinct parallel lines cannot meet
(the proof is by contradiction). Having defined these classes, we take SpaceTime to
be their conjunction:

class SpaceTime = Quantities + Vectors + Points + Lines + Planes + Cones

4 The files referred to in this paper are available from http://www.dcs.shef.ac.uk/~mps/

isabelle/noFTLobserver/index.html.
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The set of Quantities is assumed to carry an ordered field structure. We shall
sometimes need to assume that the field is also Euclidean – i.e., that square roots
exist for positive values – but this is not a general requirement, so it will be added
as a separate axiom class later. Since Isabelle/HOL already includes a suitable
class, the implementation of Quantities is particularly simple:

class Quantities = linordered_field

For simplicity we assume that spacetime is (1 + 3)-dimensional (one time di-
mension + three space dimensions), so that Points and Vectors are both specified
as 4-tuples of Quantities. In more complex relativity theories, we allow both the
number of space dimensions, and the number of time dimensions, to range over
arbitrary positive integers. Lines are specified by giving a point (the line’s base-

point) and a vector (its direction), while planes are specified by a basepoint and
two vectors. These formalisations are not unique with respect to the underlying
abstract pointsets they are intended to represent (for example, there are infinitely
many representations of each line, because we can choose any of its points as base-
point), but in practice this makes no difference, since all relevant functions remain
well-defined.

Because we are dealing here with special relativity, all lightcones can be consid-
ered to be ‘upright’ (for general relativity we need to allow cones that are ‘tilted’
by curvature effects); each cone can therefore be specified by giving a point (its
vertex) and a quantity (its slope). However, the freedom with which we can specify
quantities has certain concomitant side-effects, and these need to be taken into
account. In real-number physics, we would consider the slope of the cone

x
2 + y

2 + z
2 = αt

2 where α > 0

to be
√
α, but when Quantities is non-Euclidean we cannot be certain that

√
α is

defined. Consequently, we take the slope of the cone to be α rather than
√
α, and

adjust all associated formulae and proofs accordingly.

3.2 Axioms (Axioms.thy, approx. 260 lines)

This file includes various axioms used by the Hungarian group, each implemented
as a separate class. Different relativity theories can then be constructed by merging
the relevant axiom classes and omitting those that are not required; we focus here
on the axioms that will be needed to specify SpecRel.

The axioms describe the events in which bodies can participate, and how their
descriptions change from one observer’s viewpoint to another. Here, a Body can
be either a photon (which always travels at constant speed) or an inertial observer

(which always travels at constant speed, and in addition is capable of making
observations). Since we do not assume a priori that the classes of photons and
inertial observers are disjoint, we represent bodies using an Isabelle/HOL record
structure:

record Body =

Ph :: "bool"

IOb :: "bool"
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At first sight, this formalisation appears slightly odd, since it suggests the
possibility of four types of body (one which is neither photon nor inertial observer,
one which is purely a photon, one which is purely an inertial observer, and one
which is both at the same time), but in keeping with our goal of placing as few
restrictions as possible on the underlying theory, we have resisted the temptation
to separate out photons from inertial observers a priori (e.g. by specifying them
using distinct type variables in a locale). Instead, we note that such type confusions
can never actually occur, since it is a theorem, for example, that no object can be
simultaneously a photon and an inertial observer (according to our axioms, inertial
observers see themselves as stationary in space, while photons have no choice but
to move at lightspeed, which is strictly positive; the two are clearly incompatible).

For more complex relativistic theories we also need to consider non-inertial
observers (those which can accelerate), as well as more general types of body, and
in this regard the use of Isabelle/HOL record structures is particularly convenient,
since we can easily extend the Body record structure to include new descriptions
(once again, we can prove from the axioms introduced to describe these bodies
that no type confusions arise when we do so). The distinction between inertial
observers and more general body types emerges in these more advanced theories.
For example, we demonstrate below that inertial observers can never travel faster
than (what they consider to be) the speed of light, but this property need not be
provable of more general bodies [18,19].

