
This is a repository copy of Induction in Algebra: a First Case Study.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/76499/

Version: Published Version

Article:

Schuster, PM (2013) Induction in Algebra: a First Case Study. Logical Methods in 
Computer Science, 9 (3). 20. ? - ? (19). ISSN 1860-5974 

https://doi.org/10.2168/LMCS-9(3:20)2013

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Logical Methods in Computer Science
Vol. 9(3:20)2013, pp. 1–19
www.lmcs-online.org

Submitted Mar. 16, 2013
Published Sep. 17, 2013

INDUCTION IN ALGEBRA: A FIRST CASE STUDY ∗

PETER SCHUSTER

Pure Mathematics, University of Leeds, Leeds LS2 9JT, England
e-mail address: pschust@maths.leeds.ac.uk

Abstract. Many a concrete theorem of abstract algebra admits a short and elegant proof
by contradiction but with Zorn’s Lemma (ZL). A few of these theorems have recently
turned out to follow in a direct and elementary way from the Principle of Open Induction
distinguished by Raoult. The ideal objects characteristic of any invocation of ZL are
eliminated, and it is made possible to pass from classical to intuitionistic logic. If the
theorem has finite input data, then a finite partial order carries the required instance of
induction, which thus is constructively provable. A typical example is the well-known
theorem “every nonconstant coefficient of an invertible polynomial is nilpotent”.

1. Introduction

Many a concrete theorem of abstract algebra admits a short and elegant proof by contra-
diction but with Zorn’s Lemma (ZL). A few of these theorems have recently turned out to
follow in a direct and elementary way from the Principle of Open Induction (OI) distin-
guished by Raoult [42]. A proof of the latter kind may be extracted from a proof of the
former sort. If the theorem has finite input data, then a finite partial order carries the
required instance of induction, which thus is provable by mathematical induction—or, if
the size of the data is fixed, by fully first-order methods.

But what is Open Induction? In a nutshell, OI is transfinite induction for subsets of a
directed-complete partial order that are open with respect to the Scott topology. While OI
was established [42] as a consequence of ZL, by complementation these two principles are
actually equivalent [21] with classical logic but in a natural way. Hence OI is the fragment
of transfinite induction of which the corresponding minimum principle just is ZL.

Our approach is intended as a contribution to a partial realisation in algebra [13] of the
revised Hilbert Programme à la Kreisel and Feferman (see [17] for a recent account including
references), and was motivated by related work in infinite combinatorics [8, 11, 14, 42] as
well as by the methods of dynamical algebra [16, 39, 51] and formal topology [30, 44, 46].
In Hilbert’s terminology, the “ideal objects” characteristic of any invocation of ZL are
eliminated by passing to OI, and it is made possible to work with “finite methods” only,
e.g. to pass from classical to intuitionistic logic.
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2 P. SCHUSTER

A typical example, studied before [41, 43] and taken up in this paper, is the well-known
theorem “every nonconstant coefficient of an invertible polynomial is nilpotent”. More
formally, this can be put as

fg = 1→ ∃e (ue = 0) (1.1)

where f and g are polynomials with coefficients in an arbitrary commutative ring

f =
n∑

i=0

aiT
i , g =

m∑

i=0

bjT
j

and u = ai0 where 1 ≤ i0 ≤ n. The customary short and elegant proof of (1.1) works by
reduction to the case of polynomials over an integral domain

fg = 1→ u = 0

or, equivalently, by reduction modulo any prime ideal P of the given ring:

fg = 1→ ∀P (u ∈ P ) . (1.2)

This special case is readily settled by looking at the degrees, or more explicitly by a poly-
nomial trick due to Gauß [15, 29]. In order to reduce (1.1) to (1.2), it is natural to invoke

∀P (u ∈ P )→ ∃e (ue = 0) . (1.3)

But the latter, a variant of Krull’s Lemma, is normally deduced from ZL by a proof by
contradiction, which is anything but an argument using only finite methods. In addition, a
universal quantification over prime ideals P occurs, which are ideal objects (see e.g. [17]).

These foundational issues aside, there is a practical problem. By decomposing (1.1) into
(1.2) and (1.3) one virtually loses the computational information the hypothesis of (1.1) is
made of; in particular [41, 43] the proof falls short of being an algorithm for computing an
exponent e under which the nilpotent u vanishes. However, we can still extract a proof that
is based on induction over a finite partial order; and the proof tree one can grow alongside
the induction encodes an algorithm which computes the desired exponent.

That our method does work may seem less surprising if one takes into account that the
theorem has already seen constructive proofs before [41, 43], and that an entirely down-to-
earth proof is possible anyway [4, Chapter 1, Exercise 2]. Needless to say, each of those
proofs embodies an algorithm; one of them [41] has even been partially implemented in
Agda, a proof assistant based on Martin–Löf type theory.

Just as the proof in [41], our constructive proof is gained from a given classical one, the
one by reduction to the case of integral domains we have mentioned above. As compared
with [41], we keep somewhat closer to the classical proof. The price we have to pay is that
we have to suppose certain decidability hypotheses, which need to—and can—be eliminated
afterwards by a variant of the Gödel–Gentzen and Dragalin–Friedman translations. In [41]
a simpler instance of this elimination method is built directly into the proof.

To be slightly more specific, we we first turn the indirect proof of (1.3) with ZL into a
direct deduction from OI; and then transform the latter into a constructive proof of (1.1)
by induction over a finite poset. This is possible because the hypothesis of (1.1)—unlike
the one of (1.3)—consists of computationally relevant information about a finite amount of
elementary data: of nothing but the finitely many equations

a0b0 = 1, a0b1 + a1b0 = 0 , . . . , anbm = 0 .

Heuristics aside, all this makes redundant the reduction, and the prime ideals disappear.
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1.1. Preliminaries.

