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Abstract. Understanding the resource utilization and server 
characteristics of large-scale systems is crucial if service 
providers are to optimize their operations whilst maintaining 
Quality of Service. For large-scale datacenters, identifying the 
characteristics of resource demand and the current availability 
of such resources, allows system managers to design and 
deploy mechanisms to improve datacenter utilization and meet 
Service Level Agreements with their customers, as well as 
facilitating business expansion. In this paper, we present a 
large-scale analysis of server resource utilization and a 
characterization of a production Cloud datacenter using the 
most recent datacenter trace logs made available by Google. 
We present their statistical properties, and a comprehensive 
coarse-grain analysis of the data, including submission rates, 
server classification, and server resource utilization. 
Additionally, we perform a fine-grained analysis to quantify 
the resource utilization of servers wasted due to the early 
termination of tasks. Our results show that datacenter 
resource utilization remains relatively stable at between 40 - 
60%, that the degree of correlation between server utilization 
and Cloud workload environment varies by server 
architecture, and that the amount of resource utilization 
wasted varies between 4.53 - 14.22% for different server 
architectures. This provides invaluable real-world empirical 
data for Cloud researchers in many subject areas. 
  
Index Terms— Cloud computing, empirical analysis, server 
characterization, resource utilization, dependability 

I. INTRODUCTION 
In recent years, there has been an increased effort by the 

research community to characterize Cloud computing 
environments. Cloud computing is defined as a distributed 
paradigm that enables provisioning of computational 
resources as a service [1]. This dynamicity is driven by user 
demand, and results in a variance of the Cloud workload and 
user behavior that together composes the Cloud 
environment [2]. However, to date there have been only 
very limited analyses of large-scale Cloud environments that 
consider real-world empirical evidence to show whether 
these characteristics are quantifiable. To further our 
understanding of Cloud environments, it is extremely 
important to analyze the trace logs derived from large-scale 
real-world Clouds.  

Specifically, it is important to explore to what degree the 
dynamicity of Cloud environments impacts server resource 
utilization. Quantifying this dynamicity gives researchers 

and providers a greater insight into the nature of Cloud 
environments, and subsequently allows research involving 
resource optimization and data center simulation to be 
informed and tested with scenarios derived from real 
empirical data. Unfortunately, due to business and 
confidentiality concerns, there exists a lack of such data 
from real Cloud operational environments for analysis.  

Recently, limited Cloud computing traces have been 
made available. In early 2012, Yahoo released traces from 
the M45 production cluster to a small selection of 
Universities [3], while Google publically released a 
relatively short cluster trace spanning seven hours [4] as 
well as a second version of the trace encompassing a larger 
time frame and containing more detail about their 
MapReduce cluster [5]. There has been some limited uptake 
in analyzing these trace logs, with work focusing on 
different research objectives including job behavior [6], 
statistical properties of workload [7][8], as well as machine 
events and job behavior [9]. However, as stated in [9], due 
to the massive dataset sizes as well as the required 
computation and storage power necessary to perform 
comprehensive analysis, until now it has only been possible 
to perform analysis at a coarse-grain or perform an in-depth 
analysis on a small time frame that represents a fraction of 
the entire trace log.  

To improve upon this, we have built a large distributed 
processing environment that has allowed us to analyze the 
second version of the Google Cloud trace log, which 
contains over 12,000 heterogeneous servers and spans a 
period of 29 days. The aim of this paper is to use this large 
real-world dataset to characterize the server characteristics 
and resource utilization of the Google Cloud, in order to 
give insights into the dynamicity of realistic Cloud 
environments. Additionally, we explore and quantify the 
amount of server resource utilization that is wasted due to 
task failures and resubmissions. Such insights and 
quantification will be of great benefit to researchers working 
in the Cloud domain, with direct relevance to a range of 
topics such as dependability, energy-efficiency, and 
security. 