In addition to the ordered field axioms associated with Quantities, SpecRel is
formally generated using just the four axioms described below (AxPh, AxEv, AxSelf,
AxSym), but in practice we have found it sensible to replace Quantities with a larger
WorldView class (below) so as to have available the necessary abbreviations and
functions. This simplifies proofs considerably. Moreover, our proof that inertial
observers cannot travel faster than light requires us to find the intersection of a
line with a cone, and this in turn requires the existence of square roots – we have
therefore included the Euclidean axiom (AxEuclidean). Finally, we make use of
various additional properties of cones, lines and planes (given in SpaceTime.thy).
These define various relatively complicated concepts, such as what it means for a
plane to be tangent to a (light)cone:

class Cones = Quantities + Lines + Planes +

fixes

tangentPlane :: "’a Point ⇒ ’a Cone ⇒ ’a Plane"

assumes (* The basepoint of the tangent-plane-at-e is e *)

AxTangentBase: "pbasepoint (tangentPlane e cone) = e"

and (* The tangent plane contains the vertex *)

AxTangentVertex: "inPlane (vertex cone) (tangentPlane e cone)"

and (* The tangent plane meets the cone in a line *)

AxConeTangent: "(onCone e cone) −→
(inPlane pt (tangentPlane e cone) ∧ onCone pt cone)

←→ collinear (vertex cone) e pt)"

and (* The tangent plane is tangential to all cones with vertex
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in that plane, and the intersection lines are parallel. *)

AxParallelCones: "(onCone e econe ∧ e 6= vertex econe

∧ onCone f fcone ∧ f 6= vertex fcone

∧ inPlane f (tangentPlane e econe))

−→ (samePlane (tangentPlane e econe) (tangentPlane f fcone)

∧ ((lineJoining (vertex econe) e) ‖ (lineJoining (vertex fcone) f)))"

and (* If f is outside a cone, there is a tangent plane to that cone which

contains f. The tangent plane is determined by some e lying on

the intersection line with the cone. *)

AxParallelConesE: "outsideCone f cone −→ (∃e.(onCone e cone

∧ e 6= vertex cone ∧ inPlane f (tangentPlane e cone)))"

3.2.1 Square roots

The Euclidean field axiom, AxEuclidean, states that every positive quantity has a
positive square root, and defines the sqrt function.

class AxEuclidean = Quantities +

assumes

AxEuclidean: "(x ≥ (0::’a)) =⇒ (∃r. ((r ≥ 0) ∧ (r*r = x)))"

begin

fun sqrt :: "’a ⇒ ’a" where

"sqrt x = (SOME r. ((r ≥ (0::’a)) ∧(r*r = x)))"

end

In keeping with our policy of keeping the axioms as unrestrictive as possible,
we do not assume that the positive square root is uniquely defined, though this is,
of course, an easy theorem.

3.2.2 The WorldView relation

Two key features of first-order relativity theory are the worldview relation (W) and
the worldview transformation (wvt).

class WorldView = SpaceTime +

fixes

(* Worldview relation *)

W :: "Body ⇒ Body ⇒ ’a Point ⇒ bool" (" sees at ")

and

(* Worldview transformation *)

wvt :: "Body ⇒ Body ⇒ ’a Point ⇒ ’a Point"

assumes

AxWVT: "J IOb m; IOb k K =⇒ (W k b x ←→ W m b (wvt m k x))"

and

AxWVTSym: "J IOb m; IOb k K =⇒ (y = wvt k m x ←→ x = wvt m k y)"

begin
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end

The relation W tells us which bodies an inertial observer m sees at each space-
time location. Thus, W m b p is True precisely when m considers the body (whether
inertial observer or photon) b to be present at location p. We can use W to define
various standard concepts; for example, the worldline of b (from m’s point of view)
is simply the set {p . W m b p}.

The worldview transformation tells us how one observer’s viewpoint is related
to another. As AxWVT explains, if wvt m k x is y, this means that whatever k sees
at x, m sees at y.