1.1.1. Foundations. The overall framework of this note is constructive algebra à la Kro-
necker and Bishop [31, 35]. Due to the corresponding choice of intuitionistic logic, one or
the other assumption needs to be made explicit that would be automatic in classical algebra,
by which we mean algebra as carried out within ZFC set theory and thus, in particular,
with classical logic. For example, we say that an assertion A is decidable whenever A∨¬A
holds; and that a subset S of a set T is detachable if t ∈ S is decidable for each t ∈ T .

As moreover the principle of countable choice will not occur, let alone the one of de-
pendent choice, our constructive reasoning can be carried out within (a suitable elementary
fragment of) the Constructive Zermelo–Fraenkel Set Theory CZF which Aczel [1, 2, 3] has
interpreted within Martin-Löf’s [34] Intuitionistic Theory of Types. Unlike Friedman’s [19]
impredicative Intuitionistic Zermelo–Fraenkel Set Theory IZF, this CZF does not contain
the axiom of power set. Hence in CZF an unrestricted quantification over subsets—such
as the one crucial for this paper, over all prime ideals of an arbitrary ring—in general is a
quantification over the members of a class.

1.1.2. Rings. Throughout this paper, R will denote a commutative ring (with unit). We
briefly recall some related concepts [4]. An ideal of R is a subset I that contains 0, is closed
under addition, and satisfies

s ∈ I → rs ∈ I

for all r, s ∈ R. We write (S) for the ideal generated by a subset S of R: that is, (S) consists
of the linear combinations r1s1 + . . . + rnsn of elements s1, . . . , sn of S with coefficients
r1, . . . , rn from R.

A radical ideal of R is an ideal I such that

r2 ∈ I → r ∈ I

for all r ∈ R. The radical √
I = {r ∈ R : ∃e ∈ N (re ∈ I)}

of an ideal I is a radical ideal with I ⊆
√
I. An ideal I is a radical ideal if and only if

I =
√
I. The radical

√
0 of the zero ideal 0 = {0} is the nilradical, and its elements are the

nilpotents.
An ideal P is a prime ideal if 1 /∈ P and

ab ∈ P → a ∈ P ∨ b ∈ P (1.4)

for all a, b ∈ R. Clearly, every prime ideal is a radical ideal. A ring R is an integral
domain—for short, a domain—if 1 6= 0 in R and

ab = 0→ a = 0 ∨ b = 0 (1.5)

for all a, b ∈ R. A quotient ring R/P is a domain if and only if P is a prime ideal.
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1.1.3. Induction. Let (X,≤) be a partial order. We do not specify from the outset whether
X is a set in the sense of CZF, which in the case of our definite interest will anyway be
the case, but during heuristics will depend on the choice of a more generous set theory such
as IZF. Unless specified otherwise every quantification over the variables x, x′, y, and z is
understood as over the elements of the partial order X under consideration.

Let U be a predicate on X. We say that U is progressive if

∀x (∀y > xU(y)→ U(x)), (1.6)

where y > x is understood as the conjunction of y ≥ x and y 6= x. About the antecedent of
(1.6), note that y > x is used rather than y < x, as is common in other contexts; our choice
allows us to avoid reversing the naturally given order (i.e., inclusion) later on. Also, in the
relevant instantiations below, the predicate U will define—and be identified with—a subset
of the set X; and ≤ will be a decidable relation (that is, for all x, y ∈ X, the assertion x ≤ y
is decidable).

By induction for U and X we mean the following:

If U is progressive, then ∀xU(x).

Classically, induction holds for every U precisely when X is well-founded in the sense that
every inhabited predicate on X has a maximal element—or, in classically equivalent terms,
that there is no strictly increasing sequence in X.

We will use induction in cases in which X has a least element ⊥, in which U(⊥) is
equivalent to ∀xU(x) whenever U is monotone: that is, if x ≤ y, then U(x) implies U(y).
Note finally that if U is progressive, then U is satisfied by every maximal element of X, and
thus by the greatest element ⊤ of X whenever this exists.

2. Noetherian Rings

As a warm-up we first revisit the perhaps historically first—albeit implicit—occurrence
of induction in algebra: Krull’s proof [27, pp. 8–9] of the Lasker–Noether decomposition
theorem for Noetherian rings. According to one of the constructively meaningful variants
of this concept [23], a ring is Noetherian if induction holds for the partial order consisting
of the finitely generated ideals, which by the way is a set in CZF. We now prove, using this
instance of induction, the following corollary of the Lasker–Noether Theorem:

LN: The radical
√
I of every finitely generated ideal I of a commutative Noetherian

ring is the intersection of finitely many finitely generated prime ideals.

Constructive proofs given before [39] with related notions of “Noetherian” have motivated
our choice of this example; see also [40].

Before proving LN we recall a well-known fact (see e.g. the proof of [4, Proposition
1.8]), which however will be crucial for a large part of this paper.

Lemma 2.1. Let R be a commutative ring. If I is an ideal of R, and a, b ∈ R, then
√
I +Ra ∩

√
I +Rb =

√
I +Rab.

Proof. Since ⊇ is clear, we only verify ⊆. Let x ∈
√
I +Ra and x ∈

√
I +Rb, which is to

say that xk = u+ sa and xℓ = v + tb where k, ℓ ∈ N, u, v ∈ I, and s, t ∈ R. Then

xkxℓ = uv + utb+ sav
︸ ︷︷ ︸

∈I

+st ab

and thus xk+ℓ ∈ I +Rab as required.
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In addition to this, and the aforementioned instance of induction, we need to employ a
distinction-by-cases that is known as Strong Primality Test (SPT) [39]. This says that for
every finitely generated ideal I of R one of the following three conditions is fulfilled:

(i) I = R, which is to say that 1 ∈ I;
(ii) for all a, b ∈ R, if ab ∈ I, then either a ∈ I or b ∈ I;
(iii) there are a, b ∈ R for which ab ∈ I but neither a ∈ I nor b ∈ I.

