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Abstract—This paper presents adaptive versions of spiral 

dynamics algorithm (SDA) referred to as adaptive SDA (ASDA). 

SDA is known as fast computing algorithm due to its simplicity in 

the structure and it has stable convergence response when 

approaching the optimum point in the search space. However, 

the performance of SDA is still poor due to incorporation of 

single radius value during the whole search process. In ASDA, 

the spiral radius is made dynamic by employing novel 

mathematical equations and incorporating non-mathematical 

fuzzy logic strategy establishing the relationship between fitness 

value and spiral radius. This results in better performance in 

terms of convergence speed, accuracy, and total computing time 

while retaining the simple structure of SDA. Several uni-modal 

and multi-modal benchmark functions are employed to test the 

algorithm in finding the global optimum point. The results show 

that ASDA outperforms SDA in all test functions considered. 

Index Terms—Adaptive spiral dynamics; optimization 

algorithm; nature inspired; fuzzy logic. 

I. INTRODUCTION 

Metaheuristic optimization algorithms have gained a lot of 

interest among researchers worldwide. These algorithms are 

inspired by biological phenomena or natural phenomena. Some 

of the newly introduced algorithms include biogeography-

based optimization [1], firefly optimization algorithm [2], 

galaxy-based search algorithm [3], and spiral dynamics 

inspired optimization [4]. All these algorithms have gained 

attention due to their simplicity to program, fast computing 

time, easy to implement, and possibility to apply to various 

applications. There are a lot of possibilities to improve the 

algorithms from various aspects. Many attempts have been 

made to improve performances of the algorithms such as 

hybridizing two or more algorithms and mostly developing 

adaptive approaches or incorporating powerful mathematical 

functions into the algorithms.  

Adaptive approach is a common strategy used in 

metaheuristic to enhance capability of optimization algorithms. 

It may increase convergence speed, accuracy and reduce total 

computational time by varying step size of search point 

through simple mathematical function or through an intelligent 

approach. The advantage of adaptive approach is that the 

simplicity of the original algorithm is preserved thus resulting 

in better performance without requiring extra computational 

cost. Various adaptive approaches of metaheuristic 

optimization algorithms have been proposed by researchers 

with the aim to increase system performance. The adaptive 

approach by incorporating mathematical function into bacterial 

foraging algorithm (BFA) with improved performance has 

been reported in [5], [6], where the performance of the 

algorithm has been analysed based on incorporating 

mathematical equation into the BFA. On the other hand, the 

adaptation scheme of varying step size of BFA through 

intelligent approach has been reported in [7], [8]. Intelligent 

approaches such as fuzzy logic have shown not only to 

improve the algorithm performance, but their simplicity in 

determining fuzzy rules based on intelligent human logic 

thinking to vary step size of a point in search space is offering 

more flexibility and very promising results. However, since the 

introduction of SDA, the literature has been lacking further 

development and its application to real world problems. 

This paper presents four new approaches of adaptable step 

size of SDA. The first approach employs a non-mathematical 

fuzzy logic scheme to establish relationship between fitness 

value of a particular point in the search space and spiral radius 

of SDA while the rest of the proposed approaches utilize novel 

mathematical equations based on linear, quadratic and 

exponential functions to establish similar relationships. The 

rest of the paper is organized as follows. Section II provides a 

brief literature review of the original spiral dynamics inspired 

optimization. The proposed adaptive spiral dynamics algorithm 

(ASDA) and its details are described in section III. Validation 

of the proposed adaptive algorithms in comparison to SDA 

with uni-modal and multi-modal test functions is presented in 

section IV. Section V provides concluding remarks.  

II. SPIRAL DYNAMICS ALGORITHM 

The original version of SDA is briefly described in this 

section. The SDA is a metaheuristic algorithm adopted from 

spiral phenomena in nature [4]. The essential feature of SDA is 

the dynamic step size in its spiral path trajectory. The step size 

is larger at the beginning of the search process and becomes 

smaller when approaching the optimum point, which is always 

located at the centre of the spiral form. The length of the 

dynamic step size from generation to generation is determined 

by spiral radius r . The angular displacement θ  on the other 



hand determines the shape of spiral form and also affects the 

distance between two points in the spiral path trajectory. An n-

dimensional spiral mathematical model that is derived using 

composition of rotational matrix based on combination of all 2-

axes is given as: 
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Parameters and description used in Equation 1 are similar 

to those used in ASDA, and these are shown in Table I.  