3.2.3 Photons and the speed of light

The photon axiom, AxPh, says that for any inertial observer, the speed of light (c)
is the same in every (spatial) direction everywhere and is positive. Furthermore,
it is possible to send out a light signal in any (spatial) direction. (The auxiliary
functions space2 and time2 give the squared spatial and temporal separations,
respectively, of two spacetime locations x and y.)

class AxPh = WorldView +

assumes

AxPh: "IOb(m)

=⇒ (∃v. ( (v > (0::’a)) ∧ ( ∀x y . (

(∃p. (Ph p ∧ W m p x ∧ W m p y))

←→ (space2 x y = (v * v)*(time2 x y))

))))"

begin

fun c :: "Body ⇒ ’a" where

"c m = (SOME v. ( (v > (0::’a)) ∧ ( ∀x y . (

∃p. (Ph p ∧ W m p x ∧ W m p y))

←→ (space2 x y = (v * v)*(time2 x y))

)))"

fun lightcone :: "Body ⇒ ’a Point ⇒ ’a Cone" where

lightcone m v = mkCone v (c m)"

(* various lemmas follow that are not included here *)

Notice, however, that the speed of light is not assumed to be the same for all
observers: the value c is therefore parametrised according to the inertial observer
in question. Note also that the speed of light c p is technically specified relative to
photons p as well as inertial observers, but in this case the precondition required
to establish the value’s existence cannot be established using AxPh. This avoids
the (non)question, “at what speed does one photon consider another photon to be
travelling?”
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3.2.4 Events

The event axiom, AxEvent, says that all inertial observers are participating in
the same universe – if one observer sees two bodies meeting at some spacetime
location, they all see them meeting (though they may disagree as to where and
when that meeting takes place).

class AxEv = WorldView +

assumes

AxEv: "J IOb m; IOb k K =⇒ (∃y. (∀b. (W m b x ←→ W k b y)))"

begin

end

3.2.5 Self-observation

The self axiom, AxSelf, says that inertial observers consider themselves to be
stationary in space (so they consider their worldline to be the time axis).

class AxSelf = WorldView +

assumes

AxSelf: "IOb m =⇒ (W m m x) −→ (onAxisT x)"

begin

end

3.2.6 Spatial calibration

The symmetry axiom, AxSym, says that inertial observers agree as to the spa-
tial distance between two spacetime events if these two events are simultaneous
for both of them. This is essentially an auxiliary axiom, explaining how inertial
observers calibrate their measuring rods to allow comparison of measurements.

class AxSym = WorldView +

assumes

AxSym: "J IOb m; IOb k K =⇒
(W m e x ∧ W m f y ∧ W k e x’ ∧ W k f y’ ∧

tval x = tval y ∧ tval x’ = tval y’ )

−→ (space2 x y = space2 x’ y’)"

begin

end

3.3 SpecRel (SpecRel.thy, approx. 340 lines)

This file defines the theory SpecRel. The theory is remarkably sparse, being based
on just five main axioms, together with a few simplifying definitions concerning
the worldview relation.



10 Mike Stannett, István Németi

class SpecRel = WorldView + AxPh + AxEv + AxSelf + AxSym

(*

The following proof assumes that the quantity field is Euclidean.

*)

+ AxEuclidean

(*

We also assume for now that lines, planes and lightcones are

preserved by the worldview transformation. This can be proven.

*)

+ AxLines + AxPlanes + AxCones

4 The proof

We have formalised the statement “no inertial observer can travel faster than light”
as:

lemma noFTLObserver:

assumes iobm: "IOb m"

and iobk: "IOb k"

and mke: "m sees k at e"

and mkf: "m sees k at f"

and enotf: "e 6= f"

shows "space2 e f ≤ (c m * c m) * time2 e

f"

To see why, notice that the statement “k cannot travel faster than light” is mean-
ingless as it stands. We need to say in whose opinion this statement is true, since
speeds depend on the observer. We therefore have to introduce a second inertial
observer, m, in whose opinion the judgment is to be made. To find the speed at
which k is moving, m needs to observe k at two different locations, e and f, and
then determine the (square of the) ratio of the associated spatial and temporal
separations.

The proof itself is in five basic stages.

Step 1. Assume the converse

Suppose k is going faster than light (FTL) from m’s viewpoint:

assume converse: "space2 e f > (c m * c m) * time2 e f"

Informally, we are saying that f lies outside m’s lightcone at e.

