
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of an article published in Symposium on
Theoretical Aspects of Computer Science.

White Rose Research Online URL for this paper:

http://eprints.whiterose.ac.uk/76324/

Published article:

Bulatov, AA, Dyer, ME, Goldberg, LA and Jerrum, M (2012) Log-supermodular
functions, functional clones and counting CSPs. In: Dürr, C and Wilke, T, (eds.)
29th International Symposium on Theoretical Aspects of Computer Science
(STACS 2012). Symposium on Theoretical Aspects of Computer Science
(STACS), 29 February - 3 March 2012, Paris, France. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik , 302 - 313.

http://dx.doi.org/10.4230/LIPIcs.STACS.2012.302

http://eprints.whiterose.ac.uk/76324/
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.302

LOG-SUPERMODULAR FUNCTIONS, FUNCTIONAL CLONES AND

COUNTING CSP’S

ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

Abstract. Motivated by a desire to understand the computational complexity of
counting constraint satisfaction problems (counting CSPs), particularly the complexity
of approximation, we study functional clones of functions on the Boolean domain,
which are analogous to the familiar relational clones constituting Post’s lattice. One
of these clones is the collection of log-supermodular (lsm) functions, which turns out
to play a significant role in classifying counting CSPs. In our study, we assume that
non-negative unary functions (weights) are available. Given this, we prove that there
are no functional clones lying strictly between the clone of lsm functions and the
total clone (containing all functions). Thus, any counting CSP that contains a single
non-lsm function is computationally as hard as it possibly could be. Furthermore,
any non-trivial functional clone (in some precise sense) contains the binary function
IMP (implies with false interpreted as 0 and true as 1). As a consequence, all non-
trivial counting CSPs (with non-negative unary weights assumed to be available) are
computationally at least as difficult as #BIS, the problem of counting independent
sets in a bipartite graph. There is empirical evidence that #BIS is hard to solve even
approximately, in the sense of FPRAS.

1. Introduction

In the classical setting, a constraint satisfaction problem CSP(Γ) is specified by a
finite domain D and constraint language Γ , which is a set of relations of varying arities
over D. A instance of CSP(Γ) is a set of n variables taking values in D, together with
a set of constraints on those variables. Each constraint is an a-ary relation R from Γ
applied to an a-tuple of variables, the scope of the constraint.

The relational clone 〈Γ 〉R generated by a set Γ of relations is the set of relations
that are expressible, in some precise sense termed “pp-definability”, in terms of the
base relations Γ . It turns out that if two sets of relations Γ and Γ ′ generate the same
relational clone 〈Γ 〉R = 〈Γ ′〉R, then the computational complexity of the corresponding
CSPs, CSP(Γ) and CSP(Γ ′), are the same. Relational clones have played a key role
in the development of the complexity theory of CSPs: instead of considering all sets
of relations Γ , one only needs to consider the ones that are relational clones. For an
introduction to the algebraic theory of relational clones, see, for example, the expository
chapter of Cohen and Jeavons [7].

Recently, there has been considerable interest in the computational complexity of
counting CSPs. Here, the goal is to count the number of solutions rather than merely

The work described in this paper was partly supported by EPSRC Research Grant (refs EP/I011528/1,
EP/I011935/1 and EP/I012087/1) “Computational Counting”, and by NSERC Discovery Grant. Part
of the work was supported by a visit to the Isaac Newton Institute for Mathematical Sciences, as part
of the programme “Discrete Analysis”.

1

2 ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

to decide if one exists. In fact, in order to encompass the computation of partition
functions of models from statistical physics and other generating functions, it is rea-
sonable to consider weighted sums, which can be expressed by replacing the relations
in the constraint language by real- or complex-valued functions. Then the weight of an
assignment is the product of the function values corresponding to that assignment, while
the value of the CSP instance itself is the sum of the weights of all assignments. If I is
an instance of such a counting CSP then we denote this weighted sum by Z(I), and call
it the “partition function of I” by analogy with the concept in statistical physics. For a
finite set of functions Γ we are interested in the problem #CSP(Γ): given an instance I
using only functions from Γ , output Z(I).

Our first goal (see §2) is to answer the question: what is the analogue of pp-definability,
and hence of relational clones, in the context of (weighted) counting CSPs (#CSPs), and
what insight does it provide into the computational complexity of these problems? At a
high level, the answer to the first question is clear. View the relations in Γ as predicates.
A relation is pp-definable over Γ in the classical sense if it can be expressed as the
projection of a conjunction of predicates in Γ . (Projection is the operation of existential
quantification over a certain subset of variables.) In order to adapt this concept to the
algebraic or counting setting, we should replace a conjunction of relations by a product
of functions, and replace existential quantification (projection) by summation. However,
in defining a counting analogue of pp-definability, a number of detailed decisions have
to be made, and a number of delicate issues faced.

We call our proposed analogue of pp-definability “ppsω-definability”, and our analogue
of relational clone “functional clone”. There is at least one proposal in the literature
for extending pp-definability to the algebraic/functional setting, that of Yamakami [20].
However, ppsω-definability is more liberal than the corresponding notion in [20], and
leads to a more inclusive functional clone. Our notion of ppsω-definability includes a
limiting operation. Without this limit, a functional clone may contain arbitrarily close
approximations to a function F of interest, without including F itself.

Aside from a desire for tidiness, there is a good empirical motivation for introducing
limits. Just as pp-definability is closely related to polynomial-time reductions between
classical CSPs, so is ppsω-definability related to approximation-preserving reductions
between counting CSPs. (Lemma 11 is a precise statement of this connection.) Now,
many approximation-preserving reductions in the literature are based not on a fixed
“gadget” but in sequences of gadgets of increasing size that come arbitrarily close to
some property without actually attaining it [13]. Our notion of ppsω-definability seems
exactly to capture this phenomenon.

Our second, more concrete goal (see §3–§5) is to explore the role of log-supermodular
functions in the classification of functional clones, and hence in the complexity of ap-
proximating #CSPs. We restrict attention to the Boolean situation; that is, the domain
is {0, 1} and the allowed functions are of the form {0, 1}k → R≥0 for some integer k. A
function with Boolean domain is said to be log-supermodular if the logarithm of it is
supermodular. It is a non-trivial fact (Lemma 5) that the set LSM of log-supermodular
functions is in fact a functional clone. We examine the landscape of functional clones
under the assumption that non-negative unary functions (weights) are available. (Such

LOG-SUPERMODULAR FUNCTIONS 3

an assumption is quite usual in related work, such as Cai, Lu and Xia’s work on clas-
sifying “Holant∗” problems [6].) Adding non-negative weights makes the classification
of functional clones more tractable, though we are still unable to provide a complete
inventory. On the other hand, adding all unary weights leads to a less rich (and more
pessimistic) landscape [20]: negative weights introduce cancellation, which tends to drive
approximate counting CSPs in the direction of intractability.

One particularly simple functional clone is the one generated by disequality. (Fol-
lowing convention, we allow equality for free, in addition to the non-negative weights
mentioned earlier.) A counting CSP derived from this clone is trivial to solve exactly, as
the partition function factorises. Let us say that functions from this clone are of “prod-
uct form”. Our main result (Theorem 10) is that any clone that contains a function F
that is not of product form necessarily contains IMP, the binary (i.e., arity-2) function
that takes the value 1, unless its first argument is 1 and its second is 0, when it takes
the value 0. (The complexity-theoretic consequence of this will be discussed presently.)
Furthermore (also Theorem 10), if F is not log-supermodular, then the clone contains
all functions. Note that a large part of the functional clone landscape — below the clone
generated by IMP and above LSM — is very simple. If there is a complex landscape
of functional clones it must lie between the functional clone generated by IMP and the
class of functions LSM.

We present also an efficient version of ppsω-definability, and a corresponding notion of
functional clone, that allows complexity-theoretical consequences to be deduced (Theo-
rem 12). This is the third contribution of the paper (see §6). The last three authors,
together with Greenhill [10], studied the complexity of counting problems expressible us-
ing IMP. They identified a class of natural problems of this form (which has since grown
considerably) which are interreducible via approximation-preserving reduction, and for
which no efficient approximation algorithm (FPRAS) is known. They conjectured that
problems in this class do not admit an FPRAS. If this is so then #CSP(F) is com-
putationally intractable (in the presence of nonnegative weights) whenever F contains
a function F that is not of product form. Furthermore, if F is not log-supermodular,
then the counting problem #CSP(F) is universal for Boolean counting CSPs and hence
is provably NP-hard to approximate.

Although we focus on approximation of the partition functions of (weighted) #CSPs
in this paper, there is of course an extensive literature on exact computation; see, e.g.,
Cai, Chen and Lu [5] and prior work.