TABLE I.  PARAMETERS FOR ADAPTIVE SDA 

Symbols Description 

θ
i, j   Search point angular displacement on 

x
i
− x

j plane around point of origin. 

r  Spiral radius to be replaced by fuzzy adaptive, 

linear adaptive, quadratic adaptive or 

exponential adaptive as in Step (2). 
m  

Total number of search points 

k
max

 Maximum iteration number 

x
i
(k)  Position of i

th
 point in k

th
 generation 

R
n

 
Composition of rotational n× n matrix based 

on combination of all 2 axes 

The i and j  in Equation 1 represent 2 different axes in 

which rotation of a point occurs about angle θi, j .  Graphical 

representations of Equation 1 with different r  and θ  for 2 

dimensional spiral model are shown in Fig. 1. Case (1), Case 

(2) and Case (3) in Fig.1 represent spiral forms 

with r = 0.9 ,  θ = π 4  r = 0.95 , θ = π 4  and r = 0.95  

θ = π 2  respectively. Notice that, the distance between two 

points, which represents step size of search points, is getting 

smaller as the points move toward spiral centre. The dynamic 

step size of SDA however totally depends on a unique constant 

spiral radius throughout the search process regardless of any 

fitness value at particular location in the search area. This 

situation causes the SDA to have low efficiency in search of 

optimal solution in the search space, and thus has limited 

capability to achieve the best accuracy and fastest convergence 

speed. Since SDA is relatively new, not much work in the 

literature involving the algorithm has been reported. The 

details of the original SDA algorithm for 2-dimension and n-

dimension can be found in [4]. The proposed adaptive 

approaches of the algorithm and associated details are provided 

in the next section.  

 

Fig. 1.  Graphical representation of spiral form. 

III. ADAPTIVE SPIRAL DYNAMICS ALGORITHM 

The adaptation schemes proposed are described in this 

section. In ASDA, instead of constantly changing the step size 

through unique spiral radius, the step size is varied dynamically 

based on fitness value of current search point location in the 

search space by varying the spiral radius r  in the spiral 

equation. This novel approach contributes to a better accuracy 

and higher speed of convergence since the movement of the 

search points is guided by fitness value of points in the search 

space. A point in the search space with high fitness value 

indicates that the location of the point is not good and far from 

optimum solution. Therefore, by defining small spiral radius, 

which produces smaller step size, makes the point to move 

faster toward the spiral centre and away from current bad 

location. On the contrary, a point with low fitness value implies 

that the point location is good and has high potential to search 

another better solution nearby. Hence, defining large spiral 

radius tends to keep the location of the point relatively away 

from spiral centre and provides more chances to search within 

the current location of that particular point. On the other hand, 

unlike SDA, varying spiral radius within a specified range [0 to 

1] produces better variation of step size. In other words, step 

sizes from extremely small to extremely large are easily 

defined thus providing more chances of finding more accurate 

solutions. Using this strategy, four novel adaptive approaches 

of varying the step size of a point in the search space based on 

a fitness value at a particular location are introduced in terms 

of non-mathematical fuzzy logic scheme and in terms of 

mathematical formulations of linear function, quadratic 

function and exponential function. 

A. Fuzzy adaptive spiral dynamics algorithm 

In the fuzzy adaptive SDA (FASDA), the relationship 

between spiral radius and absolute fitness value of a particular 

point in the search space is established through fuzzy logic 

scheme. The relationship is defined as: 

   rfa = F(| f (xi (k)) |)     (2) 

where rfa is fuzzy adaptive spiral radius and | f (xi (k)) | is 

absolute fitness function of a search point respectively. F(⋅)  is 

a fuzzy logic mapping consisting of one input and one output. 