Step 2. Consider the cone at e

Consider m’s lightcone at e, and note that e is itself on this cone (since it is the
cone’s vertex).
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def eCone ≡ "mkCone e (c m)"

have e on econe: "onCone e eCone" by (simp add: eCone def)

Step 3. Identify the tangent plane containing f

Step 1 tells us to assume that f is outside the cone. We can use the cone axioms
to find a tangent plane containing f. Being a tangent plane, it will necessarily
contain the vertex, e, as well. In addition, the axioms allow us to fix a point g so
that the line joining g to the vertex is the line of intersection between the cone
and the tangent plane. Notice that g is distinct from both e and f, and together
the three points define the tangent plane (Fig. 1).

have e is vertex: "e = vertex eCone" by (simp add: eCone def)

have cm is slope: "c m = slope eCone" by (simp add: eCone def)

hence outside: "outsideCone f eCone"

by (metis (lifting) e is vertex cm is slope converse outsideCone.simps)

have "outsideCone f eCone

−→ (∃x.(onCone x eCone ∧ x 6= vertex eCone

∧ inPlane f (tangentPlane x eCone)))"

by (rule AxParallelConesE)

hence tplane exists: "∃x.(onCone x eCone ∧ x 6= vertex eCone

∧ inPlane f (tangentPlane x eCone))"

by (smt outside)

then obtain g where g props: "(onCone g eCone ∧ g 6= vertex eCone

∧ inPlane f (tangentPlane g eCone))"

by auto

have g on eCone: "onCone g eCone" by (metis g props)

have g not vertex: "g 6= vertex eCone" by (metis g props)

(* ... and more ... *)

Step 4. Switch to k’s viewpoint

Because m sees k at the distinct points e and f, k should also see itself at (its
transformed versions of) those points, by AxEv. But each observer considers itself
to be stationary, so k considers e and f to be distinct points on his time axis,
by AxSelf. If k’s worldline also passed through g, the points e, f and g would be
collinear in k’s worldview, and hence also in m’s, and we know this not to be the
case because e and g are both in the tangent intersection line, while f is outside
the cone. Consequently, g is not on k’s time axis.

def wvte ≡ "wvt k m e"
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Fig. 1 Given a light cone with vertex e and a point f outside the cone, we can find a plane
that contains f and which is tangent to the cone. We choose g to be any point (apart from e)
which lies on the line of intersection between the plane and the cone.

def wvtf ≡ "wvt k m f"

def wvtg ≡ "wvt k m g"

have "W k k wvte" by (metis wvte def AxWVT mke iobm iobk)

hence wvte onAxis: "onAxisT wvte" by (metis AxSelf iobk)

have "W k k wvtf" by (metis wvtf def AxWVT mkf iobm iobk)

hence wvtf onAxis: "onAxisT wvtf" by (metis AxSelf iobk)

have wvte inv: "e = wvt m k wvte" by (metis AxWVTSym iobk iobm wvte def)

have wvtf inv: "f = wvt m k wvtf" by (metis AxWVTSym iobk iobm wvtf def)

have wvtg inv: "g = wvt m k wvtg" by (metis AxWVTSym iobk iobm wvtg def)

have e not g: "e 6= g" by (metis e is vertex g not vertex)

have f not g: "f 6= g" by (metis outside lemOutsideNotOnCone g on eCone)

have wvt e not f: "wvte 6= wvtf" by (metis wvte inv wvtf inv enotf)

have wvt f not g: "wvtf 6= wvtg" by (metis wvtf inv wvtg inv f not g)

have wvt g not e: "wvtg 6= wvte" by (metis wvtg inv wvte inv e not g)

have if g onAxis: "onAxisT wvtg −→ collinear wvte wvtg wvtf"

by (metis lemAxisIsLine wvte onAxis wvtf onAxis

wvt e not f wvt f not g wvt g not e)

have "collinear wvte wvtg wvtf −→ collinear e g f"

by (metis AxLines iobm iobk wvte inv wvtf inv wvtg inv)

hence "onAxisT wvtg −→ collinear e g f" by (metis if g onAxis)
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hence wvtg offAxis: "¬ (onAxisT wvtg)" by (metis g not collinear)

Step 5. Find a point z with impossible properties

We have seen that e and f define the time axis (from k’s point of view), and g lies
off this axis. Consequently, because all lightcones are upright in special relativity,
the line joining e to g has non-empty intersection with the k-lightcone at f. Call
the point of intersection z, and observe that the k-lightcone at z contains both e

and f. [Notice, however, that determining the coordinates of the point z typically
involves the use of square roots, which is why we have assumed AxEuclidean.]

