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Abstract

Traditional direction of arrival (DOA) estimation for a

MIMO array assumes perfect knowledge of the array man-

ifold. Its performance will degrade severely in the presence

of array model errors. In this paper we propose a simple

scheme for robust DOA estimation based on a MIMO array

configuration, where two well-calibrated transmit sensors

are used as the transmit array and no knowledge about the

receive array manifold is assumed. Its performance is veri-

fied by simulation results.

1 Introduction

The problem of DOA estimation has been widely studied

and many DOA estimation methods have been proposed in

the past. Among them, the subspace-based methods such

as MUSIC [1] and ESPRIT [2] are the most representative

ones [3]. However, the subspace-based methods are sensi-

tive to uncertainties in the array manifold (i.e., the collec-

tion of array steering vectors for all possible DOA angles)

[4, 5, 6]. When there are array model errors, such as sen-

sor position error, gain and phase errors, their performance

will degrade significantly. On the other hand, it is time-

consuming and expensive to calibrate the system in the case

of large arrays or when we need to move the array system

frequently from place to place [5]. In addition, it is ob-

served that in practice, even after initial calibration, sensor

gain and phase errors still exist due to the change of some

environment parameters [7].

In this work, we address the problem of robust DOA esti-

mation using a multi-input multi-output (MIMO) array con-

figuration in the presence of array model errors [8, 9, 10].

In particular, we here consider a MIMO array with only

two fully calibrated transmit sensors. Since the two trans-

mit sensors transmit orthogonal waveforms, we can extract

the received array data associated with each transmit sen-

sor. Given that the two transmit sensors are well calibrated,

a rotational invariance property between the two sets of data

can still be maintained without the knowledge of the array

manifold of the receive array; then the ESPRIT algorithm

can be used to find the DOAs of the targets. The advantage

of the proposed scheme is that only two calibrated sensors

are needed for accurate DOA estimation and no specific

requirement is imposed on the receive array. To our best

knowledge, none of the existing DOA estimation methods

(see [11, 12, 13, 14, 15, 16, 17, 18] and their references) for

MIMO arrays works in this scenario.

This paper is organized as follows. In Section 2, the sig-

nal model is provided, with the proposed method given in

Section 3. Simulation results are presented in Section 4 and

conclusions are drawn in Section 5.

2 Signal Model

Consider a MIMO system with a transmit array of M = 2
sensors and a receive array of N sensors. Both the transmit

and the receive arrays are assumed to be closely located in

space so that any target located in the far-field can be seen at

the same direction by both arrays. The two transmit sensors

form a 2-sensor (linear) array and its steering vector at(θ)
is given by

at(θ) = [1, e−j2πd sin(θ)/λ]T (1)

where θ is the angle of the pointing direction, d is the adja-

cent sensor spacing and λ denotes the signal wavelength.

For simplicity of notation and without loss of generality, we

assume that the steering vector of the receive array is also a

function of θ, given by

ar(θ) = [α1e
jφ1 , α2e

jφ2e−j2πD2 sin(θ)/λ,

· · · , αNejφN e−j2πDN sin(θ)/λ]T (2)

where αi and φi denote the gain and phase errors, respec-

tively, and Di represents the location of the ith receive sen-

sor. Here we have effectively assumed a linear array model

for the receiver side. However, we will see later that the

layout of the receive array has no effect on the result since

no information about the receive array manifold is needed

and any receive array geometry can be employed.

Assume that the transmit array are fully calibrated and ar-

ranged with half-wavelength spacing between adjacent sen-

sors and K non-coherent targets are present. The output of

the matched filters at the receiver is given by [12, 19]

x[n] = [at(θ1)⊗ ar(θ1), at(θ2)⊗ ar(θ2), · · · ,

at(θK)⊗ ar(θK)]b[n] + n[n]

= Ab[n] + n[n] (3)



where θk is the DOA of the kth target, ⊗ stands for the Kro-

necker product operator, b[n] = [b1[n], b2[n], · · · , bK [n]]T ,

with bk[n] being the complex-valued reflection coefficient

of the kth target,

A = [at(θ1)⊗ ar(θ1), · · · , at(θK)⊗ ar(θK)] (4)

is the transmit-receive or virtual array manifold, and n[n] is

the received complex-valued white noise with a power σ2.