2. Functional clones

Let (R,+,×) be any subsemiring of (C,+,×), where C denotes the complex numbers,
and D a finite domain. For n ∈ N, denote by Un the set of all functions Dn → R; also
denote by U = U0∪U1∪U2∪· · · the set of functions of all arities. Suppose F ⊆ U is some
collection of functions, V = {v1, . . . , vn} is a set of variables and x : {v1, . . . , vn} → D is
an assignment to those variables. An atomic formula has the form ϕ = G(vi1 , . . . , via)
where G ∈ F , a = a(G) is the arity of G, and (vi1 , vi2 , . . . , via) ∈ V a is a scope. Note
that repeated variables are allowed. The function Fϕ : Dn → R represented by the
atomic formula ϕ = G(vi1 , . . . , via) is just

Fϕ(x) = G(x(vi1), . . . ,x(via)) = G(xi1 , . . . , xia),

4 ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

where from now on we write xj = x(vj).
A pps-formula (“primitive product summation formula”) is a summation of a product

of atomic formulas. A pps-formula ψ over F in variables V ′ = {v1, . . . , vn+m} has the
form

(1) ψ =
∑

vn+1,...,vn+m

s∏
j=1

ϕj ,

where ϕj are all atomic formulas over F in the variables V ′. (The variables V are free,
and the others, V ′ \ V , are bound.) The formula ψ specifies a function Fψ : Dn → R in
the following way:

(2) Fψ(x) =
∑

y∈Dm

s∏
j=1

Fϕj (x,y),

where x and y are assignments x : {v1, . . . , vn} → D and y : {vn+1, . . . , vn+m} → D.
To make the next step we suppose that R is dense-in-itself with respect to the usual
topology on C. Then we say that an a-ary function F is ppsω-definable over F if there
exists a finite subset SF of F ∪ {EQ}, where EQ is the binary equality function defined
by EQ(x, x) = 1 and EQ(x, y) = 0 for x 6= y, such that, for every ε > 0, there is an

a-ary function F̂ specified by a pps-formula over SF with

‖F̂ − F‖∞ = max
x∈Da

|F̂ (x)− F (x)| < ε.

Denote the set of functions in U that are ppsω-definable over F ∪ {EQ} by 〈F〉ω; we
call this the ppsω-definable functional clone generated by F . Observe that functions in
〈F〉ω are determined only by finite subsets of F . Also, although some functions taking
values outside R (including partial functions, which are undefined, or infinite, on some
inputs) may be ppsω-definable over F ∪ {EQ}, 〈F〉ω is defined to include only functions
in U . The universal class of functions U in operation at any time will be clear from the
context.

That completes the setup for expressibility. In order to deduce complexity results, we
need an effective version of 〈F〉ω. We say that a function F is efficiently ppsω-definable
over F if there is a finite subset SF of F , and a TMMF,SF with the following property:
on input ε > 0, MF,SF computes a pps-formula ψ over SF such that Fψ has the same
arity as F and ‖Fψ − F‖∞ < ε. The running time of MF,SF is at most a polynomial in
log ε−1. Denote the set of functions in U that are efficiently ppsω-definable over F∪{EQ}
by 〈F〉ω,p; we call this the efficient ppsω-definable functional clone generated by F ,

The following useful observation is immediate from the definition of 〈F〉ω,p.
Observation 1. Suppose F ∈ 〈F〉ω,p. Then there is a finite subset SF of F such that
F ∈ 〈SF 〉ω,p.

Since pps-formulas are defined using sums of products (with just one level of each), we
need to check that functions that are ppsω-definable in terms of functions that are them-
selves ppsω-definable over F are actually directly ppsω-definable over F . The following
lemma ensures that this is the case.

Lemma 2. If G ∈ 〈F〉ω [or G ∈ 〈F〉ω,p] then 〈F , G〉ω = 〈F〉ω,p [resp., 〈F , G〉ω,p =
〈F〉ω,p].

LOG-SUPERMODULAR FUNCTIONS 5

Lemma 2 may have wider applications in the study of approximate counting problems.
Often, approximation-preserving reductions between counting problems are complicated
to describe and difficult to analyse, owing to the need to track error estimates. Lemma 2
suggests breaking the reduction into smaller steps, and analysing each of them indepen-
dently. This assumes, of course, that the reductions are ppsω-definable, but that often
seems to be the case in practice.

3. Relational Clones and Non-negative functions

A function F ∈ U is a Boolean function if its range is contained in {0, 1}. F encodes
a relation R as follows: x is in the relation R iff F (x) = 1. We will not distinguish
between relations and the Boolean functions that define them. Suppose that R ⊆ U is
a set of Boolean functions/relations. A pp-formula over R is an existantially quantified
product of atomic formulas. More precisely, a pp-formula ψ over R in variables V ′ =
{v1, . . . , vn+m} has the form

ψ = ∃ vn+1, . . . , vn+m

s∧
j=1

ϕj ,

where ϕj are all atomic formulas over R in the variables V ′. As before, the variables
V = {v1, . . . , vn} are called “free”, and the others, V ′ \ V , are called “bound”. The
formula ψ specifies a Boolean function Rψ : Dn → {0, 1} in the following way. Rψ(x) = 1
if there is a vector y ∈ Dm such that

∧s
j=1Rϕj (x,y) evaluates to “1”, where x and y are

assignments x : {v1, . . . , vn} → D and y : {vn+1, . . . , vn+m} → D; Rψ(x) = 0 otherwise.
We refer to the pp-formula as an “implementation” of Rψ.

A relational clone (often called a “co-clone”) is a set of Boolean relations containing
the equality relation and closed under finite Cartesian products, projections, and identi-
fication of variables. A basis [8] for the relational clone I is a set R of Boolean relations
such that the relations in I are exactly the relations that can be implemented with a
pp-formula over R. Every relational clone has such a basis.

For every set R of Boolean relations, let 〈R〉R denote the set of relations that can be
represented by a pp-formula over R ∪ {EQ}. It is well-known that if R ∈ 〈R〉R then
〈R ∪ {R}〉R = 〈R〉R Thus, 〈R〉R is in fact a relational clone with basis R.

A basis R for a relational clone 〈R〉R is called a “plain basis” [8, Definition 1] if every
member of 〈R〉R is definable by a CNF(R)-formula (a pp-formula over R with no ∃).

For most of this paper, we restrict attention to the Boolean domain D = {0, 1} and to
the codomain R = R≥0 of non-negative real numbers. For n ∈ N, denote by Bn the set of
all functions {0, 1}n → R≥0; also denote by B = B0∪B1∪B2∪ · · · the set of functions of
all arities. The advantage of working with the Boolean domain is (i) that it comes with
a well-developed theory of relational clones, and (ii) the concept of log-supermodular
function makes sense (see §4). As explained in the introduction, the advantage of working
with non-negative real numbers is that we thereby forbid cancellation, and potentially
obtain a more nuanced expressibility/complexity landscape.

Given a function F ∈ B, let RF be the function corresponding to the relation under-
ying F . That is, RF (x) = 0 if F (x) = 0 and RF (x) = 1 if F (x) > 0. The following
straightforward lemma will be useful.

6 ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

Lemma 3. Suppose F ⊆ B. Then

〈{RF | F ∈ F}〉R = {RF | F ∈ 〈F〉}.

Since we want to be able to derive computational results, we now restrict attention to
functions whose co-domains are restricted to efficiently-computable real numbers. A real
number is polynomial-time computable if the first n bits of its binary expansion can be
computed in time polynomial in n. Let Rp denote the set of non-negative real numbers
that are polynomial-time computable. For n ∈ N, denote by Bpn the set of all functions
{0, 1}n → Rp; also denote by Bp = Bp0 ∪ B

p
1 ∪ B

p
2 ∪ · · · the set of functions of all arities.

Remark 4. If F ⊆ Bp then real numbers appearing as function values must be polynomial-
time computable. This is a stronger requirement than the efficiently approximable real
numbers defined in [14], but it results in a more uniform treatment of limits when we
discuss efficient ppsω-definability using these functions.

4. Log-supermodular functions

A function F ∈ Bn is log-supermodular (lsm) if F (x ∨ y)F (x ∧ y) ≥ F (x)F (y) for
all x,y ∈ {0, 1}n. The terminology is justified by the observation that F is lsm if and
only if f = lnF is supermodular, where ln 0 is treated as −∞, a formal entity that is
operated on in the obvious way. We denote by LSM ⊂ B the class of all lsm functions.
The second part of our main result (Theorem 10) in some sense says that, in terms of
expressivity, everything of interest takes place in the class LSM.

The class LSM fits naturally into our study of expressibility because of the following
closure property: functions that are ppsω-definable from lsm functions are lsm. The
non-trivial step in showing this is encapsulated in the following lemma.

Lemma 5. If F ⊆ LSM is any set of lsm functions then 〈F〉ω ⊆ LSM.

Proof. The only nontrivial step is to show that if G ∈ Bn+m is lsm then so is the
function G′ ∈ Bn defined by G′(x) =

∑
y∈{0,1}m G(x,y). It is enough to prove the claim

for m = 1, as the result for general m follows by induction. Suppose a′, b′ ∈ {0, 1}n, and
let A = {(a′, 0), (a′, 1)} and B = {(b′, 0), (b′, 1)}. We extend G to subsets of {0, 1}n+1

by letting G(Z) =
∑

z∈Z G(z) for all Z ⊆ {0, 1}n+1. Note that

G′(a′) = G(A) and G′(b′) = G(B).

Denote by A ∨ B and A ∧ B the sets A ∨ B = {a ∨ b : a ∈ A and b ∈ B} and
A ∧B = {a ∧ b : a ∈ A and b ∈ B}. Note that

G′(a′ ∨ b′) = G(A ∨B) and G′(a′ ∧ b′) = G(A ∧B).

Since G is lsm, we know that G(a)G(b) ≤ G(a ∨ b)G(a ∧ b) for all a, b ∈ {0, 1}n+1.
Thus, applying the Ahlswede-Daykin “Four-functions Theorem” [1, Theorem 1] with
α = β = γ = δ = G,

G′(a′)G′(b′) = G(A)G(B) ≤ G(A ∨B)G(A ∧B) = G′(a′ ∨ b′)G′(a′ ∧ b′).

As a′, b′ ∈ {0, 1}n were arbitrary, we see that G′ is lsm. �

LOG-SUPERMODULAR FUNCTIONS 7

An important example of an lsm function is the 0,1-function “implies”,

IMP(x, y) =

{
0, if (x, y) = (1, 0);

1, otherwise.