In other words, the SPT tells us whether I is a prime ideal; and moreover if the answer
is in the negative, then the SPT provides us with witnesses for this fact. Clearly SPT is
classically valid, but it also holds constructively whenever R is a fully Lasker–Noether ring
[39].

To prove LN by induction, consider “
√
I is the intersection of finitely many prime ideals”

as a predicate U of the finitely generated ideals I of R. To show that U is progressive, let
I be a finitely generated ideal of R. If I = R, then clearly U(I); if I is a prime ideal, then

in particular
√
I = I, and thus U(I). If however a, b ∈ R are as in case (iii) of SPT, then

I $ I + Ra and I $ I + Rb but I = I + Rab; whence U(I + Ra) and U(I + Rb) hold by
induction, and U(I) follows with Lemma 2.1 at hand.

This proof of LN can be carried over in a relatively easy way to the full Lasker–Noether
theorem, and as such can be viewed as an “unwinding” not only of Krull’s proof, but also
of the better-explicated proofs given in [4, 37]. We refrain from doing this transfer to the
full theorem, for no further insight into the method would be gained.

3. Some Induction Principles

When does induction hold more in general, regardless of the specific partial order under
consideration? A fairly general induction principle has been coined by Raoult [42] as follows.
A partial order X is chain-complete if every chain Y in X has a least upper bound

∨
Y ∈ X.

A predicate U on X is open in the lower topology if, for every chain Y in X,

U(
∨

Y )→ ∃x ∈ Y U(x).

(Think of the elements x of Y as of “neighbourhoods” of the “limit”
∨

Y of Y .) Now
Raoult’s Open Induction (OI) is induction for chain-complete X and open U . It is easy
to see [42] that OI follows classically from Zorn’s Lemma (ZL), and thus holds in ZFC;
moreover OI and ZL are classically equivalent [21], by complementation.

Open Induction implies Well-Founded Induction (WI) which is induction for well-
founded X and arbitrary U .1 In fact, if X is well-founded, then every chain in X has
a greatest element; whence X is chain-complete, and every U is open. Unlike OI, WI is
provable in ZF, but most partial orders that are classically well-founded lack this prop-
erty from a constructive perspective. For the notion of a Noetherian ring one can, as we
have recalled above, circumvent this problem by simply defining a commutative ring to be
Noetherian if one can perform induction on the finitely generated ideals [23].

We say that a partial order X is finite if X has finitely many elements (that is, X =
{x1, . . . , xn} for some n ≥ 0, which includes the case n = 0 of X = ∅), and if, in addition,

1This principle is also known as Noetherian Induction and, in the case of a well-ordered X, as Transfinite
Induction; see e.g. [10, p. 21].
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≤ is a decidable relation. In this case, X is a discrete set, which is to say that equality =
is decidable;2 whence so is < too.

Classically, every finite X is well-founded; whence WI implies Finite Induction (FI):
that is, induction for finite X and for arbitrary U . Unlike WI, this FI is even constructively
provable, as in CZF, by means of mathematical induction. To see this note first that if X
is finite, then one can exhibit a maximal element x of X, for which U (x) anyway. In fact, if
X has only finitely many elements, then ¬∀x∃y (x < y), which is to say that ∃x¬∃y (x < y)
if, in addition, ≤ is decidable.

4. A Proof Pattern

In all cases considered later in this paper, X consists in certain ideals of a commutative
ring, with the partial order given by inclusion, for which ∧ simply is ∩. Following the
terminology which is standard for this special case, we also say for a general partial order
X that x ∈ X is reducible if there are y, z ∈ X such that x < y, x < z, and x = y ∧ z. Here
x = y ∧ z is to be understood as that x is the greatest lower bound of y and z: that is,

∀x′ (x′ ≤ x←→ x′ ≤ y ∧ x′ ≤ z).

In the following, let again U be a predicate on a partial order X. We say that U is good if,
for every x ∈ X, either U(x) or x is reducible. Also, we say that U is meet-closed whenever
if x = y ∧ z in X, then U(x) follows from U(y) ∧ U(z).

Lemma 4.1. Let U be a predicate on a partial order X. If U is meet-closed and good, then
U is progressive.

All this allows us to state a proof pattern that has been prompted by [20]:

Theorem 4.2. Assume that induction holds for U and X. If U is meet-closed and good,
then ∀xU(x).

We will next look into applications of this proof pattern.

5. Krull’s Lemma with Open Induction

Let R again be a commutative ring. For heuristic purposes we first look at the contrapositive
of a variant of Krull’s Lemma:

KL: If r ∈ P for all prime ideals P of R, then r ∈
√
0.

As is well known (see, for example, the proof of [4, Proposition 1.8]), with ZL at hand one
can give a proof by contradiction of KL: if re 6= 0 for all e ∈ N, which is to say that 0 /∈ S
for the multiplicative set S = {re : e ∈ N}, then by ZL there is a prime ideal P of R with
P ∩ S = ∅ and, in particular, r /∈ P . If R is Noetherian in the sense of [23], then KL is an
instance of LN, which we have already reproved by induction, without any talk of ZL.

For an arbitrary ring R, KL can be deduced from OI in a direct way, by Theorem 4.2
and as follows. As OI requires a chain-complete X, this time we have to let X consist of
all the radical ideals of R. This X actually is a frame with ⊥ =

√
0 and ⊤ = R, and a

2For any such X, in particular, there is no need to distinguish between “X is finite” and “X is finitely
enumerable”, as is customary in constructive mathematics: these two variants of the notion of a finite set
coincide in the case of a discrete set [35, p. 11].
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set in IZF. Accordingly, we need a strong primality test for arbitrary (radical) ideals, but
remember that we are still doing heuristics.