Having obtained z, we will prove that its properties are contradictory.

have "∀s.(∃p.( collinear wvte wvtg p

∧ (space2 p wvtf = (s*s)*time2 p wvtf)))"

by (metis lemSlopedLineInVerticalPlane

wvte onAxis wvtf onAxis wvtg offAxis wvt e not f)

hence exists wvtz: "∃p.( collinear wvte wvtg p

∧ (space2 p wvtf = (c k * c k)*time2 p wvtf))"

by metis

then obtain wvtz where

wvtz props: "collinear wvte wvtg wvtz

∧ (space2 wvtz wvtf = (c k * c k)*time2 wvtz wvtf)" by auto

hence wvtf speed: "space2 wvtz wvtf = (c k * c k)*time2 wvtz wvtf"

by metis

def z ≡ "wvt m k wvtz"

We know that f is on k’s lightcone at z, and that lightcones are mapped
to lightcones under worldview transformations. We can therefore switch to m’s
viewpoint, and at the same time deduce that z is on the lightcone at f.

(* f is on the lightcone at z *)

def zCone ≡ "lightcone m z"

have z is vertex: "z = vertex zCone" by (simp add: zCone def)

have cm is zSlope: "c m = slope zCone" by (simp add: zCone def)

have f on zCone: "onCone f zCone"

by (metis wvtf inv wvtf on wvtzCone zCone def)

(* whence z is on the lightcone at f *)

hence "space2 (vertex zCone) f

= (slope zCone * slope zCone)*time2 (vertex zCone) f"

by (simp add: zCone def)

hence "space2 z f = (c m * c m)*time2 z f"

by (metis z is vertex cm is zSlope)

hence fz speed: "space2 f z = (c m * c m)*time2 f z"

by (metis lemSpace2Sym lemTime2Sym)
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def fCone ≡ "lightcone m f"

have f is fVertex: "f = vertex fCone" by (simp add: fCone def)

have cm is fSlope: "c m = slope fCone" by (simp add: fCone def)

hence "space2 (vertex fCone) z

= ((slope fCone) *(slope fCone))*time2 (vertex fCone) z"

by (metis fz speed f is fVertex cm is fSlope)

hence z on fCone: "onCone z fCone" by (metis onCone.simps)

Similarly, we can show that z is on the lightcone at e. However, the cones
at e and f share the same tangent plane (because f lies in that plane), whence
the intersection lines at e and f are parallel (this is part of what it means to be
a tangent plane, as expressed in the cone axioms). It follows that we have two
distinct lines that intersect in a common point, z, despite being parallel.

This provides the required contradiction.

5 Concluding Remarks

5.1 Discussion

The approach to physical theories and physical computability we have outlined
above allows us not only to check results based on intuition, but also to identify
which axioms are required in the proof of each theorem and to what extent those
axioms can be weakened (the fewer assumptions we make up-front, the stronger
the results). As we have seen, for example, we may use square roots in a FOL
proof of a relativistic theorem not involving square roots, while originally in the
physical theory we may have only assumed the existence of the rational numbers.
A similar phenomenon with the so-called Continuity Axiom (see Sect. 2) is studied
and explained in detail in [20]. The precision with which physical theories need to
be formalised within automated proof systems forces us to recognise such hidden
assumptions.

Moreover, the very close agreement that currently exists between experimental
evidence and the predictions of theoretical physics, suggests that the world-as-is
may indeed satisfy these additional axioms. This is itself of interest, since it adds to
the burden on theoretical physics: can the standard model, for example, explain
why the number field associated with spacetime coordinates should necessarily
satisfy the Euclidean axiom? Or are experimental results in fact compatible with
a non-Euclidean number system, in which case the standard model is arguably
over-specified?

In addition, the use of an automated proof assistant to study physical theories
also has other pay-offs in terms of efficiency. In practice, all standard models of
general relativity are locally special relativistic. Consequently, we expect that work
already invested in the construction of SpaceTime.thy (itself built on top of existing
Isabelle/HOL libraries) will largely be re-usable. We would also like to know to
what extent the work developed here can be extended to encompass other physical
systems – for example quantum mechanics, the other version of physics of such
importance in modern computing theory – and whether new proof techniques or
capabilities would be useful in that effort. For example, in the proof above it was
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necessary for us to determine the existence of a point z with certain coordinates.
Although these coordinates can be identified manually, this is a messy process
which requires subsequent stringent proof that the results obtained do indeed
satisfy the properties required of them; it would be convenient to have a system
built into Isabelle/HOL that could do the identification on our behalf.