We also think of this as a binary relation IMP = {(0, 0), (0, 1), (1, 1)}. Complexity-
theoretic issues will be treated in detail in §6. However, it may be helpful to give a
pointer here to the importance of IMP in the study of approximate counting problems.

The problem #BIS is that of counting independent sets in a bipartite graph. Dyer et
al. [10] exhibited a class of counting problems, including #BIS, which are interreducible
via approximation-preserving reductions. Further natural problems have been shown
to lie in this class, which appears to be of intermediate complexity between counting
problems that are tractable (i.e., admitting a polynomial-time approximation algorithm)
and those that are NP-hard to approximate. We will see in due course (Theorem 12)
that #BIS and #CSP(IMP) are interreducible via approximation-preserving reductions,
and hence are of equivalent difficulty.

We know from Lemma 5 that 〈IMP,B1〉ω ⊆ LSM. It is an open question whether
the inclusion is strict. A related open question is whether LSM = 〈F〉ω for any finite
set F of lsm functions. A similar question has been investigated by Živný et al. [21] in
this context of optimisation problems, where summation is replaced by maximisation or
minimisation.

5. The main result

5.1. Pinnings and modular functions. Let δ0 be the unary function with δ0(0) = 1
and δ0(1) = 0 and let δ1 be the unary function with δ1(0) = 0 and δ1(1) = 1.

If n ≥ 2 then a 2-pinning of a function F ∈ Bn is a function

Gi,j(x1, x2) = F (c1, . . . , ci−1, x1, ci+1, . . . , cj−1, x2, cj , . . . , cn),

where i and j are distinct indices in {1, . . . , n} and each ck is in {0, 1}. Clearly, ev-
ery 2-pinning of F is in 〈F,Bp1〉, since the constants ck can be implemented using the
functions δ0 and δ1.

We say that a function F ∈ Bn is log-modular if f = lnF is modular, ie., F (x ∨
y)F (x ∧ y) = F (x)F (y) for all x,y ∈ {0, 1}n.

We will use the following fact about 2-pinnings of lsm and log-modular functions.
This follows directly from [17, Theorem 44.1] for the supermodular case, but Schrijver’s
proof also applies to the modular case. The lemma is originally due to Topkis [18].

Lemma 6 (Topkis). F is lsm iff every 2-pinning of F is lsm. F is log-modular iff every
2-pinning of F is log-modular.

5.2. Binary functions. Recall that EQ is the binary relation EQ = {(0, 0), (1, 1)}.
(We used the name “EQ” to denote the equivalent binary function, but it will do no
harm to use the same symbol for the relation and the function.) Denote by OR, NEQ,
and NAND the binary relations OR = {(0, 1), (1, 0), (1, 1)}, NEQ = {(0, 1), (1, 0)}, and
NAND = {(0, 0), (0, 1), (1, 0)}.

Lemma 7. Let F ∈ Bp2. Assuming F (0, 1) ≥ F (1, 0),

8 ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

(i) if F (0, 0)F (1, 1) = F (0, 1)F (1, 0), then 〈F,Bp1〉ω,p = 〈Bp1〉ω,p;
(ii) if RF = EQ, then 〈F,Bp1〉ω,p = 〈Bp1〉ω,p;

(iii) if RF = NEQ, then 〈F,Bp1〉ω,p = 〈NEQ,Bp1〉ω,p;
(iv) if IMP ⊆ RF and F (0, 0)F (1, 1) > F (0, 1)F (1, 0), then 〈F,Bp1〉ω,p = 〈IMP,Bp1〉ω,p;
(v) otherwise, 〈F,Bp1〉ω,p = 〈OR,Bp1〉ω,p == Bp.

Remark 8. From Lemma 7, we see that IMP does not really occupy a special position in
〈IMP,Bp1〉ω,p, nor does OR in 〈OR,Bp1〉ω,p. Nevertheless, it is useful to label the classes
this way, and we will do so.

Remark 9. From the proof of Lemma 7, we have the following inclusions between the
four classes involved.

〈Bp1〉ω,p ⊆
〈NEQ,Bp1〉ω,p
〈IMP,Bp1〉ω,p

⊆ 〈OR,Bp1〉ω,p.

In fact, 〈NEQ,Bp1〉ω,p and 〈IMP,Bp1〉ω,p are incomparable, and hence all the inclusions
are actually strict. For one non-inclusion, note the clone 〈IMP,Bp1〉ω,p contains only lsm
functions, and hence does not contain NEQ. For the other, we claim that arity-2 func-
tions in the clone 〈NEQ,Bp1〉ω,p are of one of three forms — U1(x)U2(y), U(x)EQ(x, y)
or U(x)NEQ(x, y) — and then observe that IMP matches none of these. The claim is
a special case of a more general one, namely that any function in 〈NEQ,Bp1〉ω,p can be
expressed without summation, i.e., is of the form Fϕ, where ϕ is a simple product of
atomic formulas. This general claim can be established by induction on the number m
of bound variables in (2).

5.3. Boolean functional clones.

Theorem 10. Suppose F ∈ Bp.
• If F /∈ 〈NEQ,Bp1〉 then IMP ∈ 〈F,Bp1〉ω,p, and hence 〈IMP,Bp1〉ω,p ⊆ 〈F,B

p
1〉ω,p

• If, in addition, F /∈ LSM then 〈F,Bp1〉ω,p = Bp.
The non-effective version of the theorem — with B,B1 replacing Bp,Bp1, and 〈·〉ω replac-
ing 〈·〉ω,p — also holds.

Proof. We start with the first part of the theorem, for which the aim is to show that
either IMP ∈ 〈F,Bp1〉ω,p or F ∈ 〈NEQ,Bp1〉. Let C be the relational clone 〈RF , δ0, δ1〉R.
Since {RF , δ0, δ1} ⊆ {RF ′ | F ′ ∈ {F}∪Bp1}, C ⊆ 〈RF ′ | F ′ ∈ {F}∪B

p
1〉R, so by Lemma 3,

C ⊆ {RF ′ | F ′ ∈ 〈F,Bp1〉}.
First, suppose IMP ∈ C. Then 〈F,Bp1〉ω,p contains a function F ′ with RF ′ = IMP.

The function F ′ falls into parts (iv) or (v) of Lemma 7, so by this lemma, 〈F,Bp1〉ω,p
is either 〈IMP,Bp1〉ω,p or 〈OR,Bp1〉ω,p. Either way, 〈F,Bp1〉ω,p contains IMP (as noted in
Remark 9). Similarly, if OR ∈ C or NAND ∈ C then IMP ∈ 〈F,Bp1〉ω,p.

We now consider the possibilities. If RF is not affine, then Creignou, Khanna and
Sudan [8, Lemma 5.30] have shown that one of IMP, OR and NAND is in C. This is
also stated and proved as [11, Lemma 15].

In fact, the set of all relational clones (also called “co-clones”) is finite, and is well
understood. These are listed in [9, Table 2], which gives a plain basis for each relational
clone. There is a similar table in [3] (though the bases given there are not plain). A
graph illustrating the subset inclusions between the relational clones is depicted in [2,

LOG-SUPERMODULAR FUNCTIONS 9

Figure 2]. This graph is reproduced here as Figure 1. The relational clones are the
vertices of the graph in Figure 1. A downwards edge from one clone to another indicates
that the lower clone is a subset of the higher one. For example, since there is a path (in
this case, an edge) from ID1 down to IR2 in Figure 1, we deduce that IR2 ⊂ ID1. We
will require bases for only 3 relational clones: IR2, ID1, and IL2; their plain bases are
{EQ, δ0, δ1}, {EQ,NEQ, δ0, δ1}, and {(x1⊕. . .⊕xk = c) | k ∈ N, c ∈ {0, 1}}, respectively.

If RF is affine then the relations in C are given by linear equations, so C is either the
relational clone IL2 (whose plain basis the set of all Boolean linear equations) or C is
some subset of IL2, in which case it is below IL2 in Figure 1.

Now, EQ, δ0 and δ1 are in C. The relational clone containing these relations (and
nothing else) is IR2, so C is a (not necessarily proper) superset of IR2. Thus, C is (not
necessarily strictly) above IR2 in Figure 1. From the figure, it is clear that the only
possibilities are that C is one of the relational clones IL2, ID1 and IR2.

Now IR2 ⊂ ID1 and the plain basis of ID1 is {EQ,NEQ, δ0, δ1}. Therefore if C = IR2

or C = ID1, then RF is definable by a CNF formula over {EQ,NEQ, δ0, δ1}.
Suppose that F (x) has arity n. To avoid trivialities, suppose that RF is not the

empty relation. Suppose that ψ(v1, . . . , vn) is a CNF formula over {EQ,NEQ, δ0, δ1}
implementing the relation Rψ = RF .

Let V = {v1, . . . , vn}. Let ψi be the projection of ψ onto variable vi. ψi is one of the
three unary relations {(0)}, {(1)}, and {(0), (1)}. Let V ′ = {vi ∈ V | ψi = {(0), (1)}}.
(V ′ is the set of variables that are not “pinned” in RF .) For vi ∈ V ′ and vj ∈ V ′, let
ψi,j be the projection of ψ onto variables vi and vj . ψi,j is a binary relation. Of the
16 possible binary relations, the only ones that can occur are EQ, NEQ and {0, 1}2.
(The empty relation is ruled out since RF is not empty. The four single-tuple binary
relations are ruled out since vi and vj are in V ′. For the same reason, the other four
two-tuple binary relations are ruled out. The three-tuple binary relations are ruled
out since ψi,j ∈ ID1.) We define an equivalence relation ∼ on V ′ in which vi ∼ vj iff
ψi,j ∈ {EQ,NEQ}. Let V ′′ contain exactly one variable from each equivalence class
in V ′. Let k = |V ′′|. For convenience, we will assume V ′′ = {v1, . . . , vk}. (This can be
achieved by renaming variables.)