Now, let r ∈ P for all prime ideals P of R. To prove r ∈
√
0 we define the predicate U

on X by U(F ) ≡ r ∈ F whenever F ∈ X, for which clearly U(⊤). Further, U is meet-closed
and monotone. In particular, to show that U(F ) holds for all F ∈ X is tantamount to
showing that U(⊥), i.e. r ∈

√
0, which is exactly what we are after.

To see that U is good, let F ∈ X: that is, F =
√
I for some ideal I of R. If F = R, then

trivially U(F ); if F is a prime ideal, then U(F ) by hypothesis; if however there are a, b ∈ R
such that ab ∈ F but neither a ∈ F nor b ∈ F , then F $

√
I +Ra and F $

√
I +Rb but√

I +Rab = F ; whence F is reducible by Lemma 2.1. In all, Theorem 4.2 applies.

6. Nilpotent Coefficients with Finite Induction

We now can proceed to our principal example. Once more let R be a commutative ring,
which we now suppose to be a set in CZF. Recall that r ∈ R is said to be a unit or
invertible if there is s ∈ R such that rs = 1. As usual let R[T ] stand for the ring of
polynomials with indeterminate T and coefficients from R. Pick an arbitrary f ∈ R[T ] and
write it as f =

∑n
i=0 aiT

i. We consider the following statement about nilpotent coefficients:

NC: If f is a unit of R[T ], then ai ∈
√
0 for i > 0.

This is well-known, and can be put as

∃g ∈ R[T ] (fg = 1)→ ∀i ∈ {1, . . . , n}∃e ∈ N (aei = 0)

or equivalently as

∀g ∈ R[T ]∀i ∈ {1, . . . , n} (fg = 1→ ∃e ∈ N (aei = 0) ) .

Pick g ∈ R[T ] and i0 ∈ {1, . . . , n}, and set u = ai0 . Hence the essence of NC is

fg = 1→ ∃e ∈ N (ue = 0) .

Write f , g as

f =
n∑

i=0

aiT
i , g =

m∑

i=0

bjT
j .

Since then

fg =

n+m∑

k=0

ckT
k , ck =

∑

i+j=k

aibj ,

the hypothesis fg = 1 can be expressed as

c0 = 1 ∧ c1 = 0 ∧ . . . ∧ cn+m = 0 (6.1)

or even more explicitly as

a0b0 = 1 ∧ a0b1 + a1b0 = 0 ∧ . . . ∧ anbm = 0 . (6.2)

In particular fg = 1 is a finite conjunction of atomic formulas of the language of rings.
By swapping f and g one could also take u from the b1, . . . , bm rather than from the

a1, . . . , an. We do not follow this option, but note for later use that under the hypothesis
fg = 1 we have

∀i > 0 (ai ∈ F )↔ ∀j > 0 (bj ∈ F ) (6.3)
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for every ideal F of R; in the particular case F = 0 this means

∀i > 0 (ai = 0)↔ ∀j > 0 (bj = 0) . (6.4)

As for (6.3), let i ∈ {1, . . . , n}. If bj ∈ F for all j ∈ {1, . . . ,min{i,m}}, then
F ∋ ci = a0bi + . . .+ ai−1b1

︸ ︷︷ ︸

∈F

+aib0

by (6.1) and thus aib0 ∈ F , from which we get ai ∈ F because a0b0 = 1 by (6.2). A similar
argument deals with the converse implication in (6.3).

As Richman has observed [43], the statement NC above

. . . admits an elegant proof upon observing that each ai with i ≥ 1 must be
in every prime ideal of R, and that the intersection of the prime ideals of R
consists of the nilpotent elements of R. This proof gives no clue as to how
to calculate n such that ani = 0, while such a calculation can be extracted
from the proof that we present.

Richman’s fairly short proof [43] is in fact a clever “nontrivial use of trivial rings”, and
of course is fully constructive. The elementary character of NC anyway suggests an equally
elementary proof, by mathematical induction, as indicated in [4, Chapter 1, Exercise 2]. Just
as for the approach [41] via point-free topology, the point of our subsequent considerations
is that we “unwind” the classical proof that Richman has rightly deemed “elegant”, and
thus get a constructive one from which the required exponent can equally be extracted.

6.1. A Classical Proof with Krull’s Lemma. We next review the “elegant” proof of
NC which works by reduction to the case of a domain. Since in a domain every nilpotent is
zero, NC for domains reads as

NCint: Let R be a domain. If f is a unit of R[T ], then ai = 0 for i > 0.

With the notation from before, the essence of NCint is

fg = 1→ u = 0 .

A quick proof goes as follows. Let R be a domain. Then the degree of non-zero polynomials
(remember that we are in a classical setting) satisfies

deg (fg) = deg (f) + deg (g) . (6.5)

Now if fg = 1, then deg (fg) = 0 in view of (6.1) and of 1 6= 0 (recall that R is a domain);
whence deg (f) = 0 and thus in particular u = 0 as required. Note that the special case

deg (fg) = 0→ deg (f) = 0 (6.6)

of (6.5) is sufficient for proving NCint.
Alternatively one can prove NCint by means of a trick that has been ascribed to Gauß

[15, 29], and which is nothing but an explicit version of (6.6). To this end let again R be
a domain, and suppose that fg = 1. Now assume towards a contradiction that ai 6= 0 for
some i > 0; whence by (6.4) also bj 6= 0 for some j > 0. Pick i, j both maximal with these
properties, for which

0 = ci+j =
∑

q>j

apbq

︸ ︷︷ ︸

=0

+aibj +
∑

p>i

apbq

︸ ︷︷ ︸

=0

(6.7)

and thus aibj = 0; whence either ai = 0 or bj = 0, a contradiction.
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Following a time-honoured tradition, the case of NC for an arbitrary ring R is handled
by working modulo a generic prime ideal P of R, for which the quotient ring R/P is indeed
a domain. Hence if P is a prime ideal, then we can apply NCint with R/P in place of
R. This yields that for all prime ideals P of R we have u = 0 in R/P , which is to say
that u ∈ P . In all, u is nilpotent by KL, which we have deduced from OI before.