5.2 Wider relevance to computability theory

Turing’s [6] analysis of (human) computation provided a convincing demonstration
that certain problems cannot be solved by computational means. In particular, if
P0, P1, P2, . . . is a fixed enumeration of all programs that take a single natural
number as input, it is not possible to compute the function HP : N×N→ {yes,no}
given by

HP(m,n) =

{

yes if Pm(n) will eventually halt

no otherwise

Powerful as it is, Turing’s analysis is nonetheless susceptible to attack due to
an unexamined assumption built into his description of human computation. For,
as he explains [21]:

The human computer is supposed to be following fixed rules; he has no
authority to deviate from them in any detail. We may suppose that these
rules are supplied in a book, which is altered whenever he is put on to a
new job. He has also an unlimited supply of paper on which he does his
calculations. He may also do his multiplications and additions on a “desk
machine,” but this is not important.

In fact, the consequences of using a “desk machine” cannot be so readily dismissed,
because this implies that the computation may involve coordination between two
physically separated agents (the human and the machine) [22]. Being physically
separated, the two agents may be subject to different forces and accelerations, and
this can affect the rate at which they perceive each other’s clocks to be running.
This in turn provides scope for extreme computational speed-up, to the extent
that HP becomes solvable. For example, astronomical observations suggest the
presence of a massive slowly rotating (“slow Kerr”) black hole at the centre of
the Milky Way [23]. Such black holes are associated, in relativity theory, with
a computationally useful spacetime geometry (Malament-Hogarth spacetime [8]),
containing a worldline w and a point p (not on w), with the following properties:

– w has infinite proper length;
– it is possible to send a signal to p from any point along w.

Suppose, then, that we are given m and n, and want to determine whether
or not P ≡ Pm(n) will eventually halt. We send a computer along w having first
loaded an interpreter with behaviour:

run P;

send a signal to spacetime location p
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If P doesn’t halt, the second instruction will never be reached, and no signal will
be sent. On the other hand, because w has infinite proper length, the computer
has unbounded time available to it for its computation, and so P has enough time
to run to completion if this is its underlying behaviour. Consequently, a signal will
arrive at p if and only if Pm(n) eventually halts. It is therefore enough for us to
follow a trajectory that takes us through p. When we arrive there, we look for the
presence of the signal, saying yes if the signal is present, and no otherwise.

5.3 The road ahead

Formalising this concept as a candidate solution to Goal 4 on page 3 is our
ultimate, and somewhat challenging, task. In addition to adding concepts from
general relativity (and deducing the possibility and necessary properties of slow
Kerr blackholes!) we need to formalise both the computer and the user as inde-
pendent communicating agents, so as to embed them as active participants in the
processes involved.

There remains, of course, a great deal more to be done. In addition to com-
pleting the proofs of other standard features of special relativity (for example,
time dilation), we need to extend our work to both accelerating observers and
their associated theorems (for example, the “twin paradox”), and observers in a
gravitational field. Only then will we be in a position to model what it means for a
spacetime to exhibit the Malament-Hogarth timing structures relevant to existing
suggestions for cosmological (hyper)computation. We also plan to continue the
investigation into the physical realisticity of computing with Malament-Hogarth
spacetimes started in [24,25], not necessarily sticking with Kerr spacetime (cf. [11,
12]).

These are exciting challenges, which promise to expand our basic understand-
ing of the best way to model advanced physical theories for use with automated
theorem proving environments.

Acknowledgements This research is supported under the Royal Society International Ex-
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15. M. Gömöri and L. E. Szabó. On the formal statement of the special principle of relativity.

Online: http://philsci-archive.pitt.edu/9151/4/MG-LESz-math-rel-preprint-v3.

pdf, 2011.
16. N. Sundar G., S. Bringsjord, and J. Taylor. Proof Verification and Proof Discov-

ery for Relativity. In First International Conference on Logic and Relativity: hon-
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20. J. X. Madarász, I. Németi, and G. Székely. Twin Paradox and the logical foundation of
relativity theory. Found. Phys., 36(5):681–714, 2006.

21. A. M. Turing. Computing machinery and intelligence. Mind, 59:433–460, 1950.
22. M. Stannett. Membrane systems and hypercomputation. In E. Csuhaj-Varjú, M. Gheo-
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