Now, for every assignment x : {v1, . . . , vk} → {0, 1} there is exactly one assignment
y : {vk+1, . . . , vn} → {0, 1} such that RF (x,y) = 1. Let σ(x) be this assignment y.
Now, define the arity-k function G by G(x) = F (x, σ(x)). Note that

(3) G(x) =
∑

y∈{0,1}n−k
F (x,y),

where y is an assignment y : {vk+1, . . . , vn} → {0, 1}. By construction, G(x) is a strictly
positive function. Also, from (3), G ∈ 〈F,Bp1〉ω,p. We finish with two cases.

Case 1. Every 2-pinning of G is log-modular. Then G is also log-modular, by
Lemma 6. This means (see, for example, [4, Proposition 24]) that g = lnG is a
linear function of x1, . . . , xk and ¬x1, . . . ,¬xk so G ∈ 〈NEQ,Bp1〉. Since F (x,y) =
RF (x,y)G(x), we conclude that F ∈ 〈NEQ,Bp1〉.

Case 2. There is a 2-pinning G′ of G that is not log-modular. Since G is strictly
positive, so is G′. Since G ∈ 〈F,Bp1〉ω,p, so is G′. By Lemma 7, (parts (iv) or (v)),
IMP ∈ 〈G′,Bp1〉ω,p. By Lemma 2, IMP ∈ 〈F,Bp1〉ω,p.

10 ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

Finally, we consider the case in which C = IL2. Let ⊕3 be the relation {(0, 0, 0),
(0, 1, 1), (1, 0, 1), (1, 1, 0)} containing all triples whose Boolean sums are 0. From the
plain basis of IL2 (Table ??), we see that the relation ⊕3 is in C, so 〈F,Bp1〉 contains a
function F ′ with RF ′ = ⊕3. Let F ′′ be the symmetrisation of F ′ implemented by

F ′′(x, y, z) = F ′(x, y, z)F ′(x, z, y)F ′(y, x, z)F ′(y, z, x)F ′(z, x, y)F ′(z, y, z).

Now let µ0 = F ′′(0, 0, 0) and µ2 = F ′′(0, 1, 1). Let U be the unary function with U(0) =

µ
−1/3
0 and U(1) = µ

1/6
0 µ

−1/2
2 . Note that since F ∈ Bp, the appropriate roots of µ0 and µ2

are efficiently computable, so U ∈ Bp1. Now ⊕3(x, y, z) = U(x)U(y)U(z)F ′′(x, y, z), so
⊕3 ∈ 〈F,Bp1〉. Finally, let U ′ be the unary function defined by U ′(0) = 1 and U ′(1) = 2
and let G(x, z) =

∑
y ⊕3(x, y, z)U

′(y). Note that G(0, 0) = G(1, 1) = 1 and G(0, 1) =

G(1, 0) = 2. By Lemma 15, G is in 〈F,Bp1〉. But by Lemma 7, IMP ∈ 〈G,Bp1〉ω,p so by
Lemma 2, IMP ∈ 〈F,Bp1〉ω,p.

We now prove Part 2 of the theorem. Suppose that F is not lsm and that F /∈
〈NEQ,Bp1〉 so, by Part 1 of the theorem, we have IMP ∈ 〈F,Bp1〉ω,p.

By Lemma 6 there is a binary function F1 ∈ 〈F,Bp1〉 that is not lsm so F1(0, 0)F1(1, 1) <
F1(0, 1)F1(1, 0). By Parts (iii) and (v) of Lemma 7, we either have NEQ ∈ 〈F,Bp1〉 or
OR ∈ 〈F,Bp1〉. In the latter case, we are finished by Part (v) of Lemma ??. In the former
case, we are also finished since as is easily seen OR ∈ 〈IMP,NEQ〉. �

6. Complexity-theoretic consequences

In order to explore the computational consequences of Theorem 10, we need to recall
some definitions from computational complexity, specifically relating to approximate
counting problems. For contextual material and proofs of any unsubstantiated claims
made below, please refer to [10].

For our purposes, a counting problem is a function Π from instances w (encoded
as a word over some alphabet Σ) to a number Π(w) ∈ R≥0. For example, w might
encode an instance I of a counting CSP problem #CSP(Γ), in which case Π(w) would
be the partition function Z(I) associated with I. A randomised approximation scheme
for Π is a randomised algorithm that takes an instance w and returns an approximation
Y to Π(w). The approximation scheme has a parameter ε > 0 which specifies the
error tolerance. Since the algorithm is randomised, the output Y is a random variable
depending on the “coin tosses” made by the algorithm. We require that, for every
instance w and every ε > 0,

(4) Pr
[
e−εΠ(w) ≤ Y ≤ eεΠ(w)

]
≥ 3/4 .

The randomised approximation scheme is said to be a fully polynomial randomised ap-
proximation scheme, or FPRAS, if it runs in time bounded by a polynomial in |w| (the
length of the word w) and ε−1. See Mitzenmacher and Upfal [16, Definition 10.2]. Note
that the quantity 3/4 in Equation (4) could be changed to any value in the open inter-
val (1/2, 1) without changing the set of problems that have randomised approximation
schemes [15, Lemma 6.1].

Suppose that Π1 and Π2 are functions from Σ∗ to R≥0. An “approximation-preserving
reduction” (AP-reduction) [10] from Π1 to Π2 gives a way to turn an FPRAS for Π2

into an FPRAS for Π1. Specifically, an AP-reduction from Π1 to Π2 is a randomised

LOG-SUPERMODULAR FUNCTIONS 11

algorithm A for computing Π1 using an oracle1 for Π2. The algorithm A takes as input a
pair (w, ε) ∈ Σ∗× (0, 1), and satisfies the following three conditions: (i) every oracle call
made by A is of the form (v, δ), where v ∈ Σ∗ is an instance of Π2, and 0 < δ < 1 is an
error bound satisfying δ−1 ≤ poly(|w|, ε−1); (ii) the algorithm A meets the specification
for being a randomised approximation scheme for Π1 (as described above) whenever the
oracle meets the specification for being a randomised approximation scheme for Π2; and
(iii) the run-time of A is polynomial in |w| and ε−1. Note that the class of functions
computable by an FPRAS is closed under AP-reducibility. Informally, AP-reducibility
most liberal notion of reduction meeting this requirement. If an AP-reduction from Π1

to Π2 exists we write Π1 ≤AP Π2. If Π1 ≤AP Π2 and Π2 ≤AP Π1 then we say that Π
and Π2 are AP-interreducible, and write Π1 =AP Π2.

A word of warning about terminology. Subsequent to [10] the notation ≤AP has been
used to denote a different time of approximation-preserving reduction which applies
to optimisation problems. We will not study optimisation problems in this paper, so
hopefully this will not cause confusion.

The complexity of approximating Boolean #CSPs in the unweighted case (i.e., where
the functions in Γ have codomain {0, 1}) was earlier studied by the final three au-
thors [11]. Two counting problems played a special role there, and in earlier work in the
complexity of approximate counting [10]. They also play a key role here.

Name: #SAT
Instance: A Boolean formula ϕ in conjunctive normal form.
Output: The number of satisfying assignments of ϕ.

Name: #BIS.
Instance: A bipartite graph B.
Output: The number of independent sets in B.

An FPRAS for #SAT would, in particular, have to decide with high probability be-
tween a formula having some satisfying assignments or having none. Thus #SAT cannot
have an FPRAS unless NP = RP.2 The same is true of any problem to which #SAT
is AP-reducible. As far as we are aware, the complexity of approximating #BIS does
not relate to any of the standard complexity theoretic assumptions, such as NP 6= RP.
Nevertheless, there is increasing empirical evidence that no FPRAS for #BIS exists,
and we adopt this as a working hypothesis. Of course, this hypothesis implies that no
#BIS-hard problem (problem to which #BIS is AP-reducible) admits an FPRAS.

Finally, a precise statement of the computational task we are interested in. A (weighted)
#CSP problem is parameterised by a finite subset F of Bp and defined as follows.

Name: #CSP(F)
Instance: A pps-formula ψ consisting of a product of m atomic F-formulas over n free

variables x. (Thus, ψ has no bound variables.)
Output: The value

∑
x∈{0,1}n Fψ(x) where Fψ is the function defined by that formula.

1The reader who is not familiar with oracle Turing machines can just think of this as an imaginary
(unwritten) subroutine for computing Π2.

2The supposed FPRAS would provide a polynomial-time decision procedure for satisfiability this
two-sided error; however, there is a standard trick for converting two-sided error to the one-sided error
demanded by the definition of RP [19, Thm 10.5.9].

12 ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

Officially, the input size |w| is the length of the encoding of the instance. However, we
shall take the size of a #CSP(F) instance to be n+m, where n is the number of (free)
variables and m is the number of constraints (atomic formulas). This is acceptable, as we
are only concerned to measure the input size within a polynomial factor; moreover, we
have restricted Γ to be finite, thereby avoiding the issue of how to the encode constraint
functions F . We typically denote an instance of #CSP(F) by I and the output by Z(I);
by analogy with systems in statistical physics we refer to Z(I) as the partition function.

Aside from simplifying the representation of problem instances, there is another, more
important reason for decreeing that F is finite, namely, that it allows us to prove the
following basic lemma relating functional clones and computational complexity. It is, of
course, based on a similar result for classical decision CSPs.