The input is absolute fitness value of a particular search point 

and the output is the spiral radius value, which can be defined 

within [0, 1] to ensure the search process converges towards 

best fitness location. The overall FASDA mechanism can be 

represented in a block diagram as shown in Fig. 2. In this work, 

three Gaussian membership functions are used to fuzzify the 

crisp value of the fitness and defuzzify fuzzy sets to a single 

value representing the spiral radius. This is to ensure the 

optimization algorithm does not have very long computation 

time, and in turn to increase speed of convergence. Moreover, 

Gaussian membership function is smooth and concise, which 

can represent uncertainty in measurement more effectively.  

 

 

 

 

 

 

 

 

 

Fig. 2.  Structure of fuzzy adaptive spiral dynamics algorithm. 

The Mamdani-type with centre of area defuzzification method 

is used due to its intuitiveness, widespread acceptance and 

suitability in dealing with human reasoning [8], [9]. Another 

important feature of fuzzy logic scheme is linguistic rule that 

comprises IF-THEN statement to establish relationship 

between antecedent and consequence. The general form of 

fuzzy logic linguistic rule for FASDA is defined as: 

IF | f (xi (k)) |  is A THEN rfa is B  (3) 

where A and B are linguistic values defined by fuzzy sets in the 

range of absolute fitness function value, | f (xi (k)) |  and 

adaptive spiral radius, rfa  respectively. The ‘ | f (xi (k)) |  is A’ is 

known as antecedent while ‘ rfa is B’ is known as consequent. 

Thus, Equation 3 can be defined such that if | f (xi (k)) |  is 

small then rfa  is big or approaching maximum spiral radius and 

if | f (xi (k)) |  is big then rfa  is small or approaching minimum 

spiral radius.  

B. Linear adaptive spiral dynamics algorithm 

In linear adaptive SDA (LASDA), a novel linear 

mathematical equation is used to establish relationship between 

spiral radius and absolute fitness value of a particular point in 

the search space. The mathematical equation is formulated as: 

rla = [rl − ru ] / [1+[c1 / | f (xi (k)) |+ru ]             (4) 

where r
la

is linear adaptive spiral radius, c
1
 is positive constant 

value and | f (xi (k)) | is absolute fitness value of a particular 

point. r
u

and r
l
 are maximum radius and minimum radius of 

spiral path trajectory for a particular point respectively. r
u

 and 

r
l
 must be chosen within [0, 1] to ensure a point in the search 

space converges towards current best location, which is always 

located at the centre of spiral trajectory. On the other hand, 

positive constant value of c
1
 is rate of change of fitness value 

and spiral radius. Small value of c
1
 tends to select maximum 

radius, r
u

 while big value of c
1
 tends to select minimum 

radius, r
l
. Employing Equation 4 into SDA will vary the spiral 

radius between r
u

 and r
l
, which directly changes step size of a 

search point more dynamically and effectively. 

C. Quadratic adaptive spiral dynamics algorithm 

In the proposed quadratic adaptive SDA (QASDA), 

Equation 4 is modified by representing the fitness function 

f (xi (k))  in a quadratic form. Through quadratic formulation 

of fitness value, the spiral radius and the step size of a search 

point are changed dynamically in a quadratic manner. 

Compared to linear approach, quadratic formulation helps the 

search point to further accelerate towards best location. The 

mathematical equation of QASDA is formulated as: 

rqa = [rl − ru ] / [1+[c1 / [c2[| f (xi (k)) |
2
+ | f (xi (k)) |]]+ ru ]  (5) 

where rqa  is quadratic adaptive spiral radius, c
2
is tuneable 

constant value which is heuristically determined and 

[| f (xi (k)) |
2
+ | f (xi (k)) |]  is quadratic term of fitness function. 

Other parameters of Equation 5 are similar to those of Equation 

4. Quadratic term of fitness function in Equation 5 produces a 

steeper slope of spiral radius versus fitness value compared to 

linear term in Equation 4. This indicates that the search point 

has higher acceleration towards the best location. 

D. Exponential adaptive spiral dynamics algorithm 

In exponential adaptive SDA (EASDA), Equation 4 is 

modified by representing the fitness function f (xi (k))  in an 

exponential form. Through exponential formulation of fitness 

value, the spiral radius and the step size of a search point are 

changed dynamically in exponential manner. Compared to 

linear and quadratic approaches, exponential formulation helps 

the search point to further accelerate towards best location. The 

mathematical formulation of EASDA is given as: 

rea = [rl − ru ] / [1+[c1 / [exp[c2[| f (xi (k)) |]]]]]+ ru          (6) 

where r
ea

 is exponential adaptive spiral radius, 

exp[c2[| f (xi (k)) |]]  is exponential term of fitness function and 

c
2
is tuneable constant value which is heuristically determined. 

Other parameters of Equation 6 are similar to those of Equation 

4. Exponential term of fitness function in Equation 6 produces 

a sharper slope of spiral radius versus fitness value compared 

to linear term in Equation 4 and quadratic term in Equation 5. 

This indicates that the search point has higher acceleration 

towards global best location. 

E. The adaptive spiral dynamics algorithm 

Most of the steps in ASDA are similar to the steps in SDA. 

The major difference is that constant spiral radius r  in SDA is 

replaced by adaptive spiral radius rfa , r
la

, rqa  and r
ea

. The 

parameters and descriptions used in an n-dimensional adaptive 

spiral dynamics optimization algorithm are presented in Table I 

and the step-by-step algorithm is shown in Fig. 3. Notice that 

Absolute 

fitness value, 

| f (xi (k)) |  

Fuzzy inference 

system (FIS) 

Fuzzification  

Defuzzification 

Fuzzy 

adaptive 

spiral radius,  

rfa  

 



the changes are in step 2 of Fig. 3, where each point within the 

search space at every iteration has different spiral radius 

depending on its fitness value in the current location. It also 

may help the algorithm to avoid getting trapped into local 

optima. Moreover, the simple structure of SDA is preserved. 

Dynamic spiral radiuses that directly contribute to more 

dynamic step sizes result in faster convergence and reduced 

computing time for the whole algorithm. 

Step 0: Preparation 

Select the number of search pointsm ≥ 2 , parameters 

10 ,20 <<<≤ rπθ  of S
n
(r,θ ) , and maximum iteration 

number, k
max

. Set k = 0 . 

Step 1: Initialization 

Set initial points x
i
(0)∈ R

n
, i =1,2,...m  in the feasible 

region at random and centre x
* as x

*
= x

ig
(0) , 

ig = arg mini   f (xi (0)), i =1,2,...,m . 

Step 2: Updating x
i
 

 x
i
(k +1) = S

n
(r,θ )x

i
(k)− (S

n
(r,θ )− I

n
)x

*
 

 i =1,2,...,m . 

 where spiral radius, r can be replaced by rfa , r
la

, rqa  or r
ea

 as 

shown in Equations 2, 4, 5 and 6 respectively. 

Step 3: Updating x
*  

x
*
= xig (k +1) ,  

ig = arg mini   f (xi (k +1)), i =1, 2,...,m . 

Step 4: Checking termination criterion 

 If k = k
max

then terminate. Otherwise set k = k +1 , and 

return to step 2. 

Fig. 3.  An n-dimensional adaptive spiral dynamics algorithm. 

IV. VALIDATION TEST AND RESULTS  

In this section, the proposed adaptive algorithms are 

validated through simulation tests on two 3-dimensional uni-

modal and two 2-dimensional multi-modal benchmark 

functions. Comparison with the original version of SDA tested 

on the four-benchmark functions is also given in terms of 

iteration number and CPU computation time to show the 

improved performance achieved with ASDA. As a means of 

comparison, parameters for a test function such as θ = π / 4 , 

m = 30  and k
max

= 200  were kept the same for all adaptive 

SDA approaches and standard SDA. The difference is the 

spiral radius value in which r = 0.96  was used for SDA while 

r = [r
l
,  r

u
]  was used for all ASDAs as generated from 

Equations 2-6. The parameters used in the simulation were 

chosen heuristically for all test functions. 

Table II shows adaptive spiral radius ranges used in the 

proposed ASDA for all the benchmark functions considered. 

Notice that different adaptive spiral radius ranges were 

required to get the best results for different benchmark 

functions. 

TABLE II.  ADAPTIVE SPIRAL RADIUS FOR THE TEST FUNCTIONS 

Cost 

function 

name 

FASDA LASDA QASDA EASDA 

Sphere [0.7,0.87] [0.78,0.87] [0.71,0.86] [0.7,0.85] 

Ackley [0.7,0.85] [0.75,0.83] [0.2,0.82] [0.2,0.85] 

Rastrigin [0.75,0.94] [0.81,0.91] [0.82,0.91] [0.82,0.93] 

Griewank [0.8,0.9] [0.8,0.86] [0.8,0.84] [0.51,0.86] 

A. Uni-modal sphere function 

The sphere function is defined as:  

f (x) = xi
2

i=1

n

∑                                      (7)  

The function has global minimum at x
i
= 0,   0,   0[ ]  with 

fitness f x( ) = 0 . In this simulation, the sphere function was 

considered to have dimension n = 3  and variable x
i
 in the 

range −5.12,   5.12[ ] . The convergence plot for 3 dimensional 

sphere function thus achieved is shown in Fig 4. 

 

Fig. 4.  Convergence plot for 3D sphere function. 

B. Uni-modal Ackley function 

The uni-modal Ackley function is mathematically defined 

as: 

f (x) = −20exp(−0.2 (
1

n
xi
2
)

i=1

n

∑

− exp(
1

n
cos(2π xi )+ 20+ e

i=1

n

∑

               (8) 

The function has global minimum at x
i
= 0,   0,   0[ ]  with 

fitness f x( ) = 0 . The Ackley function was considered with 

dimension n = 3  and variable x
i
 in the range 

−32.768,   32.768[ ] . The resulting convergence plot for 3-

dimension Ackley function is shown in Fig 5. 



 

Fig. 5.  Convergence plot for 3D Ackley function. 

C. Multi-modal Rastrigin function 

The Rastrigin function is defined as: 

f (x) = [xi
2 −10cos(2π xi )+10]

i=1

n

∑       (9) 

The function has global minimum at x
i
= 0,   0[ ]  with 

fitness f x( ) = 0 . The Rastrigin function was considered with 

dimension n = 2  and variable x
i
 in the range −5.12,   5.12[ ] . 

The resulting convergence plot for the 2-dimensional Rastrigin 

function is shown in Fig 6. 

 

Fig. 6.  Convergence plot for 2D Rastrigin function. 

D. Multi-modal Griewank function 

The Griewank function is defined as:  

f (x) =
1

4000
xi
2 − cos

xi

i

"

#
$

%

&
'+1

i=1

n

∏
i=1

n

∑        (10) 

The function has global minimum at x
i
= 0,   0[ ]  with 

fitness f x( ) = 0 . The Griewank function was considered with 

dimension n = 2  and variable x
i
 in the range −600,   600[ ] . 

The resulting convergence plot for the 2-dimensional Griewank 

function is shown in Fig 7. 

 

Fig. 7.  Convergence plot for 2D Griewank function. 

It can be clearly seen in Figures 4-7 that all ASDA 

approaches outperformed SDA in terms of convergence speed 

and improved accuracy. Numerical results of SDA, FASDA, 

LASDA, QASDA and EASDA performance tests with the 

benchmark functions are shown in Tables III, IV, V, VI and 

VII respectively in terms of CPU computation time in seconds 

and iteration number (in bracket) and in terms of accuracy. It is 

noted that all ASDA approaches have achieved better 

performance than SDA in terms of speed of convergence based 

on algorithm iteration number and in terms of accuracy for all 

test functions. Notice that for the speed of convergence based 

on CPU computation time, the results show that adaptive fuzzy 

logic approach consumed more computer CPU time and 

consequently resulted in lower speed of convergence. This is 

due to the relatively complex fuzzy structure compared to other 

proposed adaptive approaches and standard SDA, which used 

simple mathematical formulation and single constant value 

respectively to produce spiral radius. Nevertheless, all the 

adaptive approaches with mathematical formulation such as 

LASDA, QASDA and EASDA outperformed the standard 

SDA. On the other hand, for the performance of the 

optimization algorithms in terms of accuracy, the best fitness 

value for sphere function was 9×10
−32  and it was 0  for 

Ackley function, both achieved by FASDA. Moreover, 

FASDA, LASDA, QASDA and EASDA resulted in the lowest 

and the best fitness values for Rastrigin and Griewank 

functions. 

TABLE III.  SDA PERFORMANCE ON BENCHMARK FUNCTIONS 

Cost 

Function 

Name 

Performance 

Best 

fitness 

Converge time 

(iteration) 
X1 X2 X3 

Sphere 1x10
-5

 0.069sec (67) 2x10
-3

 2x10
-3

 2x10
-3

 

Ackley 5x10
-3

 0.170sec(135) 6x10
-4

 -2x10
-3

 1x10
-3

 

Rastrigin 4x10
-7

 0.074sec (96) -4x10
-6

 5x10
-5

 - 

Griewank 1x10
-5

 0.098sec (92) 5x10
-3

 -7x10
-4

 - 



TABLE IV.  FASDA PERFORMANCE ON BENCHMARK FUNCTIONS 

Cost 

Function 

Name 

Performance 

Best 

fitness 

Converge time 

(iteration) 
X1 X2 X3 

Sphere 9x10
-32

 0.817sec (17) -2x10
-16

 -2x10
-16

 2x10
-16

 

Ackley 0 1.431sec (35) 4x10
-15

 -3x10
-17

 -2x10
-16

 

Rastrigin 0 1.670sec (25) 3x10
-9

 -2x10
-9

 - 

Griewank 0 1.060sec (25) 7x10
-9

 5x10
-9

 - 

TABLE V.  LASDA PERFORMANCE ON BENCHMARK FUNCTIONS 

Cost 

Function 

Name 

Performance 

Best 

fitness 

Converge time 

(iteration) 
X1 X2 X3 

Sphere 7x10
-28

 0.024sec (16) 3x10
-15

 3x10
-14

 7x10
-15

 

Ackley 4x10
-15

 0.060sec (45) 2x10
-15

 1x10
-15

 8x10
-16

 

Rastrigin 0 0.049sec (37) 9x10
-10

 6x10
-10

 - 

Griewank 0 0.059sec (33) 2x10
-9

 1x10
-8

 - 

TABLE VI.  QASDA PERFORMANCE ON BENCHMARK FUNCTIONS 

Cost 

Function 

Name 

Performance 

Best 

fitness 

Converge time 

(iteration) 
X1 X2 X3 

Sphere 5x10
-28

 0.023sec (19) 2x10
-14

 9x10
-15

 3x10
-15

 

Ackley 0 0.062sec (46) 2x10
-16

 3x10
-16

 -2x10
-16

 

Rastrigin 0 0.040sec (30) 2x10
-10

 8x10
-10

 - 

Griewank 0 0.054sec (27) 8x10
-9

 4x10
-10

 - 

TABLE VII.  EASDA PERFORMANCE ON BENCHMARK FUNCTIONS 

Cost 

Function 

Name 

Performance 

Best 

fitness 

Converge time 

(iteration) 
X1 X2 X3 

Sphere 1x10
-31

 0.028sec (21) 8x10
-17

 2x10
-16

 3x10
-16

 

Ackley 9x10
-14

 0.087sec (47) 1x10
-14

 2x10
-14

 -4x10
-14

 

Rastrigin 0 0.038sec (22) 9x10
-10

 9x10
-10

 - 

Griewank 0 0.049sec (25) 1x10
-9

 7x10
-9

 - 

V. CONCLUSION 

Four novel adaptive spiral dynamics optimization 

algorithms have been proposed. Adaptation strategies based on 

mathematical and non-mathematical fuzzy logic intelligent 

methods have been presented without adding extra complexity 

to the original algorithm structure. Simulation results have 

shown that the proposed adaptive algorithm outperforms SDA 

in terms of speed of convergence based on algorithm iteration 

number and in terms of accuracy. However, in terms of speed 

of convergence based on CPU computation time, fuzzy 

adaptive approach needed longer time to execute the algorithm 

compared to other adaptive approaches and SDA. It has been 

revealed that further simplification of fuzzy logic approach is 

required and computation time in seconds need to be taken into 

account before fuzzy logic approach can be applied to real 

world problems. The results also show that all the proposed 

adaptive approaches have high potential for real world 

applications. 
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