This paper presents three main contributions. Firstly, we 
present the statistical properties and a comprehensive 
coarse-grained analysis of the Google Cloud trace log, 
including characterizing a high-level view of the trace log 
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and server architectures over a period of 29 days. Secondly, 
we analyze and compare the resource utilization of servers 
within the trace log by server architecture type, at different 
time frames. Finally, we perform fine-grained analysis to 
explore and quantify the impact of tasks that are terminated 
before successful completion in terms of wasted resource 
utilization per server. Specifically, we contrast the required 
amount of resources utilized per server to successfully 
complete a task, against that of total resource utilization, 
inclusive of resource utilization that is wasted due to   
termination of tasks.  

The rest of the paper is organized as follows: Section 2 
presents a description of the trace log as well as the analysis 
infrastructure; Section 3 discusses the statistical properties 
and coarse-grain analysis of the Cloud trace log; Section 4 
describes server characterization; Section 5 presents the 
server resource utilization; Section 6 analyzes wasted 
resource server utilization due to task failure; Section 7 
presents the related work; finally, Section 8 presents the 
conclusions of our research and discusses future work 
directions. 

II. RELATED WORK 

Prior to this paper, there has been some initial research in 
characterizing Cloud environments by analyzing Cloud 
trace logs. Chen, et al. [6] focus on the behavior of jobs 
within the 7 hour trace log released by Google. Kayulya, et 
al. [7] present statistical properties of the Yahoo M45 
cluster and present a simple analytical model to predict job-
completion times in Hadoop environments. Reiss, et al. [8] 
describe the statistical properties of the second version of 
the Google trace log, presenting a coarse-grain analysis of 
data center CPU and memory utilization per day, as well as 
workload characterization. Liu, et al. [9] also analyze the 
second version of the Google trace log to characterize 
machine events, as well as analyze CPU usage of tasks 
within the time frame of a single day. 

Our work differs from the above approaches in a number 
of ways. Aided by the construction of a large-scale analysis 
infrastructure, we firstly present a more detailed coarse-
grain analysis of the second version of the Google trace 
including submission rates, task characteristics and server 
utilization. Secondly, our work analyses the CPU and 

memory utilization of different architecture types over 
different time periods. Finally, our work presents a 
comprehensive analysis of the amount of server utilization 
wasted due to termination of tasks per architecture type. 

III. DATASET DESCRIPTION  
The data was collected from the second version of the 

Google Cloud trace log that spans a period of 29 days and 
contains over 12,000 servers. The trace log consists of tens 
of millions of records for job, task and server events. A task 
is defined as the basic unit of computation assigned or 
performed in the Cloud e.g. MapReduce operations. Within 
the trace log, tasks are encapsulated within Linux 
containers. In addition, the log captures normalized CPU, 
memory and disk utilization per individual task every 5 
minutes. The total size of the trace log is approximately 
250GB. The trace log is available at [5], and further details 
about the data schema, and normalization process can be 
found in [10]. 

Due to the massive size of the trace log, as well as the 
query complexity required to extrapolate desired data, it was 
necessary to set up infrastructure for data analysis. To 
facilitate this, we used Hadoop MapReduce 1.0.2 [11] to 
construct a cluster consisting of 50 physical nodes for data 
storage and processing power. In addition, queries were 
executed using Apache Hive 0.90, a data warehouse system 
that facilitates the analysis of large datasets [12]. Utilizing 
this analysis infrastructure allowed us to decrease query 
execution time from over 72 hours for a database installed 
on a single machine to approximately 15 minutes for a 
complex query. 

IV. DATASET OVERVIEW 
An overview of the statistics derived from our coarse-

grain analysis of the trace log is presented in Table 1. The 
trace log contains a total of 25,375,377 tasks, 12,532 unique 
machines and 930 users. Next, we divided the trace log per 
day. We observe that the number of submitted tasks daily is 
widely heterogeneous as shown in Figure 1(a).  

Furthermore, we observe that there is a loose correlation 
between the number of users using the Cloud as shown in 
Figure 1(b), and the number of tasks submitted within the 
same time frame at the coarse-grain level.  Figure 1(c) 
presents the average length of tasks per day measured in 
Million Instructions (MI), and it is again observable that 
there exists a loose correlation between task length, 
submission rates and the number of users. These results 
suggest a large heterogeneity that exists within the Cloud 
environment from the perspective of the workload and user 
behavior, and this behavior varies in different time frames. 
An additional observation of interest is that the average 
number of machines operating per day does not deviate 
significantly from the average of 12,299 machines on a 
daily basis as shown in Figure 1(d).  