Lemma 11. Suppose that F is a finite subset of Bp. If F ∈ 〈F〉ω,p then #CSP(F,F) ≤AP

#CSP(F)

Proof. Let k be the arity of F . Let M be a TM which, on input ε′ > 0, computes a
k-ary pps-formula ψ over F ∪ EQ such that ‖Fψ − F‖∞ < ε′. Consider an input (I, ε)
where I is an instance of #CSP(F,F) and ε is an accuracy parameter. The key idea of
the proof is to construct an instance I ′ of #CSP(F) by replacing each F -constraint in I
with the set of constraints and extra (bound) variables in the formula ψ that is output
by M with input ε′. After choosing a proper ε′ the proof can be completed by a fairly
straightforward computation. �

Theorem 12. Suppose F is a finite subset of Bp.
• If F ⊆ 〈NEQ,Bp1〉 then, for any finite subset S of Bp1, there is an FPRAS for

#CSP(F , S).
• Otherwise,

– There is a finite subset S of Bp1 such that #BIS ≤AP #CSP(F , S).
– If there is a function F ∈ F such that F /∈ LSM then there is a finite

subset S of Bp1 such that #SAT =AP #CSP(F , S).

Example 13. Let F ∈ Bp2 be the function defined by F (0, 0) = F (1, 1) = λ and and
F (0, 1) = F (1, 0) = 1, where λ > 1. Then, from Theorem 12, #CSP(F, S) is #BIS-hard,
for some set S of unary weights. (In fact, this counting CSP is also #BIS-easy.) Note that
#CSP(F, S) is nothing other than the ferromagnetic Ising model with an applied field.
So we recover, with no effort, the main result of Goldberg and Jerrum’s investigation of
this model [13].

Example 14. If F is as before, but λ ∈ (0, 1), then F /∈ LSM and Theorem 12 tells us that
#CSP(F, S) is #SAT-hard, for some set S of unary weights. This is a restatement of the
well-known fact that the partition function of an antiferromagnetic Ising model is hard
to compute, even approximately. (In fact, one could even dispense with the weights, but
this fact cannot be read off directly from Theorem 12.)

References

[1] Rudolf Ahlswede and David E. Daykin. An inequality for the weights of two families of sets, their
unions and intersections. Z. Wahrsch. Verw. Gebiete, 43(3):183–185, 1978.

[2] Elmar Böhler, Nadia Creignou, Steffen Reith, and Heribert Vollmer. Playing with Boolean blocks,
part II: Constraint satisfaction problems. ACM SIGACT-Newsletter, 35:22–35, 2004.

LOG-SUPERMODULAR FUNCTIONS 13

[3] Elmar Böhler, Steffen Reith, Henning Schnoor, and Heribert Vollmer. Bases for Boolean co-clones.
Inf. Process. Lett., 96(2):59–66, 2005.

[4] Endre Boros and Peter L. Hammer. Pseudo-boolean optimization. Discrete Applied Mathematics,
123(1-3):155–225, 2002.

[5] Jin-Yi Cai, Xi Chen, and Pinyan Lu. Non-negative weighted #CSPs: An effective complexity
dichotomy. CoRR, abs/1012.5659, 2010.

[6] Jin-Yi Cai, Pinyan Lu, and Xia Mingji. Dichotomy for Holant* problems of Boolean domain. In
Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1714–1728, 2011.

[7] David Cohen and Peter Jeavons. Chapter 8: The complexity of constraint languages. In Peter
van Beek Francesca Rossi and Toby Walsh, editors, Handbook of Constraint Programming, volume 2
of Foundations of Artificial Intelligence, pages 245 – 280. Elsevier, 2006.

[8] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classifications of Boolean Con-
straint Satisfaction Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2001.

[9] Nadia Creignou, Phokion Kolaitis, and Bruno Zanuttini. Structure identification of Boolean relations
and plain bases for co-clones. Journal of Computer and System Sciences, 74(7):1103 – 1115, 2008.

[10] Martin Dyer, Leslie Ann Goldberg, Catherine Greenhill, and Mark Jerrum. The relative complexity
of approximate counting problems. Algorithmica, 38(3):471–500, 2004. Approximation algorithms.

[11] Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy for Boolean
#CSP. Journal of Computer and System Sciences, 76(3-4):267 – 277, 2010.

[12] Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. The complexity of weighted Boolean
#CSP. SIAM Journal on Computing, 38:1970–1986, 2009.

[13] Leslie Ann Goldberg and Mark Jerrum. The complexity of ferromagnetic Ising with local fields.
Combin. Probab. Comput., 16(1):43–61, 2007.

[14] Leslie Ann Goldberg and Mark Jerrum. Approximating the partition function of the ferromagnetic
Potts model. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide,
and Paul G. Spirakis, editors, ICALP (1), volume 6198 of Lecture Notes in Computer Science, pages
396–407. Springer, 2010.

[15] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci., 43(2-3):169–188, 1986.

[16] Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University Press, Cam-
bridge, 2005. Randomized algorithms and probabilistic analysis.

[17] Alexander Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.
[18] Donald M. Topkis. Minimizing a submodular function on a lattice. Operations Research, 26:305–321,

1978.
[19] Ingo Wegener. Complexity Theory. Springer-Verlag, Berlin, 2005. Exploring the limits of efficient

algorithms, Translated from the German by Randall Pruim.
[20] Tomoyuki Yamakami. Approximate counting for complex-weighted Boolean constraint satisfaction

problems. CoRR, abs/1007.0391, 2010.
[21] Stanislav Živný, David A. Cohen, and Peter G. Jeavons. The expressive power of binary submodular

functions. Discrete Appl. Math., 157(15):3347–3358, 2009.

14 ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

Appendix A. Proof of Lemma 2

We start with proving two intermediate lemmas.
The functional clone 〈F〉 generated by F is the set of all functions in U that can be

represented by a pps-formula over F ∪ {EQ} where EQ is the binary equality function
defined by EQ(x, x) = 1 and EQ(x, y) = 0 for x 6= y. We refer to the pps-formula as an
“implementation” of the function.

Lemma 15. If G ∈ 〈F〉 then 〈F , G〉 = 〈F〉.

Note that, to simplify notation, we write 〈F , G〉 in place of the more correct 〈F∪{G}〉.
More generally, we shall drop set-brackets, replace the union symbol ∪ by a comma, and
confuse a singleton set with the element it contains.

Proof of Lemma 15. Let F ′ = F ∪{EQ}. Suppose that ψ is a pps-formula over F ′∪{G}
given by

(5) ψ =
∑

vn+1,...,vn+m

r∏
i=1

ϕi

s∏
j=1

ψj ,

where {ϕi} are atomic F ′-formulas and {ψj} are atomic G-formulas in the variables V ′.
Then

(6) Fψ(x) =
∑

y∈Dm

r∏
i=1

Fϕi(x,y)
s∏
j=1

Fψj (x,y),

where x and y are assignments x : {v1, . . . , vn} → D and y : {vn+1, . . . , vn+m} → D.
Now, since G is pps-definable over F ′, and each ψj is an atomic G-formula in the variables
V ′, we can write each ψj as

ψj =
∑

vνj+1,...,vνj+`

t∏
k=1

ϕj,k,

where ` is the number of bound variables used in the definition of ψj (` is independent
of j), νj = n + m + (j − 1)` is the number of free variables plus the number of bound
variables that are “used up” by ψ1, . . . , ψj−1, and each ϕj,k is an atomic F ′-formula over
the variables V ′ ∪ {vνj+1, . . . , vνj+`}. We then get

Fψ(x) =
∑

y∈Dm

r∏
i=1

Fϕi(x,y)
s∏
j=1

∑
zj∈D`

t∏
k=1

Fϕj,k(x,y, zj)

=
∑

y∈Dm

∑
z1∈D`

· · ·
∑

zs∈D`

r∏
i=1

Fϕi(x,y)

s∏
j=1

t∏
k=1

Fϕj,k(x,y, zj),

where each zj is an assignment zj : {vνj+1, . . . , vνj+`} → D. So

ϕ =
∑

vn+1,...,vνs+`

r∏
i=1

ϕi

s∏
j=1

t∏
k=1

ϕj,k

is a pps-formula over F ′ for the function Fψ. �

LOG-SUPERMODULAR FUNCTIONS 15

The following lemma is an analogue of Lemma 15.

Lemma 16. If G ∈ 〈F〉ω then 〈F , G〉ω = 〈F〉ω.

Proof. Let F ′ = F ∪ {EQ}. Suppose that H is an a-ary function in 〈F , G〉ω. Let SH be
a finite subset of F ′ ∪ {G} such that the following is true: Given ε > 0, there exists an

a-ary function Ĥ ∈ 〈SH〉 such that ‖Ĥ −H‖∞ < ε/2. Let ψ be a pps-formula over SH
representing Ĥ. For any function Ĝ with the same arity as G, denote by ψ[G:=Ĝ] the

formula obtained from ψ by replacing all occurrences of G by Ĝ. By continuity of the

operators of pps-formulas, we know there exists δ > 0 such that, for every function Ĝ of

the same arity as G, ‖Ĝ−G‖∞ < δ implies

‖F
ψ[G:=Ĝ]

− Fψ‖∞ < ε/2.

This claim will be explicitly quantified in the proof of Lemma 2, but we don’t need so

much detail here. Of course, Ĥ = Fψ so for each such Ĝ we have ‖F
ψ[G:=Ĝ]

−Ĥ‖∞ < ε/2.

Now let SG be the finite subset of F ′ used to show that G is ppsω-definable over F ′. Let

S = SG ∪SH \ {G} ⊆ F ′. Choose a function Ĝ ∈ 〈SG〉 satisfying ‖Ĝ−G‖∞ < δ. Notice
that F

ψ[G:=Ĝ]
∈ 〈S〉 (by Lemma 15), and

‖F
ψ[G:=Ĝ]

−H‖∞ ≤ ‖Fψ[G:=Ĝ]
− Ĥ‖∞ + ‖Ĥ −H‖∞ < ε.