6.2. Discussion and Outline. In the classical proof above one first aims at the implication

fg = 1→ ∀P (u ∈ P ) ,

and then combines it with the appropriate instance of KL:

∀P (u ∈ P )→ ∃e (ue = 0) .

The corresponding invocation of ZL or OI aside, there is another foundational problem with
this classical proof: it rests upon a universal quantification over all the prime ideals of R,
which are ideal objects in Hilbert’s sense. This is reflected by the practical problem that
the computational information of fg = 1 is virtually lost when passing to ∀P (u ∈ P ).

However, in the given situation one can do better. Before following our own route, we
briefly sketch the dual of the translation [41] of the “elegant” proof into point-free terms.3

The key move is to rewrite the classical proof by reduction to R/P where P is any prime
ideal, by replacing every occurrence of x ∈ P by one of D (x) = 0. Here one considers the
bounded distributive lattice [25]—see also, for instance, [6, 24]—that is generated by the
symbolic expressions D (x) indexed by the x ∈ R and subject to the relations

D(1) = 1 , D(xy) = D(x) ∧D(y) ,
D(0) = 0 , D(x+ y) ≤ D(x) ∨D(y) ,

which are dual to the characteristic properties of a prime ideal P :

1 6∈ P , xy ∈ P ↔ x ∈ P ∨ b ∈ P ,
0 ∈ P , x ∈ P ∧ y ∈ P → x+ y ∈ P .

Having shown by rewriting that D (u) = 0, the key observation is that one can realise this
lattice by definining D (x1)∨ . . .∨D (xn) as the radical of the ideal generated by x1, . . . , xn.
In particular the least element 0 of the lattice is turned into the nilradical

√
0, and D (u) = 0

is interpreted as u ∈
√
0. The resulting proof [41] is fully constructive, and works without

any of the decidability assumptions we will have to make—and to eliminate eventually by a
combination of the Gödel–Gentzen and Dragalin–Friedman proof translations. In [41] only
the essence of this elimination method occurs, already within the proof and at a lower level.

In our own constructive proof of NC we still follow the lines along which we have
deduced KL from OI, but since the hypothesis of NC is computationally more informative
than the one of KL, we can get by with much less: with FI in place of OI. For short, we
pass from the top to the bottom side of the following square:

OI → KL
↓ ↓
FI → NC

Yet we have to make a move that in the first place may seem nonconstructive: as we
had to assume (a variant of) SPT before, we now employ another type of a classically valid
distinction-by-cases, which has occurred in constructive and computable algebra [31, 35, 49].

3This has kindly been pointed out to us by one of the anonymous referees.
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However, as we have hinted at above and will sketch below (Section 6.4.7), this use of
fragments of the Law of Excluded Middle can be eliminated by proof theory.

6.3. Constructive Proofs by Induction.

6.3.1. With the Proof Pattern. To deduce NC from FI, let X be the partial order that
consists of the radical ideals of the ideals generated by some of the nonconstant coefficients
of f and g. In other words, an element F of X is of the form F =

√
I where I = (D) is the

ideal generated by a detachable subset D of the set E of the nonconstant coefficients of f
and g: that is,

E = {a1, . . . , an, b1, . . . , bm}.
This X, ordered by inclusion, possesses ⊥ =

√
0 and ⊤ =

√

(E), corresponding to D = ∅
and D = E. We assume that r ∈ F is decidable for all r ∈ E and F ∈ X; whence in
particular the partial order X is finite in the sense coined before (recall that

√
I ⊆
√
J if

and only if I ⊆
√
J). Now define the predicate U on X by

U(F ) ≡ u ∈ F .

Both X and U are sets in CZF. Again U(⊤), and U is meet-closed and monotone. Once
more our goal is to show U(⊥), and to apply the proof pattern from Theorem 4.2 we prove
that U is good. Let F ∈ X. By our decidability assumption we can distinguish the following
two cases.

Case 1. If ai ∈ F for all i > 0, then u ∈ F and thus U (F ).
Case 2. If ai /∈ F for some i > 0, then by (6.3) also bj /∈ F for some j > 0. In this

case—following Gauß’s trick again—we pick i, j that are maximal of this kind, for which
(where in each sum p+ q = i+ j)

F ∋ ci+j =
∑

q>j

apbq

︸ ︷︷ ︸

∈F

+aibj +
∑

p>i

apbq

︸ ︷︷ ︸

∈F

(6.8)

and thus aibj ∈ F . Pretty much as in the deduction of KL from OI, one can now see that

F is reducible. In detail, let F =
√
I where I = (D) for a detachable subset D of E, and

set
G =

√

I +Rai , H =
√

I +Rbj , (6.9)

for which G,H ∈ X, and F $ G and F $ H according to the particular choice of i and j.

Moreover, F =
√
F since F is a radical ideal; and

√
F = G∩H by Lemma 2.1 and because

aibj ∈ F . Hence F = G ∩H is the required decomposition of F .

6.3.2. An Alternative Proof. We now give an alternative deduction of NC from FI in which
the exponents are moved from X to U . This allows for a conceptually simpler X, and for a
better understanding of the corresponding tree and algorithm (see below). However we can
no longer follow the proof pattern encapsulated in Theorem 4.2, because Lemma 2.1 fails
once the radicals are removed. The modified predicate can still be proved to be progressive,
and induction is possible.

Here let X be the partial order that consists of all the ideals generated by some of the
nonconstant coefficients of f and g: that is, an element of X is of the form I = (D) where
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D is a detachable subset of E as before. Again, X has finitely many elements, and we may
assume that ⊆ is a decidable relation on X, which is to say that

∀r ∈ E ∀F ∈ X (r ∈ F ∨ r /∈ F ) . (6.10)

In all, X ordered by inclusion is a finite partial order. Now we define the predicate U on
X in a slightly different way by

U(I) ≡ ∃e ∈ N (ue ∈ I) .

Once more both X and U are sets in CZF, and U is monotone. To prove U (0) by induction,
or equivalently that U (I) for all I ∈ X, let I ∈ X. As before yet with I in place of F , we
distinguish two cases.

Case 1. If ai ∈ I for all i > 0, then u ∈ I, and e = 1 witnesses U (I).
Case 2. If ai /∈ I for some i > 0, then by (6.3) also bj /∈ I for some j > 0. Pick i, j that

are maximal of this kind. As before, still with I in place of F , one can show that aibj ∈ I.
Set

K = I +Rai , L = I +Rbj (6.11)

Now K,L ∈ X, and I $ K and I $ L. By induction, U (K) and U (L): that is, there are
k, ℓ ∈ N such that uk ∈ K and uℓ ∈ L. Hence ukuℓ ∈ I + Raibj (see the proof of Lemma

2.1), and thus uk+ℓ ∈ I because aibj ∈ I; so e = k + ℓ witnesses U (I).

6.4. Tree and Algorithm.

6.4.1. Growing a Tree. It is well-known how a tree can be grown along a proof by induction.
We next instantiate this method for the preceding proof, the notations and hypotheses of
which we adopt. In parallel to creating the nodes, we label them by elements of X. To
start the construction, we label the root by 0. If a node N labelled by I ∈ X has just been
constructed, then we proceed according to the distinction-by-cases made during the proof,
as follows:

Case 1. Declare N to be a leaf.
Case 2. Endow N with two children labelled by K and L as in (6.11).

We thus get a full binary tree: every node either is a leaf or else is a parent with exactly
two children. Moreover the labelling is strictly increasing: if a parent is labelled by I, and
any one of its children by J , then I $ J . In particular, the tree is finite.

By construction, the label I of a node N satisfies U whenever either N is a leaf or else
N is a parent both children of which have labels satisfying U . In fact, in Case 1 we have

U(I) anyway; in Case 2 if U(K) and U(L), then U(I) as shown in the proof. Climbing
down from the leaves to the root—that is, doing induction on the height of a node, i.e. its
distance from the nearest leaf—one can thus show U (I) for every I that occurs as the label
of a node. In particular, the label 0 of the root satisfies U : that is, U (I) for all I ∈ X.
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6.4.2. About Size. To get an idea of the size of the tree we review its construction in terms
of the generators of the labels. First, the label 0 of the root is generated by the empty set ∅.
Secondly, the label of a child is obtained by adding a single element to the generators of the
label I of the parent: an element ai of {a1, . . . , an}\I for the one child and an element bj of
{b1, . . . , bm} \ I for the other child, where both i and j are maximal among the remaining
indices. Thirdly, a node is a leaf whenever either all the a1, . . . , an or equivalently all the
b1, . . . , bm belong to the generators of the label.

This said, what are the extremal lengths of the paths from the root to the leaves?
The height of the tree, i.e. the length of the longest path, is at most n + m − 1. In fact,
the longest paths have to be taken whenever for the choice of new generators one keeps
switching between the a1, . . . , an and the b1, . . . , bm. This is the case, for example, if one
adds first an, secondly bm, thirdly an−1, next bm−1, and so on. From the root this requires
adding all the a2, . . . , an and all the b2, . . . , bm, and thus possibly n−1+m−1 nodes, before
one arrives at a leaf by eventually adding either a1 or b1.

However there are shorter paths, which have length ≤ min{n,m}: the path along which
only the a1, . . . , an (respectively, only the b1, . . . , bm) are successively added to the generators
has length ≤ n (respectively, length ≤ m). Even shorter paths are possible whenever the
a1, . . . , an and b1, . . . , bm fulfil additional conditions; some of these coefficients may indeed
be equal or otherwise related in an appropriate way. In general however the tree is uniform
in the given data. We henceforth assume the generic situation in which the a0, . . . , an and
b0, . . . , bm do not satisfy any further algebraic dependence relation apart from (6.2), and
accordingly can be seen as indeterminate coefficients [31, p. 82] only subject to (6.2).

6.4.3. Removing Redundancy. The tree is repetitive inasmuch as some subtrees occur several
times. To remove this redundancy, one can identify all subtrees of the same form, and
rearrange the arrows accordingly. One thus transforms the tree into a simple acyclic digraph
with the source and the sinks coming from the root and the leaves, respectively:

0 → (bm) → . . . → (b2, . . . , bm) → (b1, . . . , bm)
↓ ↓ ↓

(an) → (an, bm) → . . . → (an, b2, . . . , bm) → (an, b1, . . . , bm)
↓ ↓ ↓
...

...
...

...
↓ ↓ ↓

(a2, . . . , an) → (a2, . . . , an, bm) → . . . → (a2, . . . , an, b2, . . . , bm) → (a2, . . . , an, b1, . . . , bm)
↓ ↓ ↓

(a1, . . . , an) (a1, . . . , an, bm) . . . (a1, . . . , an, b2, . . . , bm)

While the only source is in the top left corner, the n+m sinks form the rightmost column
and the bottom row. There are nm+ n+m vertices; and if we removed the sinks, then we
would get a square grid graph with n rows and m columns.

6.4.4. Computing Witnesses. In the foregoing we have proved constructively, with FI, that
ue = 0 for some e ∈ N. Hence the tree grown alongside the induction encodes an algorithm
to compute a witness for this existential statement: that is, an exponent e under which
ue = 0. This algorithm terminates since, as we have observed before, the tree is finite.
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Proof, tree, and algorithm are furthermore independent of the choice of u among the
a1, . . . , an; and thus only depend on n and m. In fact the e produced by the algorithm
works for each of the u from the a1, . . . , an, though—as in the example below—a smaller
exponent may suffice for some. One could also have shortened proof, tree, and algorithm
by stopping already when the given u belongs to the ideal I under consideration; for the
sake of uniformity we have disregarded this option.

We now look back to see where the exponents come from and how they grow during the
course of the algorithm.4 For any node N labelled by I ∈ X, we say that e witnesses U (I)
whenever ue ∈ I. If N is a leaf (Case 1), then 1 witnesses U (I). If N is a parent (Case
2) labelled by I, with children labelled by K and L, and k and ℓ witness U (K) and U (L),
respectively, then k+ ℓ witnesses U (I), as we see from the proof. Hence U (0) is witnessed
by the number of leaves, which in turn is bounded by 2n+m−1 (recall that the height of the
tree is at most n+m− 1).

To get a sharper bound, one may switch to the digraph, this time labelled by the
exponents and with reversed arrows:

. . . ← 1
...

. . . ← 1
↑

. . . ← 4 ← 1
↑ ↑

. . . ← 6 ← 3 ← 1
↑ ↑ ↑

...
. . . ← 4 ← 3 ← 2 ← 1

↑ ↑ ↑ ↑ ↑
1 · · · 1 1 1 1

This in fact is a finite fragment of Pascal’s triangle; whence standard theory can be used to
calculate the number in the top left corner: that is, the e under which ue = 0.

Note in this context that the construction of the tree and thus the design of the algo-
rithm are not affected by the relations expressing the hypothesis fg = 1. This information
is only used for proving that the algorithm meets its specification: that is, ue = 0 when-
ever e is the exponent present at the root. More specifically, (6.1) and (6.2) are invoked
for proving (6.3) and (6.8), and thus for proving that in Case 2 above the certificate for e
witnessing U(I) is bestowed from the children to the parent.

6.4.5. A Concrete Example. Let n = 2 and m = 1, and set

G = (b1) , F = (a2) , L = (a2, b1) , K = (a1, a2) .

The digraphs labelled by finitely generated ideals and exponents are as follows:

0 → F → K
↓ ↓
G L

3 ← 2 ← 1
↑ ↑
1 1

4The author is indebted to Ulrich Berger for prompting these investigations.
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In particular, e = 3 is the output exponent under which ue = 0 for any choice of u.
Now, for the sake of simplicity, assume that a0 = 1 and b0 = 1. Apart from a0b0 = 1,

which in this case is trivial, (6.2) then contains the following information:

a1 + b1 = 0 , a1b1 + a2 = 0 , a2b1 = 0 .

With these equations at hand, the certificates for ue ∈ I where u ∈ {a1, a2} and I ∈
{K,L,F,G, 0} are achieved as follows:

Case u = a1. Case u = a2.
a1 ∈ K a2 ∈ K
a1 = −b1 ∈ L a2 ∈ L
a21 = −a1b1 = a2 ∈ F a2 ∈ F
a1 = −b1 ∈ G a2 = −a1b1 ∈ G
a31 = a21a1 = −a2b1 = 0 a22 = −a2a1b1 = 0

Note that e = 2 suffices for u = a2, whereas e = 3 is required for u = a1.
Finally, let R = Z/(8), and set a1 = 2, a2 = 4, b1 = 6. In this case,

f = 4T 2 + 2T + 1 , g = 6T + 1 ,

for which indeed, as we are doing integer arithmetic modulo 8,

fg = 24T 3 + 16T 2 + 8T + 1 = 1 .

Here e = 2 suffices for u = a2 = 4, whereas e = 3 is required for u = a1 = 2.

6.4.6. A Representation. For any implementation on a computer, a more concrete rep-
resentation of the elements of X may be required: that is, of the ideals generated by a
detachable subset of E. Especially in view of the independence assumption made above, a
natural choice is to represent any element I of X by a pair (λ, µ) of increasing binary lists
λ = (λ1 . . . λn) and µ = (µ1 . . . µm) of length n and m. Here λi = 1 and µj = 1 indicate
that ai and bj, respectively, belong to the generators of I. The inclusion order on X is then
represented by the pointwise order of binary sequences.

With this representation at hand the tree can be described as follows. The root is
labelled by (0n, 0m). A generic node is labelled by (0k1ℓ, 0p1q) where k+ℓ = n and p+q = m;
and has two children with labels (0k−11ℓ+1, 0p1q) and (0k1ℓ, 0p−11q+1), unless either k = n
or ℓ = m, in which case this node is a leaf. If we write 0 and 1 for finite lists 0 . . . 0 and
1 . . . 1, respectively, of variable but appropriate lengths, then the corresponding digraph is
as follows:

(0, 0) → (0, 01) → . . . → (0, 01) → (0, 1)
↓ ↓ ↓

(01, 0) → (01, 01) → . . . → (01, 01) → (01, 1)
↓ ↓ ↓
...

...
...

...
↓ ↓ ↓

(01, 0) → (01, 01) → . . . → (01, 01) → (01, 1)
↓ ↓ ↓

(1, 0) (1, 01) . . . (1, 01)
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6.4.7. Elimination of Decidability. We roughly sketch, as promised before, how we can elim-
inate the classically valid decidability assumptions, such as (6.10), used in the constructive
proofs. Those assumptions form a finite set ∆ of instances of the Law of Excluded Middle.
Let Γ consist of the finitely many equations listed in (6.2); and let ⊢i and ⊢c stand for de-
ducibility with intuitionistic and classical logic, respectively. If we neglect technical details,
then with our constructive proof above—of NC with FI—we have established Γ,∆ ⊢i C
where

C ≡ ∃e (ue = 0) .

Since, clearly, ⊢c ∆, we thus have Γ ⊢c C. Now, since both C and the elements of Γ are
of a sufficiently simple logical form, e.g. geometric formulas, by proof–theoretic techniques
such as syntactic versions of Barr’s Theorem—see e.g. [22, 36, 38]—we arrive at Γ ⊢i C.
The logical form of the formulas in ∆ is irrelevant for this argument; and a similar method
[50] applies if C is seen as an infinite disjunction rather than as an existential formula.

One possible road from Γ ⊢c C to Γ ⊢i C is via the generalisation (see e.g. [22, 38]) of
the Gödel–Gentzen negative translation for which, in the spirit of the Dragalin–Friedman
A–translation, the falsum ⊥ is replaced by an arbitrary formula A. This A typically is the
conclusion of the deduction under consideration.5 In particular, one sets ⊥A ≡ A, and an
atomic formula B 6≡ ⊥ is assigned to

BA ≡ (B → A)→ A ;

the existential quantifier moreover is translated as follows:

(∃xB)A ≡ ∀x
(
BA → A

)
→ A .

Hence if B 6≡ ⊥ is atomic, then

⊢i
(
BA → A

)
↔ (B → A)

and thus
⊢i (∃xB)A ↔ (∃xB → A)→ A (6.12)

provided that the variable x does not occur freely within the formula A.
With this translation, and for Γ and C as above, one can prove that Γ ⊢c C implies

ΓA ⊢i CA. In view of the simple form of the elements of Γ, we further have Γ ⊢i ΓA. Hence
Γ ⊢c C implies Γ ⊢i CA, which in the specific case A ≡ C yields Γ ⊢i C. In fact, we have
⊢i CC ↔ (C → C)→ C by (6.12), and thus ⊢i CC ↔ C.

7. Conclusion

Our choices of the partial orders X and the predicates U were crucial to make induction
work. In particular, the objects X from the constructive proofs are finite partial orders,
as required for FI, and, by the way, are sets in the sense of CZF. Moreover, we thus have
eventually kept close to the data of the given problem: that is, the coefficients ai and bj of
the polynomials f and g. We could have done so much earlier, and perhaps more efficiently:
by the method of indeterminate coefficients [31, p. 82]. This would have meant to pass from
the arbitrary given R to the ring

R0 = Z[a0, . . . , an, b0, . . . , bm]/(a0b0 − 1, a0b1 + a1b0, . . . , anbm ) .

5Thierry Coquand has kindly pointed us toward this method. As we have learned from Christoph-Simon
Senjak, the proof translation at use is related—via the Curry-Howard isomorphism—to the continuation-
passing style in programming.
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with generators a0, . . . , an, b0, . . . , bm and relations (6.2). This R0 indeed encodes all the
data and information we would have needed for phrasing and proving NC. For its simple
structure, moreover, R0 is Noetherian [23]; and SPT holds constructively for R0 since this
is a fully Lasker–Noether ring [39]. Hence LN for R0 is constructively provable [39], and
KL for R0 follows without any talk of OI, let alone of ZL.

The universal quantification required for KL, over all possible prime ideals of R, could
then be replaced by the more manageable one over the finitely many finitely generated
prime ideals of R0 as produced by LN. Modulo each of the latter prime ideals we could
have followed Gauß’s argument for the case of a domain, yet replacing—as we have done
anyway—the proof by contradiction by an appropriate distinction-by-cases. In all, we would
have got a perfectly constructive proof of NC. This avenue, however, might not have forced
us to seek an invocation of FI, and thus to keep close to the given data. In particular, we
would not have made explicit a tree and an algorithm as simple as they have resulted from
the constructive proofs with FI.

With hindsight, the proof pattern coined with Theorem 4.2, including the crucial notion
of reducibility, stands already behind many a post-war textbook proof of the Lasker–Noether
theorem [4, 37], and more implicitly behind Krull’s proof [27]. It is not yet clear however
whether any constructive “unwinding” of this type of classical proof can be brought under
that pattern. We have anyway seen how the pattern can be applied to NC, a lemma
in polynomial algebra, and yet another application of the pattern has proved possible in
the area of inversion problems for Banach algebras [20]. A further case study will be
undertaken about Gauß’s lemma “the product of two primitive polynomials is primitive”,
which leads over its generalisation, ascribed to Joyal, to the so-called Dedekind Prague
Theorem [5, 15, 29, 12].

We have conceived the constructive proofs of NC along the lines of the classical proof
with Gauß’s trick that we have recalled earlier. In particular, (6.3) and (6.8) are nothing
but (6.4) and (6.7), respectively, with “= 0” replaced by “∈ F”. Now if “= 0” is considered
within a domain, as in the classical proof, then it actually corresponds to “∈ P” where P
is a prime ideal of an arbitrary ring. Hence the move from “= 0” to “∈ F” is in accordance
with a paradigm that goes back to the so-called D5 philosophy of dynamic evaluation in
computer algebra [18]: to handle the prime ideals P by way of their incomplete specifications
F [16, 28, 29], which are (radicals of) finitely generated ideals but not necessarily prime.

In all, we have carried out a case study for a further potentially systematic way to
gain finite methods from ideal objects in algebra. As discussed above (Section 6.2), our
main competitor [41] has studied the same case but with a different method taken from
point-free topology. We thus have started yet another attempt to make constructive sense
of the notion of prime ideals, which “. . . play a central role in the theory of commutative
rings” [26, p. 1]. In constructive algebra the notion of prime ideals has seen a revival [9]
after it was considered problematic in general: “If an ideal P in a commutative ring is not
detachable, it is is not clear just what it should mean for P to be prime” [35, p. 77].

Our work may further give evidence for the practicability of the recent proposals of a
controlled use of ideal objects in constructive mathematics [45, 47] on the basis of a two-
level foundations with forget-restore option [33, 32]. Last but not least, we have put some
mathematical flesh on Bell’s conjecture that ZL is “constructively neutral” [7].
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[22] Hajime Ishihara. A note on the Gödel-Gentzen translation. MLQ Math. Log. Q., 46(1):135–137, 2000.
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