TABLE 1 DATASET OVERVIEW 

Trace span 29 Days 

Average task length 61,575,043 

Number of servers 12,532 

Average tasks per server 16,653 

Average task length (MI) 61,575,043 
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V. SERVER CHARACTERIZATION 
Servers are characterized within the trace log by defining 

unique server architectures using three dimensions:  
Platform ID, which is a string representing the micro-
architecture and chipset version of the machine, and CPU 
capacity and memory capacity which defines the normalized 
physical CPU cores and RAM capacity per machine. The 
last two dimensions are normalized independently [10]. 
Table 2 shows the breakdown of the number of servers 
within the trace log by architecture type.  

The most populous architecture type is architecture 1, 
constituting 53.46% of the total number of server 

architectures within the trace log. Furthermore, architectures 
1,2,3 and 8 constitute 98.49% of all architectures, as well as 
executing 99.1% of all tasks within the trace log. These 
results are in contrast to the values reported in [9], which 
claims that 93% of machines are homogenous due to sharing 
the same CPU capacity. However these observations are 
inaccurate when considering the heterogeneity of the RAM 
size assigned to architectures that exist within the trace. 

VI. SERVER RESOURCE UTILIZATION 
Using the dataset table "Task Resource Usage", which 

captures the resource utilization per task on a server at a 5 
minute time interval, it is possible to extrapolate the total 

 

Figure 1. Statistical properties of (a) Submitted tasks, (b) Users, (c) Average task length, (d) Servers in the Google Trace Log 
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TABLE 2 SERVER ARCHITECTURE CLASSIFICATION 

Server 
Architecture Platform CPU 

Capacity 
Memory 
Capacity 

Server 
Population % 

Task 
Submission % 

1 A 0.5 0.5 53.46 57.89 

2 A 0.5 0.25 30.76 25.93 

3 A 0.5 0.75 7.93 8.36 

4 A 0.5 0.12 0.43 0.19 

5 A 0.5 < 0.06 0.03 0.00091 

6 A 0.5 1 0.04 0.056 

7 B 0.25 0.25 1.00 0.65 

8 C 1 1 6.34 6.92 
 

(a) (b) 

(c) (d) 
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resource utilization of tasks residing within the same 
physical server within a defined time period; this allows us 
to calculate the total resource utilization of an individual 
server. For our subsequent analysis, we focus on assessing 
server resource utilization through the following approach: 

Firstly, server architectures 1,2,3 and 8 are selected for 
analysis, as they represent over 98% of the total 
architectures within the trace log population as discussed in 
Section 4. Furthermore, less than 0.2% of these architectures 
contain no record of resource utilization of tasks, and have 
been omitted from analysis. Secondly, we select a sample 

size of 4 days from the overall trace log population, 
sampling from days 2, 13, 14 and 18. This sample size was 
selected for a number of reasons: each day contains in the 
regions tens of millions of records, which introduces 
difficulties in term of computer processing for statistical 
analysis. Also, it is important to perform on a per day basis 
as this allows us to contrast behavioral patterns across 
different time periods within the trace log. Additionally, 
from our coarse-grain analysis presented in Section 3, we 
have identified days that exhibit high variance between the 
average task submission and task length in comparison to 

TABLE 3 SERVER ARCHITECTURE RESOURCE UTILIZATION 

 Architecture 1 Architecture 2 Architecture 3 Architecture 8 

 CPU % Memory % CPU % Memory % CPU % Memory % CPU % Memory % 

Day 2 41.55 49.86 32.86 50.83 55.66 39.11 29.18 47.70 

Day 13 35.74 47.05 29.49 49.31 41.34 31.55 30.57 48.69 

Day 14 35.08 47.21 28.34 48.85 41.46 31.51 31.26 50.04 

Day 18 43.94 49.24 35.84 50.85 52.90 34.96 37.52 50.46 

Average 39.08 48.34 31.63 49.96 47.84 34.28 32.13 49.22 

St. Dev 4.35 1.42 3.40 1.03 7.52 3.60 3.69 1.27 

 

 

Figure 2. Average CPU utilization of all servers within (a) Day 2, (b) Day 13, (c) Day 14, (d) Day 18  

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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the entire trace log. Days 2 and 18 consist of high task 
submissions rates and low and average task lengths 
respectively, while days 13 and 14 consist of low task 
submission rates and average task lengths. Finally, we only 
consider analyzing the resources utilization of CPU and 
memory. Disk usage is omitted as a result of 98% of tasks 
presenting similar usage patterns, as supported in [10,13]. 

Figures 2(a), 2(b), 2(c) and 2(d) present the total CPU 
utilization of all servers operating in days 2, 13, 14 and 18 
respectively. We observe that the average resource 
utilization per day is between 40-60% across all sampled 
days reflecting similar numbers reported in [8]. Next, we 
analyze the average utilization per architecture type for CPU 
and memory utilization, with the results shown in Table 3. 
From this, we can observe a range of average utilization 
patterns across different architecture types, ranging from 
28.34 - 55.66% and 31.51 - 50.83% for CPU and memory 
respectively, with architecture 3 possessing the highest CPU 
utilization and lowest memory utilization on average across 
sampled days.  

Furthermore, we observe that the average utilization for 
architectures 1 and 3 in days 13 and 14 is approximately 7% 
and 12% lower respectively for CPU than that of days 2 and 
18, while the CPU utilization of architectures 2 and 8  
remains relatively stable. This is a result of interest due to 

days 2 and 18 containing nearly three times the amount the 
amount of tasks compared to day 13 and 14, presenting a 
stronger correlation between task submission rate and server 
utilization rates for architectures 1 and 3, compared to 
architectures 2 and 8. This suggests that within the trace log, 
the CPU utilization for some architectures is more strongly 
influenced by the Cloud environment than in other 
architectures, and that CPU utilization is correlated with the 
workload environment as depicted in Figure 1(a). 

Moreover, utilization of memory remains relatively stable 
for architectures across all days, suggesting that there is a 
loose correlation between the utilization of memory in a 
server and workload behavior in the Cloud environment. 
This is also a result of interest, as it is intuitive to assume 
that all resource utilization at t1he server level would be 
correlated strongly with the workload environment.  

We postulate a number of reasons for the above 
observations and behaviour. Firstly, the Cloud environment 
analyzed may deploy a load balancing technique to attempt 
to keep utilization levels of servers stable regardless of the 
behavior of the Cloud workload environment. Secondly, 
certain architecture types may be assigned tasks to 
possessing certain conditions that can only be fulfilled by a 
specific architecture type. However initial analysis shows 
that only 5% of tasks possess one or more constraints when 
allocated to specific server architecture. Additionally, the 
utilization rate variability, which is higher for CPU in 
comparison to Memory or Disk as shown in Figure 3, can 
also affect the correlation between server utilization and 
workload. This is because a few tasks have such high 
utilization rates that they require specific server 
characteristics that are not common in the analyzed 
datacenter. In this scenario, utilization is high in those 
common servers that are used by low utilization rate tasks, 
and low in those uncommon servers used by the high 
utilization rate tasks.  

VII. TASK TERMINATION RESOURCE UTILIZATION 
The remainder of the paper is dedicated to exploring and 

quantifying the degree of resource utilization wasted due to 

                                                           
1  
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Figure 4. Task life cycle in Google Cloud 

 
Figure 3 Task utilization resource utilization rates.  
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tasks terminations within the Cloud environment. The trace 
log contains an event log for task events. In this context an 
event is defined as an action that causes the state of a task to 
change at a specific time and space. The task event log 
describes the life cycle of tasks as depicted in Figure 4. 
After a task is submitted into the system it is scheduled by 
the Cloud scheduler to a server and then executed. 

An individual task may only be scheduled and executed 
on one server at a time. It is possible for a task to transition 
to a DEAD state in a variety of ways, including successful 

completion (FINISH) as well as task termination. In this 
context, we define the termination of a task as an event that 
results in unsuccessful task completion. Task termination is 
defined by four events as described in [10]. A task 
descheduled due to task failure is classified as a FAIL event, 
a task that is rescheduled as a result of a higher priority task 
due to scheduler over commitment or server disk failure is 
defined as an EVICT event, while a task cancelled by a user 
or program, or a failure due to a job dependency, is a KILL 
event. If a task becomes DEAD for any other reason besides 

TABLE 5.  SUMMARY OF DAY 2 
WASTED MEMORY RESOURCE UTILIZATION  

 Memory Arch. 1 Arch. 2 Arch. 3 Arch. 8 

Full 
Task 

Average 49.86 50.83 39.11 51.32 

St. Dev 15.71 13.01 13.71 13.39 

Comp. 
Task 

Average 47.21 48.84 31.51 50.03 

St. Dev 17.54 14.70 15.13 13.54 

 Disparity 2.66 1.99 7.61 1.29 

 

TABLE 4.  SUMMARY OF DAY 2 
WASTED CPU RESOURCE UTILIZATION  

 CPU Arch. 1 Arch. 2 Arch. 3 Arch. 8 

Full 
Task 

Average 41.55 32.86 55.66 39.12 

St. Dev 14.16 12.38 17.24 8.44 

Comp. 
Task 

Average 35.08 28.33 41.44 31.26 

St. Dev 13.77 12.49 15.06 7.79 

Disparity 6.46 4.53 14.22 7.86 

 

 
 

Figure 5. Comparison of full and completed tasks in day 2 for (a) Arch. 1 CPU utilization, 
 (b) Arch. 1 memory utilization, (c) Arch. 8 CPU utilization, (d) Arch. 8 memory utilization. 
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successful task completion, it is resubmitted to the scheduler 
and allocated to another server.  

Task resubmission due to task termination results in the 
preceding work being lost, and is therefore a waste of server 
resource utilization. To quantify the exact resource 
utilization wasted per server as a result of task terminations 
within the Cloud environment, we contrast the sum of task 
resource consumption required to successfully complete a 
task in ideal environmental conditions (omitting events that 
can cause the task to terminate), against the sum of actual 
server resource utilization by tasks, including preceding 
work lost due to terminations within the trace log. To 
facilitate this, we define a number of definitions and 
assumptions. 

A completed task is defined as the period of time and 
resource consumption of a task between the latest 
scheduling, and the completion event with no termination 
events present. We assume that tasks do not use check-
pointing, and that therefore a task resubmitted into the 
Cloud results in the task restarting from the beginning. This 
is supported by [10,14], which states that a task failure 
results in "...an interruption on a running task, requiring the 
system to re-execute the interrupted task".  This re-
execution represents meaningful work performed by the task 
towards ultimate task completion. 

A full task is defined by the total task duration and 
resource utilization from the first submission of the task into 
the Cloud until successful completion, inclusive of work 
performed before task failures and resubmissions. This 
encompasses both the expended time and resource 
consumption of a completed task, as well as work 
performed by the task that has been wasted due to 
termination events. The cause of a task termination within 
the Cloud environment encompasses individual task failure, 
the failure of a server, and the eviction of a task by the 
scheduler. The analysis and breakdown of the failure rate 
and root cause of those termination events that lead to 
wasted resource utilization is not within the scope of this 
paper. These events are very frequent, and occur in terms of 
hundreds of thousands (as shown in Figure 6), representing 
considerable resource utilization in the analyzed datacenter.   

Furthermore, all tasks that contain both a schedule and a 
completion event are considered for analysis. Tasks that are 
not scheduled or completed within the total trace log time 
frame are not considered, as it is impossible to define task 
duration if the schedule or completion time is unknown. The 
majority of tasks excluded from analysis as a result of this 
condition are tasks used for monitoring purposes within the 
trace log, which represent 13% of the total tasks within the 
observational period.   