Since ε > 0 was arbitrary and S is a finite subset of F ′, we conclude that H ∈ 〈F〉ω. �

Finally, we are ready to prove Lemma 2.

Lemma 17. If G ∈ 〈F〉ω [or G ∈ 〈F〉ω,p] then 〈F , G〉ω = 〈F〉ω,p [resp., 〈F , G〉ω,p =
〈F〉ω,p].

Proof. Let F ′ = F ∪ {EQ}. Suppose H is an a-ary function in 〈F ′, G〉ω,p. Our goal
is to specify a finite subset S of F ′ and to construct a TM MH,S with the following
property: on input ε > 0, MH,S should compute an a-ary pps-formula ϕ over S such
that ‖Fϕ − H‖∞ < ε. The running time of MH,S should be at most a polynomial in
log ε−1.

Let SH be the finite subset of F ′ ∪ {G} from the efficient ppsω-definition of H over
F ′ ∪ {G}. Given an input ε/2, the TM MH,SH computes an a-ary pps-formula ψ over
SH such that ‖Fψ − H‖∞ < ε/2. Write ψ as in Equation (5) so Fψ is writen as in
Equation (6). Suppose that, for j ∈ [s] and y ∈ {0, 1}m, δj,y(x) is a function of x.
Consider the expression

Υ(x) =
∑

y∈Dm

r∏
i=1

Fϕi(x,y)

s∏
j=1

(Fψj (x,y) + δj,y(x))

−
∑

y∈Dm

r∏
i=1

Fϕi(x,y)

s∏
j=1

Fψj (x,y),

which can be expanded as

Υ(x) =
∑

y∈Dm

∑
∅⊂T⊆[s]

Cy,T (x)
∏
j∈T

δj,y(x),

16 ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

where

Cy,T (x) =
r∏
i=1

Fϕi(x,y)
∏

j∈[s]\T

Fψj (x,y).

Let C = maxx,y,T |Cy,T (x)| and let δ = ε2−(s+1)|D|−mC−1 < 1.
Now let SG be the finite subset of F ′ used to show that G is efficiently ppsω-definable

over F ′. Given the input δ, the TM MG,SG computes a pps-formula ψ̂ over SG repre-
senting a function F

ψ̂
with the same arity as G such that ‖F

ψ̂
− G‖∞ < δ. Since each

ψj is an atomic G-formula in the variables V ′, we may appropriately name the variables

of ψ̂ to obtain a pps-formula ψ̂j over SG such that ‖F
ψ̂j
− Fψj‖∞ < δ.

For y ∈ Dm, let δj,y(x) = F
ψ̂j

(x,y) − Fψj (x,y) and note that |δj,y(x)| ≤ δ. Let

S = SG ∪ SH \ {G} ⊆ F ′. Let ψ′ be the formula over S formed from ψ by substituting

each occurrence of ψj with ψ̂j . Let ϕ be the pps-formula over S for the function Fψ′
which is constructed as in the proof of Lemma 15. From the calculation above,

‖Fϕ − Fψ‖∞ = ‖Fψ′ − Fψ‖∞
= max

x
|Fψ′(x)− Fψ(x)|

= max
x
|Υ(x)|

≤ 2s|D|mCδ = ε/2.

Note that
‖Fϕ −H‖∞ ≤ ‖Fϕ − Fψ‖∞ + ‖Fψ −H‖∞ < ε.

Thus, the formula ϕ is an appropriate output for our TM MH,S .
Finally, let’s check how long the computation takes. The running time of MH,SH is

at most poly(log ε−1). Since this machine outputs the formula ψ, we conclude that m
and r and s are bounded from above by polynomials in log ε−1. Let ∆ be the ceiling
of the maximum absolute value of any function in SH . Note that C ≤ ∆r+s. The
running time of MG,SG is at most poly(log(δ−1)), which is at most a polynomial in
m+ s+ log(C) + log(ε−1) which is at most a polynomial in log(ε−1). Finally, the direct

manipulation of the formulas that we did (renaming variables from ψ̂ to obtain ψ̂j and

producing the pps-formula ϕ from ψ and the ψ̂j formulas) takes time at most polynomial

in the size of ψ and ψ̂, which is at most a polynomial in log(ε−1). �

Appendix B. Proof of Lemma 3

Lemma 18. Suppose F ⊆ B. Then

〈{RF | F ∈ F}〉R = {RF | F ∈ 〈F〉}.

Proof. Let F be a subset of B. First, we must show that, for any R ∈ 〈{RF | F ∈ F}〉R,
R is in {RF | F ∈ 〈F〉}.

Let ψ be the pp-formula over {RF | F ∈ F}∪{EQ} that is used to represent R. Write
ψ as

ψ = ∃ vn+1, . . . , vn+m

s∧
j=1

RFj (vi(j,1), . . . , vi(j,aj)),

LOG-SUPERMODULAR FUNCTIONS 17

where Fj is an arity-aj function in F ∪ {EQ}, and the index function i(·, ·) picks out an
index in the range [1, n+m], and hence a variable from V ′ = {v1, . . . , vn+m}. Let ψ′ be
the pps-formula over F ∪ {EQ} given by

ψ′ =
∑

vn+1,...,vn+m

s∏
j=1

Fj(vi(j,1), . . . , vi(j,aj)).

Let F ′ = Fψ′ . Note that F ′ ∈ 〈F〉 and that RF ′ = R.
By reversing this construction, we can show that, for any R ∈ {RF | F ∈ 〈F〉}, R is

in 〈{RF | F ∈ F}〉R. �

Appendix C. Proof of Lemma 5

Lemma 19. If F ⊆ LSM is any set of lsm functions then 〈F〉ω ⊆ LSM.

Proof. We just need to show that each level in the definition of ppsω-definable function
preserves lsm: first that every atomic formula over F ∪ {EQ} defines an lsm function,
then that a product of lsm functions is lsm, then that a summation of an lsm function
is lsm, and finally that a limit of lsm functions is lsm. As we shall see below, only the
third step is non-trivial, and it is covered by Lemma ??.

First, note that the EQ is lsm, so every function in F ∪ {EQ} is lsm, An atomic
formula ϕ = G(vi1 , . . . , via) defines a function Fϕ(x) = G(xi1 , . . . , xia) which is lsm:

Fϕ(x ∨ y)Fϕ(x ∧ y) = G(xi1 ∨ yi1 , . . . , xia ∨ yia)G(xi1 ∧ yi1 , . . . , xia ∧ yia)

≥ G(xi1 , . . . , xia)G(yi1 , . . . , yia)

= Fϕ(x)Fϕ(y).

Note that we do not need to assume that i1, . . . , ia are all distinct.
It is immediate that the product of two lsm functions (and hence the product of

any number) is lsm. Thus the product
∏s
j=1 Fϕj appearing in (2) is lsm. Then, by

Lemma ??, the pps-definable function Fψ itself in (2) is lsm.
Finally, we will show that any function that is approximated by lsm functions is lsm.

Suppose that a function F ∈ Bn has the property that, for every ε > 0, there is an

arity-n lsm function F̂ satisfying

‖F̂ − F‖∞ = max
x∈{0,1}a

|F̂ (x)− F (x)| < ε.

We wish to show that F is lsm. Let Fmax = maxx F (x). Suppose for contradiction that
F is not lsm, so there is a δ > 0 and x,y ∈ {0, 1}n such that

F (x ∨ y)F (x ∧ y) ≤ F (x)F (y)− δ.

18 ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

Let ε > 0 be sufficiently small that εmax(Fmax, 1) is tiny compared to δ. Then

F̂ (x ∨ y)F̂ (x ∧ y) ≤ (F (x ∨ y) + ε)(F (x ∧ y) + ε)

≤ F (x ∨ y)F (x ∧ y) + 2εFmax + ε2

≤ F (x)F (y)− δ + 2εFmax + ε2

≤ (F̂ (x) + ε)(F̂ (y) + ε)− δ + 2εFmax + ε2

≤ F̂ (x)F̂ (y) + 2ε(Fmax + ε)− δ + 2εFmax + 2ε2

< F̂ (x)F̂ (y),

so F̂ is not lsm, giving a contradiction. �

Appendix D. Proof of Lemma 7

When we write a function F ∈ B2, we will identify the arguments by writing F (x1, x2).
We may represent F by a 2× 2 matrix

M(F) =

[
F (0, 0) F (0, 1)
F (1, 0) F (1, 1)

]
=

[
f00 f01
f10 f11

]
,

say, with rows indexed by x1 ∈ {0, 1} and columns by x2 ∈ {0, 1}. We will assume f01 ≥
f10, since otherwise we may consider the function F T , such that F T (x1, x2) = F (x2, x1),
represented by the matrix M(F)T . Clearly 〈F T 〉 = 〈F 〉.

If U is a unary function, we will write U = (U(0), U(1)) = (u0, u1), say. Then we have

M
(
U(x1)F (x1, x2)

)
=

[
u0f00 u0f01
u1f10 u1f11

]
, M

(
U(x2)F (x1, x2)

)
=

[
u0f00 u1f01
u0f10 u1f11

]
,

where both U(x1)F (x1, x2) and U(x2)F (x1, x2) are clearly in 〈F,U〉.
If F1, F2 ∈ B2, then M(F1)M(F2) = M(F), where F ∈ 〈F1, F2〉 is such that

F (x1, x2) =

1∑
y=0

F1(x1, y)F2(y, x2).