Assume that all reflected target signals and noises are un-

correlated with each other. Then the data covariance matrix

can be expressed as

Rx = E[x[n]x[n]H ] = ARbAH + σ2I (5)

where E[·] and [·]H denote the expectation operation

and the Hermitian transpose, respectively, and Rb =
E[b[n]b[n]H ] is the covariance matrix of the reflection co-

efficients vector. In practice, the sample covariance matrix

of (5)

R̂x =
1

L

L
∑

n=1

x[n]x[n]H (6)

is used, where L is the number of snapshots or data length.

3 Proposed Method

Due to the existence of array model errors, the exact knowl-

edge of the manifold of the receive array in (4) is unknown.

If we directly apply the traditional subspace-based methods

or the existing DOA estimation methods for MIMO array

for DOA estimation, their performance will degrade.

To solve the problem, define A1 and A2 as the first and last

N rows of A, respectively, which are given by

A1 = [ar(θ1), · · · , ar(θK)], (7)

A2 = [e−j2πd sin(θ1)/λar(θ1),

· · · , e−j2πd sin(θK)/λar(θK)]

= A1Q (8)

where Q is an N×N diagonal matrix, with e−j2πd sin(θk)/λ

being its kth main diagonal element.

We observe that, although there are model errors in A1, a

rotational invariance property between A1 and A2 is still

maintained, which enables the use of ESPRIT for DOA

estimation. Let Us be the signal subspace composed of

the principal eigenvectors corresponding to the K largest

eigenvalues of R̂x. Then A and Us have a relationship

which can be determined by a unique nonsingular matrix

T as

A = UsT. (9)

Define U1 and U2 as the first and last N rows of Us, respec-

tively. We have

A1 = U1T, (10)

A2 = U2T = A1Q. (11)

Using (10) and (11), the relationship between U1 and U2 is

given by

U2 = U1TQT−1. (12)

Now using the traditional ESPRIT technique, the main

diagonal elements of Q can be obtained via the eigen-

decomposition of (UH
1 U1)

−1UH
1 U2. Since the two transmit

sensors have been well calibrated, {θk}
K
k=1 can be obtained

easily from Q.

It should be noted that unlike the traditional ESPRIT esti-

mator and existing ESPRIT estimators for MIMO arrays,

the rotational invariance property exploited here depends

only on the calibrated transmit sensors and is not related to

the array manifold of the receive array. Thus, the proposed

method still works well without any knowledge of the re-

ceive array model errors. Note that two ESPRIT-type DOA

estimators were presented without the location information

of any of the receive sensors in [13, 20]. However, they

are based on velocity receive sensors, which yields a high

cost. Moreover, each pair of identical velocity sensors of

the receive array still needs to be well calibrated to keep

orthogonal orientation between each other. Furthermore,

as mentioned already there are not only position errors in

practice but also gain and phase errors, which were not ad-

dressed by the methods in [13, 20].

A traditional MIMO array provides several important at-

tributes such as larger virtual spatial aperture and more de-

grees of freedom (DOFs). Since these attributes have a di-

rect impact on the performance of a DOA estimator, it is

important to have a discussion of the related issues for the

proposed method in the following.

3.1 DOFs

In our proposed method, we only use the receive array in-

stead of the entire virtual array for DOA estimation. As

a result, the DOFs of the proposed method stay the same

as the traditional phased array. Thus, the proposed method

is able to identify the same number of sources as the tra-

ditional phased array. Because of the waveform diversity,

however, the maximum number of sources that can be un-

ambiguously identified by the traditional MIMO array can

be up to M = 2 times that of its phased-array counterpart

and the proposed method.

3.2 Spatial aperture or spatial resolution

Since the proposed method imposes less constraint on the

receive sensor spacing, its receive sensor spacing can be

arranged to be much larger than the half wavelength used in

both the traditional phased array and the traditional MIMO

array to achieve an aperture that is larger than those of the

traditional phased array and the traditional MIMO array for

high resolution DOA estimation.

3.3 Array geometry

Since the invariance property used by the proposed method

is not related to the manifold of the receive array, its ge-

ometry is not limited to that of a uniform linear array. It

can be a nonuniform one such as the minimum redundancy

array [21], and other sparse arrays [22], and we can obtain

various benefits provided by those nonuniform arrays.



4 Simulations

In this section, simulations are carried out to investigate

the performance of the proposed method compared with the

traditional MIMO ESPRIT estimator [17], and the MUSIC

estimator [1]. We consider a MIMO array configuration

where an array with M = 2 sensors and half-wavelength

spacing is used for transmitting and a linear array with

N = 8 sensors is used for reception. The receive array

spacing is 0.5λ for the proposed method, except for Simu-

lations 4, and 0.5λ for other algorithms in all simulations.

There are K = 2 non-coherent targets located at θ1 = 10◦

and θ2 = 20◦, respectively. The additive noise is spa-

tially white complex Gaussian. 100 simulation runs are per-

formed to assess the performance of the tested algorithms.

Define root mean squared error (RMSE) as

1

K

K
∑

k=1

√

√

√

√

1

100

100
∑

n=1

(θk − θ̂n,k)2, (13)

where θ̂n,k is the estimate of DOA θk at the nth run. In all

simulation runs, the number of snapshots L = 100 is used.

4.1 Simulation 1: Exactly known manifold of the
receive array

We consider a scenario where the actual manifold of the re-

ceiving array is known exactly. Fig. 1 shows the RMSEs of

the estimation algorithms versus the input SNR. As shown,

the proposed method has a lower estimation accuracy than

the other two algorithms due to less information employed

in its operation.
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Figure 1: RMSEs of DOA estimation versus input SNR.

4.2 Simulation 2: Effect of sensor position errors

Fig. 2 shows the effect of sensor position errors of

the receiving array on the performance of the algorithms

tested. In this case, the sensor position error is assumed

to be random and uniformly distributed within the range

of [−0.2λ, 0.2λ]. From Fig. 2, we see that the perfor-

mance of both the MUSIC and the ESPRIT based meth-

ods has degraded severely compared with the results of Fig.

1. However, the performance of the proposed method is not

affected by sensor position errors and outperforms the other

two clearly.
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Figure 2: RMSEs of DOA estimation versus input SNR.

4.3 Simulation 3: Effect of gain and phase errors

In the third example, the effect of gain and phase errors on

the performance of the algorithms tested is demonstrated.

The gain and phase errors are assumed to have a uniform

distribution: αk ∈ [0.8, 1.2] and φk ∈ [−π/36, π/36].
Note that αk and φk change from run to run while remain-

ing constant for all snapshots. Fig. 3 shows the result.

As shown, the gain and phase errors have significantly de-

graded the performance of the MUSIC and ESPRIT meth-

ods. However, the proposed method has achieved robust-

ness against both the gain and phase errors with a much

better performance.
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Figure 3: RMSEs of DOA estimation versus input SNR.

4.4 Simulation 4: Effect of receiving array spacing

In the last example, we study the effect of sensor spacing

of the receiving array on the performance of the proposed

method. The sensor spacing of the proposed method is set

to 2λ, and the spacing for the two other algorithms remains

0.5λ to avoid the aliasing problem. All other parameters re-

main the same as in Simulation 3. From Fig. 4, we see that

the estimation accuracy of the proposed method is higher



compared to the results of Fig. 3, due to the increased aper-

ture size.
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Figure 4: RMSEs of DOA estimation versus input SNR.

5 Conclusions

A robust DOA estimation method based on a MIMO ar-

ray configuration has been proposed with only two well-

calibrated transmit sensors. Due to orthogonality of the

transmitted waveforms, the rotational invariance property

between the two sets of received data associated with the

two transmit sensors is still maintained without knowledge

of the array manifold of the receiving side. As a result, the

ESPRIT algorithm can be employed for the following DOA

estimation, leading to a robust solution. The effectiveness

and advantage of the proposed method has been demon-

strated by extensive simulations.
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