Figures 5(a) and 5(c) show the CPU utilization disparity 
between full tasks and completed tasks for architectures 1 
and 8 in day 2, and Figures 5(b) and 5(d) present the 

utilization disparity for memory within the same time frame 
as well as per server architecture type. It is observable that 
there exists a noticeable level of resource disparity between 
full tasks and completed tasks, and that different 
architecture types within the same time frame experience 
different levels of disparity. Tables 4 and 5 show the wasted 
CPU and Memory utilization disparity in more detail for all 
four architectures in day 2. These results show that there is a 
4.53 - 14.22% and 1.29 - 7.61% resource disparity between 
full and completed tasks for CPU and memory utilization 
respectively.  

We postulate two possible causes of this resource 
disparity. The first is the result of the Cloud scheduler 
evicting tasks across all servers. However as discussed 
previously and presented in Table 2, the number of tasks 
submitted to a particular server architecture type is in 
proportion to the total server population, agnostic of server 
type, and only 5% of tasks contain one or more constraints 
to scheduling location. The second reason for resource 
waste is the result of the Cloud workload environment being 
driven by user behavior. An example of this behavior is 
presented in [8], which observed that Day 2 exhibits a high 
number of task failure events within the time period. These 
results should be emphasized, as they offer empirical 
evidence of the economic consequences of task failure 
within the Cloud environment. Furthermore, a resource 
disparity of 4.54% for CPU should not be overlooked as an 
inconsequential figure when considering that there could be 
potentially thousands of servers with similar values. This 
waste of resources translates into economic loss for 
providers in the form of energy consumption, as well as 
reduced availability of servers.  

VIII. CONCLUSIONS 
In this paper, we have presented a characterization and 

analysis of server resource utilization within a large-scale 
production Cloud consisting of over 12,500 servers over a 
29 day time span. Furthermore, we have presented a coarse-
grain analysis of the statistical properties of the trace log, 
giving an insight into the degree of dynamicity and 
variability of workload that exists within a real Cloud 
environment. Finally, we have explored and quantified the 

 
Figure 6 Termination events breakdown per day. 
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amount of resource utilization wasted by servers due to task 
failure for CPU and memory. In this work we have been 
able to make a number of observations and conclusions. 
They are summarized as follows: 

� Analyzing the statistical properties of the trace log 
quantifies and presents empirical evidence to 
substantiate the claim of workload diversity and 
dynamicity that exists within the Cloud environment. 
Our analysis demonstrates a high level of variability in 
workload characteristics and submission rates across 
different time spans in the Cloud environment that is not 
cyclical. 

� Our analysis shows that utilization within the trace log 
remains at a constant 40-60% per architecture type 
across sampled days, and that the level of correlation 
between resource utilization and workload variability for 
a server is dependent on architecture type. This 
observation suggests that server resource utilization is 
not heavily influenced by the dynamicity of workload 
within the Cloud environment. 

� We present empirical evidence of wasted resource 
utilization within servers due to task failure. We have 
quantified the amount of wasted utilization, and have 
discovered that the average server architecture type 
within the trace log wastes between 4.54 - 14.22% and 
1.26 - 7.61% utilization for CPU and memory 
respectively. Furthermore, this level of wasted 
utilization varies by the server architecture type. In 
addition, we postulate that the cause of resource waste 
due to task termination is primarily driven by the Cloud 
workload environment, more so than the Cloud 
scheduler. 

This work has shown great potential, and has the potential 
for a great deal of future endeavor. Our plans for future 
work include a more fine-grained analysis of resource 
utilization across the entire trace log, as well as analysis of 
resource utilization on an hourly basis to assess the behavior 
of “Cloud bursting”. Furthermore, we plan to include a more 
fine-grained analysis on the correlation and effects of 
workload types and behavior on server behavior and 
characterization. 

An interesting research direction based on the results 
presented in this paper would be a detailed failure analysis 
across different server architecture types, as well as 
characterizing specific failures to calculate the resultant cost 
of energy consumption and economic impact for providers. 
Furthremore, using the results presented this paper, it is 
possible to develop distributions of the utilization and 
characteristics of servers that can then be integrated into 
Cloud simulation tools to facilitate more realistic 
assessment of Cloud architectures and algorithms.  
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