Lemma 20. Let F ∈ Bp2. Assuming f01 ≥ f10,

(i) if f00f11 = f01f10, then 〈F,Bp1〉ω,p = 〈Bp1〉ω,p;
(ii) if f01, f10 = 0 and f00, f11 > 0, then 〈F,Bp1〉ω,p = 〈Bp1〉ω,p;

(iii) if f00, f11 = 0 and f01, f10 > 0, then 〈F,Bp1〉ω,p = 〈NEQ,Bp1〉ω,p;
(iv) if f00, f01, f11 > 0 and f00f11 > f01f10, then 〈F,Bp1〉ω,p = 〈IMP,Bp1〉ω,p;
(v) otherwise, 〈F,Bp1〉ω,p = 〈OR,Bp1〉ω,p.

Proof. To prove 〈F1,Bp1〉ω,p = 〈F2,Bp1〉ω,p, it is sufficient to show that F2 ∈ 〈F1,Bp1〉ω,p
and F1 ∈ 〈F2,Bp1〉ω,p. We will verify this in each of the five cases.

(i) Suppose f00f11 = f01f10. If f00, f01 = 0, then

F (x1, x2) = U1(x1)U2(x2)

with U1 = (0, 1) and U2 = (f10, f11). Similarly if f00, f10 = 0, f01, f11 = 0, or
f10, f11 = 0. In the remaining case f00, f01, f10, f11 > 0. Then choose U1 =
(1, f10/f00), U2 = (f00, f01). In all cases F ∈ 〈U1, U2〉, so 〈F,Bp1〉ω,p = 〈Bp1〉ω,p.

LOG-SUPERMODULAR FUNCTIONS 19

(ii) if f01, f10 = 0 and f00, f11 > 0, then F (x1, x2) = U(x1)EQ(x1, x2), where U =
(f00, f11), so F ∈ 〈U〉. Hence 〈F,Bp1〉ω,p = 〈Bp1〉ω,p.

(iii) If f00, f11 = 0 and f01, f10 > 0, then F (x1, x2) = U(x1)NEQ(x1, x2), where
U = (f01, f10), so F ∈ 〈NEQ, U〉. Similarly NEQ(x1, x2) = U ′(x1)F (x1, x2),
where U ′ = (1/f01, 1/f10), so NEQ ∈ 〈F,U ′〉. Hence 〈F,Bp1〉ω,p = 〈NEQ,Bp1〉ω,p.

(iv) If f00, f01, f11 > 0, f00f11 > f01f10, we can apply unary weights U1, U2, where
U1 = (1/f00, f01/f00f11), U2 = (1, f00/f01), to implement IMPα(x1, x2) = U1(x1)×
U2(x2)F (x1, x2), where

M(IMPα) =

[
1 1
α 1

]
,

where α = f01f10/f00f11 < 1. Then we have IMPα ∈ 〈F,U1, U2〉. Note that
IMP0 = IMP. If α > 0, consider the function IMPkα, with matrix

M(IMPkα) =

[
1 1
αk 1

]
.

Note that IMPkα can be implemented as IMPkα(x1, x2) = Uk1 (x1)U
k
2 (x2)F

k(x1, x2),

by taking k copies of U1, U2 and F . Since α < 1, we see that limk→∞ IMPkα =
IMP0 = IMP. Moreover, the limit is efficient, since ‖IMP − IMPkα‖ < ε if k =
O(log ε−1), and so an ε-approximation to IMP can be computed in O(log ε−1)
time. Hence IMP ∈ 〈F,Bp1〉ω,p.

Note that “powering” limits like that used here will be employed below without
further discussion of their efficiency.

Conversely, from IMP, we first implement IMPα. If α = 0, we do nothing.
Otherwise, we use unary weights U1, U2 such that U1 = (1/α− 1, 1), U2 = (α, 1),
to implement F1(x1, x2) = U1(x1)U2(x2)IMP(x2, x1), where

M(F1) =

[
1− α 0
α 1

]
.

Then we have M(IMPα) = M(IMP)M(F1), so IMPα ∈ 〈IMP, U1, U2〉. Now we
can recover F (x1, x2) = U3(x1)U4(x2)IMPα(x1, x2), where U3 = (f00, f00f11/f01),
U4 = (1, f01/f00), so we have F ∈ 〈IMP, U1, U2, U3, U4〉. Hence 〈F,Bp1〉ω,p =
〈IMP,Bp1〉ω,p.

(v) The remaining cases are (a) f01, f10, f11 > 0, f00f11 < f01f10 and (b) f00, f01, f10 >
0, f11 = 0.

First, we deal with part (a): If f01, f10, f11 > 0 and f00f11 < f01f10, we apply
unary weights U1, U2, where U1 = (f11/f01, 1), U2 = (1/f10, 1/f11), to implement
ORα(x1, x2) = U1(x1)U2(x2)F (x1, x2), where α = f00f11/f01f10 < 1, and

M(ORα) =

[
α 1
1 1

]
If α = 0, OR0 = OR, so we have OR ∈ 〈F,Bp1〉. Otherwise limk→∞ORk

α =
OR0 = OR, so we have OR ∈ 〈F,Bp1〉ω,p.

20 ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

Conversely, from OR, we first express NEQ. Use the unary function U =
(2, 1/2) to implement F1 = U(x1)U(x2)OR(x1, x2), where

M(F1) =

[
0 1
1 1/4

]
.

Then limk→∞ F
k
1 = NEQ. so NEQ ∈ 〈OR,Bp1〉ω,p. Now we observe that

M(IMP) = M(NEQ)M(OR), so IMP ∈ 〈OR,Bp1〉ω,p. Now we have IMPα ∈
〈OR,Bp1〉ω,p, as in (iv) above. Then M(ORα) = M(NEQ)M(IMPα), so ORα ∈
〈OR,Bp1〉ω,p. Now we can reverse the transformation from F to ORα to recover
F .

Now, we consider part (b): If f00, f01, f10 > 0 and f11 = 0, we apply unary
weights U1, U2, where U1 = (1/f00, 1/f10), U2 = (1, f00/f01), to implement
NAND(x1, x2) = U1(x1)U2(x2)F (x1, x2), where

M(NAND) =

[
1 1
1 0

]
,

so we have NAND ∈ 〈F,Bp1〉. We now use unary weight U = (1/2, 2) to implement
F1(x1) = U(x1)U(x1)NAND(x1, x2) with

M(F1) =

[
1/4 1
1 0

]
.

Then we have limk→∞ F
k
1 = NEQ, so again NEQ ∈ 〈F,Bp1〉ω,p. Then we observe

that M(OR) = M(NEQ)M(NAND)M(NEQ), so OR ∈ 〈F,Bp1〉ω,p.
Conversely, from OR, we have NEQ ∈ 〈OR,Bp1〉ω,p from the above. Then we

have M(NAND) = M(NEQ)M(OR)M(NEQ), so NAND ∈ 〈OR,Bp1〉ω,p. Now
we reverse the transformation above from F to NAND to recover F . Thus
F ∈ 〈OR,Bp1〉ω,p.

Finally we prove that 〈OR,Bp1〉ω,p = Bp. Suppose F ∈ Bpn. Suppose x1, . . . , xn
are variables. For each A ⊆ [n], let x(A) be the assignment to x1, . . . , xn in
which xi = 1 if i ∈ A and xi = 0 otherwise. Let A = {A | F (x(A)) > 0}, and let
µ = minA∈A F (x(A)). For any A ⊆ [n], let uA ∈ Bp1 be the function such that
uA(0) = 1 and uA(1) = 2F (x(A))/µ− 1 ≥ 1. Note that every function uA is in
Bp1 and we have IMP,NAND ∈ 〈OR,Bp1〉ω,p, from the proof of Lemma 7.

Our goal will be to show that there is a finite subset SF of {IMP,NAND}∪Bp1
and a TM MF,SF with the following property: on input ε > 0, MF,SF computes
an arity-n pps-formula ψ over SF such that ‖Fψ − F‖∞ < ε. The running time
of MF,SF should be at most a polynomial in log ε−1. To define SF , we will use
two unary functions U1 and U2 (both of which are actually constant functions).
We define these by U1(0) = U1(1) = 1/2 and U2(0) = U2(1) = µ/2. Then
SF = {IMP,NAND, U1, U2} ∪

⋃
A∈A{uA}.

Let V = {v1, . . . , vn}. For A ∈ A, introduce a new variable zA. Let V ′′ =
V ∪ {zA | A ∈ A}. Let

ψ1 =
∑
V ′′

∏
A∈A

uA(zA)
∏
i∈A

IMP(zA, xi)
∏
i/∈A

NAND(zA, xi).

LOG-SUPERMODULAR FUNCTIONS 21

For every A ∈ A the assignment x(A) can be extended in two ways (both with
zA = 0 and with zA = 1) to satisfy

(7)
∏
i∈A

IMP(zA, xi)
∏
i/∈A

NAND(zA, xi).

Any other assignment x can be extended in only one way (zA = 0) to satisfy (7).
So if A ∈ A then

Fψ1(x(A)) = (2F (x(A))/µ− 1) + 1 = 2F (x(A))/µ.

On the other hand, if A /∈ A then

Fψ1(x(A)) = 1.

We have shown that Fψ1 ∈ 〈SF 〉. Let us now define

ψ2 =
∑
V ′′

∏
A∈A

∏
i∈A

IMP(zA, xi)
∏
i/∈A

NAND(zA, xi).

As before, for every A ∈ A the assignment x(A) can be extended in two ways
(zA = 0 and zA = 1) to satisfy (7), and any other assignment x can be extended
in only one way (zA = 0) to satisfy it. So

Fψ2(x(A)) = 2 (A ∈ A), Fψ2(x(A)) = 1 (A /∈ A).

Thus Fψ2 ∈ 〈SF 〉. Now define F3 by F3(x(A)) = U1(x1)Fψ2(x(A)), so F3 ∈ 〈SF 〉,
where

F3(x(A)) = 1 (A ∈ A), Fψ2(x(A)) = 1/2 (A /∈ A).

Now limk→∞ F
k
3 = F0, where

F0(x(A)) = 1 (A ∈ A), Fψ2(x(A)) = 0 (A /∈ A),

and thus F0 ∈ 〈SF 〉ω,p.
Note that F0 = RF , the underlying relation of F . Now define F4 = Fψ1F0, so

that

F4(x(A)) = 2F (x(A))/µ (A ∈ A), F4(x(A)) = 0 (A /∈ A),

Thus, by Lemma 2, F4 ∈ 〈SF 〉ω,p. Now define F5 by F5(x(A)) = U2(x1)F4(x(A)),
so F5 ∈ 〈SF 〉ω,p, where

F5(x(A)) = F (x(A)) (A ∈ A), F5(x(A)) = 0 (A /∈ A).

Since F5 = F , the proof is complete. �

Appendix E. Post’s lattice

Appendix F. Proof of Lemma 11

Lemma 21. Suppose that F is a finite subset of Bp. If F ∈ 〈F〉ω,p then #CSP(F,F) ≤AP

#CSP(F)

22 ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

IBF

IR0 IR1

IR2

IM

IM0 IM1

IM2

ID

ILIE IV

IN

II

ID1

ID2

IL1IL0

IL2

IL3

IN2

II2

II1II0

IV1

IV2IE2

IE0 IV0IE1

IS02

IS03
IS022

IS023

IS012

IS013
IS002

IS0
IS003

IS02IS01

IS00IS10

IS11IS12

IS1 IS103

IS113IS123
IS102

IS112
IS13

IS122

IS12

Figure 1. Post’s lattice from [2, Figure 2].

Proof. Let k be the arity of F . Let M be a TM which, on input ε′ > 0, computes a
k-ary pps-formula ψ over F ∪ EQ such that ‖Fψ − F‖∞ < ε′. We can assume without
loss of generality that no function in {F} ∪F is identically zero (otherwise every #CSP
instance using this function has partition function 0). Let µmax be the maximum value
in the range of F and let µmin be the minimum of 1 and the minimum nonzero value in
the range of F . Similarly, let S be the set of nonzero values in the range of functions in
F ∪ {EQ}. Let νmax be the maximum value in S and let νmin be the minimum of 1 and
the minimum value in S.

LOG-SUPERMODULAR FUNCTIONS 23

Consider an input (I, ε) where I is an instance of #CSP(F,F) and ε is an accuracy
parameter. Suppose that I has n variables, m F -constraints, and m′ other constraints.
We can assume without loss of generality that m > 0 (otherwise, I is an instance of
#CSP(F)).

The key idea of the proof is to construct an instance I ′ of #CSP(F) by replacing
each F -constraint in I with the set of constraints and extra (bound) variables in the
formula ψ that is output by M with input ε′. We determine how small to make ε′ in
terms of the following quantities. Let

A =
4m

µmin
2nµmmaxν

m′
max

B = 2n(µmax + 1)m−1νm
′

max

C = µmminν
m′
min.

Let ε′ = ε
4

C
A+B . The time needed to construct ψ for a given ε′ > 0 is at most poly(log (ε′−1)),

which is at most a polynomial in n, m, m′ and ε−1, as required by the definition of AP-
reduction. We shall see that (I ′, ε/2) is the sought-for instance/tolerance pair required
by our reduction.

Let Iψ be the instance formed from I by replacing every F -constraint with an Fψ-
constraint. Note that Z(Iψ) = Z(I ′), since I ′, an instance of #CSP(F), is an imple-
mentation of Iψ. We want to show that if an oracle produces a sufficiently accurate
approximation to Z(I ′) (and hence to Z(Iψ)) then we can deduce a sufficiently accurate
approximation to Z(I). Observe that the definition of FPRAS allows no margin of error
when Z(I) = 0, and our reduction must give the correct result, namely 0, in this case.
Therefore we need to treat separately the cases Z(I) = 0 and Z(I) > 0. We will show
that

(8) Z(I) = 0 implies Z(Iψ) < C/3,

and

(9) Z(I) > 0 implies Z(Iψ) > 2C/3;

moreover, in the latter case,

(10) e−ε/2Z(I) ≤ Z(Iψ) ≤ eε/2Z(I).

These estimates are enough to ensure correctness of the reduction. For a call to an
oracle for #CSP(F) with instance I ′ and accuracy parameter ε/2 would return a result

in the range [e−ε/2Z(Iψ), eε/2Z(Iψ)] with high probability. Observe that this estimate
is sufficient to distinguish between cases (8) and (9). In the former case, we are able to
return the exact result, namely 0. In the latter case, we return the result given by the
oracle, which by (10) satisfies the conditions for an FPRAS.

To establish (8–10), let Y ′ be the set of assignments to the variables of instance I
which make a non-zero contribution to Z(I) and let Y ′′ be the remaining assignments to
the variables of instance I. Let Z ′(Iψ) be the contribution to Z(Iψ) due to assignments
in Y ′ and Z ′′(Iψ) be the contribution to Z(Iψ) due to assignments in Y ′′ (so Z(Iψ) =
Z ′(Iψ) + Z ′′(Iψ)). We can similarly write Z(I) = Z ′(I) + Z ′′(I), though of course
Z ′′(I) = 0.

24 ANDREI BULATOV, MARTIN DYER, LESLIE ANN GOLDBERG, AND MARK JERRUM

First, note that if |Fψ(x)− F (x)| ≤ ε′ and F (x) > 0 then

|Fψ(x)/F (x)− 1| ≤ ε′/F (x) ≤ ε′/µmin,

so

e−2ε
′/µmin ≤

Fψ(x)

F (x)
≤ e2ε′/µmin .

We conclude that

e−2ε
′m/µminZ ′(I) ≤ Z ′(Iψ) ≤ e2ε′m/µminZ ′(I),

so

|Z ′(I)− Z ′(Iψ)| ≤ 4ε′m

µmin
Z(I) ≤ ε′A.

Furthermore,
|Z ′′(I)− Z ′′(Iψ)| = Z ′′(Iψ) ≤ ε′B.

Here we use ‖Fψ−F‖∞ < ε′ < 1; the “+1” in the definition of B absorbs the discrepancy
between Fψ and F . Combining these two inequalities yields

(11) |Z(I)− Z(Iψ)| ≤ ε′(A+B) ≤ εC

4
.

Now, Z(I) > 0 implies Z(I) ≥ C, and hence (8) and (9) follow directly from (11). If
Z(I) > 0 we further have∣∣∣∣Z(Iψ)

Z(I)
− 1

∣∣∣∣ ≤ ε′(A+B)

Z(I)
≤ ε′(A+B)

C
≤ ε/3.

This establishes (10) and completes the verification of the reduction. �

Appendix G. Proof of Theorem 12

Theorem 22. Suppose F is a finite subset of Bp.
• If F ⊆ 〈NEQ,Bp1〉 then, for any finite subset S of Bp1, there is an FPRAS for

#CSP(F , S).
• Otherwise,

– There is a finite subset S of Bp1 such that #BIS ≤AP #CSP(F , S).
– If there is a function F ∈ F such that F /∈ LSM then there is a finite

subset S of Bp1 such that #SAT =AP #CSP(F , S).

Proof. First, suppose that F ⊆ 〈NEQ,Bp1〉. Let S be a finite subset of Bp1, Given an
m-constraint input I of #CSP(F , S) and an accuracy parameter ε, we first approximate

each arity-k function F ∈ F used in I with a function F̂ : {0, 1}k → Q≥0 such that
R
F̂

= RF , and for every x for which F (x) > 0,

(12) e−ε/m ≤ F̂ (x)

F (x)
≤ eε/m.

Let F̂ = {F̂ | F ∈ F} and let Î be the instance of #CSP(F̂ , S) formed from I by

replacing each F -constraint with F̂ . [12, Theorem 4] gives a polynomial-time algorithm

for computing the partition function Z(Î), which satisfies

(13) e−εZ(I) ≤ Z(Î) ≤ eεZ(I).

LOG-SUPERMODULAR FUNCTIONS 25

Second, suppose that F 6⊆ 〈NEQ,Bp1〉. By Theorem 10, IMP ∈ 〈F ,Bp1〉ω,p. By
Observation 1, there is a finite subset S of Bp1 such that IMP ∈ 〈F , S〉ω,p. Thus,
#CSP(IMP) ≤AP #CSP(F , S), by Lemma 11 However, #BIS =AP #CSP(IMP) by
[11, Theorem 3].

Finally, suppose that there is a function F ∈ F such that F /∈ LSM. By Theorem 10,
〈F,Bp1〉ω,p = Bp so OR ∈ 〈F,Bp1〉ω,p. By Observation 1, there is a finite subset S of Bp1
such that OR ∈ 〈F, S〉ω,p, so by Lemma 11, #CSP(OR) ≤AP #CSP(F, S). However,
by [11, Lemma 7] #SAT ≤AP #CSP(OR). To see that #CSP(F , S) ≤AP #SAT, let I

be an m-constraint instance of #CSP(F , S). For each function G ∈ F ∪ S, define Ĝ as

in (12). Let Î be the instance of #CSP({Ĝ | G ∈ F ∪ S}) formed from I by replacing

each G-constraint with a Ĝ-constraint. Equation (13) holds, as above. Furthermore,

[12, Theorem 4] shows that #CSP({Ĝ | G ∈ F ∪ S}) is in FP#P, so can be AP-reduced
to #SAT. �

