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Similarity Searching Using 2D Structural Fingerprints 
 

Peter Willett 
 

Abstract 
This paper reviews the use of molecular fingerprints for chemical similarity 

searching.  The fingerprints encode the presence of 2D substructural fragments 

in a molecule, and the similarity between a pair of molecules is a function of the 

number of fragments that they have in common.  Although this provides a very 

simple way of estimating the degree of structural similarity between two 

molecules, it has been found to provide an effective and an efficient tool for 

searching large chemical databases.  The review describes the historical 

development of similarity searching since it was first described in the mid-

Eighties, reviews the many different coefficients, representations, and 

weightings that can be combined to form a similarity measure, describes 

quantitative measures of the effectiveness of similarity searching and concludes 

by looking at current developments based on the use of data fusion and machine 

learning techniques.   

 

Key Words:  Chemical databases; Chemoinformatics; Data fusion; Fingerprint; 

Fragment substructure; Machine learning; Similar Property Principle; Similarity 

coefficient; Similarity measure; Similarity searching; Weighting scheme.  

 

1. Introduction 
The Collins English Dictionary defines similar to be “showing resemblance in 

qualities, characteristics or appearance; alike but not identical” and the comparison of objects 

to determine their levels of similarity lies at the heart of many academic disciplines.  Thus, 

archaeologists may study the relationships between pot shards from different historical sites; 

literary studies may involve comparing fragments of poetry from different works by – possibly 

– the same author; and modern systematics derives from the attempts of the medieval 

apothecaries to group medicinal plants.  The definitions of similarity, and the purposes for 

which these definitions are employed, in these three applications are very different but they 
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have in common the aim of synthesising new knowledge from a similarity-based analysis of 

that which already exists.  Similarity concepts have long played an important role in chemistry 

(1); indeed one of the most striking examples is the work of Mendeleev that led to the 

establishment of the modern Periodic Table, by means of which he was able not only to 

classify the existing elements but also to predict the existence of elements that were then 

unknown.  

 In this chapter, we focus on one specific application of similarity in chemoinformatics: 

similarity searching, i.e., the ability to scan through a database of chemical molecules to find 

those that are most similar to some user-defined query molecule (2-7).  In what follows, we 

shall normally refer to the query as the reference structure; an alternative name that is 

frequently used in the literature is the target structure, but we believe that the former name is 

to be preferred given the possibility of confusion with a biological target.   

 Similarity searching is one particular type of virtual screening.  This is the use of a 

computational technique for selecting molecules for subsequent investigation, most obviously 

for testing for bioactivity in a lead-discovery programme.  There are many different virtual 

screening methods available, but they all have the common aim of ranking a list of possible 

molecules so that those at the top of the ranking are expected to have the greatest probability 

of activity.  Virtual screening methods differ in the amount of information that is available (8-

13).  Similarity searching has by far the smallest information requirement, needing just a 

single known bioactive molecule (as discussed further below), Examples of other approaches 

to virtual screening include: 2D or 3D substructure searching (which require the availability of 

a topological or geometric pharmacophore, respectively, these being derived from a small 

number of known bioactive molecules); machine learning methods (which require large 

numbers of both known active and known inactive molecules); and docking methods (which 

require the 3D structure of the biological target).  The many methods that are now available 

have led to comparisons that seek to determine the relative effectiveness of different 

approaches to screening; the reader is referred to the literature for discussions of the strengths 

and weaknesses of similarity searching as compared to other screening approaches (see, e.g., 

(7, 14-20)).  

 This chapter seeks to present the basic principles of similarity searching, eschewing 

detailed discussion of individual approaches, and is structured as follows.  Section 2 provides 

an introduction to similarity searching, and describes the Similar Property Principle that 

underlies the use of similarity as a tool for database searching.  Section 3 discusses the three 

components – the representation, the similarity coefficient and the weighting scheme – that 

comprise a similarity measure for computing the degree of resemblance between two 

molecules; the focus of this chapter is one particular type of representation, the 2D fingerprint, 

and this representation is hence discussed in some detail in this section.  Section 4 discusses 
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the criteria that have been used to evaluate the retrieval effectiveness of different types of 

similarity searching procedure.  Finally, Section 5 summarises recent work that involves the 

use of not just a single reference structure, as is used for conventional similarity searching, but 

multiple reference structures.   

 The coverage of this review is intentionally focused, considering only one 

representation of molecular structure (the 2D fingerprint) and only one application of 

similarity (similarity searching).  The reader is referred to the literature for more general 

discussions of chemoinformatics (21-23) and of other similarity-related topics, such as 3D 

similarity measures, cluster analysis, molecular diversity analysis, and reaction similarity (3, 

24-26); for additional material specifically about similarity searching, it is worth noting that a 

characteristic of the field is that much of the work has been carried out by a limited number of 

research groups, most notably those directed by Bajorath (27) , Sheridan (16), and Willett 

(28). 

 

2. The Similar Property Principle 
The input to a similarity search is the reference structure for which related structures 

are required.  In the drug-discovery context, the reference structure normally exhibits a 

potentially useful level of biological activity and might be, for example, a competitor’s 

compound or a structurally novel hit from an initial high-throughput screening (HTS) 

experiment.  Thus the reference structure is normally an entire molecule, rather than the partial 

structure that forms the basis for 2D or 3D substructure searching (that said, there has been 

some interest in similarity searches of molecules that are substructures or superstructures of 

the reference structures (29-31)).  Each database structure is encoded using the same 

representation scheme as was used to encode the reference structure; the two representations 

are compared to ascertain the level of structural commonality using a similarity coefficient.  In 

some cases, a weighting scheme is applied to one or both of the representations prior to the 

calculation of the similarity, with the aim of increasing the relative importance of particular 

features within the overall representation.  The similarities are computed in this way for every 

molecule in the database that is being searched, and then the similarity values sorted into 

descending order.  The molecules at the top of the resulting ranking, which are often referred 

to as the nearest neighbours as they are the closest in some sense to the reference structure, are 

then presented to the user as the output from the similarity search. 

 This approach to database access was first described by Carhart et al. (32) and by 

Willett et al. (33).  Both of these studies found that effective measures of chemical similarity 

could be obtained by determining the numbers of 2D substructures common to a reference 

structure and a database structure, although the starting points for the two studies were rather 

different.  Carhart et al., working at Lederle Laboratories, used the information about common 
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fragments not just for similarity searching but also for substructural analysis (vide infra).  The 

study by Willett et al. drew on earlier work by Adamson and Bush that reported probably the 

very first use of 2D fingerprints for the calculation of molecular similarity (specifically in the 

context of QSAR studies rather than for large-scale database applications) (34).  Willett et al. 

used the information about common fragments in a combined search system at Pfizer, where 

the computed similarities were used to rank the molecules retrieved in a substructure search; 

however, the authors soon realised that the initial substructure search was not necessary and 

that similarity searching on its own provided a novel way of accessing a chemical database.   

 Following these two initial studies, fragment-based similarity searching was adopted 

very rapidly in both commercial and in-house chemoinformatics systems.  Its uptake was 

spurred by several factors: it provides a retrieval mechanism that is complementary to 

substructure searching; it uses the same basic data as existing substructure software, i.e., sets 

of 2D fingerprints; and it is both rapid and powerful in execution, encouraging interactive 

exploration of the range of structural types in a database (35).  These are all perfectly valid, 

but essentially pragmatic reasons for using similarity searching.  There is, however, also a 

rational basis, which derives from what is known as the Similar Property Principle.  The 

Principle states that molecules that have similar structures will have similar properties, and is 

normally ascribed to Johnson and Maggiora, whose 1990 book was the first to highlight the 

role of similarity in what we now refer to as chemoinformatics (25).  However, it had certainly 

been discussed prior to then, e.g., by Wilkins and Randic in 1980 (36), and arguably underlies 

the whole area of drug discovery: if there was not some relationship between molecular 

structures (however these are represented in computational terms) and molecular properties 

then lead discovery and lead optimisation would be essentially random processes, which is 

certainly not the case.  If the Principle holds then the molecules in a database that are most 

similar to a bioactive reference structure are (all other things being equal) those that are most 

likely to exhibit the reference structure’s bioactivity.  Ranking the database in order of 

decreasing similarity, where the similarity is defined using some quantitative measure of inter-

molecular similarity, hence provides a rational way of prioritising compounds for biological 

testing and thus a firm basis for the development of similarity searching methods.  It is 

appropriate to mention here the closely related concept of Neighbourhood Behaviour (37), 

which involves relating absolute differences in bioactivity for pairs of molecules to the 

dissimilarities for those pairs of molecules.  This concept has been used to categorise the 

effectiveness of molecular descriptors for molecular diversity applications (38-40).   

 Given the importance of the Similar Property Principle, it is hardly surprising that 

there have been several attempts to demonstrate its applicability.  Perhaps the first detailed 

study was that reported by Willett and Winterman, which showed that simple fingerprint-

based similarities could be used to predict a range of physical, chemical and biological 
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properties in small QSAR datasets (using a “leave-one-out” prediction approach that is 

discussed later in this review) (41).  Having demonstrated that similarities in structure 

mirrored similarities in property, these authors then used differences in the strength of this 

relationship to compare different types of similarity measure.  Specifically, they made the 

assumption that if the Principle holds for some particular dataset, then the extent of the 

relationship between structure and property that is obtained using some particular similarity 

measure provides a basis for evaluating the effectiveness of that measure, and hence for 

comparing the effectiveness of different types of similarity measure.  Analogous results were 

obtained for their QSAR datasets when they were clustered using a range of hierarchic and 

non-hierarchic clustering methods (42).  The latter work was extended to much larger datasets 

in two papers by Brown and Martin (43, 44).  These studies were designed to compare the 

effectiveness of different clustering methods and different types of fingerprint for selecting 

structurally diverse database subsets, but their detailed experiments demonstrate clearly the 

general applicability of the Principle.  A later paper by Martin et al. provided a direct 

evaluation of the Principle using structures that had been tested in over one-hundred assays at 

Abbott Laboratories (45).  Whilst noting that there were cases where the Principle did not 

apply, the principal conclusion was that structurally similar compounds do indeed have similar 

bioactivities, with the latter increasing as the structural similarity is increased.  These studies 

have been taken further in an interesting study by Steffen et al., who show that the Principle 

also applies when molecular bioactivities are considered across a range of assays, rather than 

just a single assay as in the other studies cited here (46).  

Further demonstrations of the general validity of the Principle come from two near-

contemporaneous studies of the applicability of QSAR models.  Thus Sheridan et al. (47) and 

He and Jurs (48) showed that the more similar a molecule was to molecules in the training-set 

then the more likely it was that an accurate prediction could be made using the QSAR model 

that had been derived from that training-set.  More recently, Bostrom et al. analysed sets of 

protein-ligand complexes from the Protein Data Bank to demonstrate that molecules that are 

structurally similar tend to bind to a biological target in the same way, i.e., in addition to 

eliciting the same biological response, similar molecules achieve this by means of the same 

mode of action (49).  Finally, the Principle is attracting further support from work in 

chemogenomics, with recent studies demonstrating: that molecules with similar 2D 

fingerprints bind to structurally related biological targets (50, 51); that molecule-based 

similarities can suggest novel functional relationships between  targets that exhibit little 

sequence similarity (52, 53); and that pairs of molecules acting on a common target are more 

likely to be similar than pairs of molecules that do not share a common target (54).   

 It should be noted that there are many exceptions to the Principle, a situation that 

Stahura and Bajorath refer to as the Similarity Paradox (55).  This is especially the case if 
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attention is focused on the relatively small numbers of structurally related molecules that are 

commonly encountered in QSAR studies (5, 6, 56), where it is not uncommon for very slight 

changes in structure to bring about large changes in activity (a phenomenon that has been 

referred to as an “activity cliff” (57, 58)).  However, the Similar Property Principle does 

provide a highly appropriate basis for similarity searching, where similarities are typically 

computed for large, or very large, numbers of molecules spanning a huge range of structural 

classes.   

 

3. Components of a Similarity Measure 
Any database searching system must be both efficient (i.e., must involve the use of 

minimal computing resources, typically time and space) and effective (i.e., must retrieve 

appropriate items from the database that is being searched).  Modern computer hardware and 

software enable highly efficient similarity searches to be carried out on even the largest 

chemical databases (at least when using the 2D fingerprint approaches that are considered in 

this chapter), and we hence focus on the factors that control effectiveness.  This is determined 

by the nature of the measure that is used to compute the degree of resemblance between the 

reference structure and each of the database structures.  A similarity measure has three 

components: the representation that is used to characterise the molecules that are being 

compared; the weighting scheme that is used to assign differing degrees of importance to the 

various components of these representations; and the similarity coefficient that is used to 

provide a quantitative measure of the degree of structural relatedness between a pair of 

(possibly weighted) structural representations.   

 

3.1 Representations  

Very many techniques are available for representing and encoding the structures of 2D 

chemical molecules (23, 24, 59) and many of these representations have been used for 

similarity searching (16, 26, 60).  It is common to divide the many techniques into three broad 

classes of descriptor: whole molecule (sometimes called 1D) descriptors; descriptors that can 

be calculated from 2D representations of molecules; and descriptors that can be calculated 

from 3D representations.    

 Whole molecule descriptors are single numbers, each of which represents a different 

property of a molecule such as its molecular weight, the numbers of heteroatoms or rotatable 

bonds, or a computed physicochemical parameter such as logP.  A single 1D descriptor is not 

usually discriminating enough to allow meaningful comparisons of molecules and a molecule 

is hence normally represented by several (or many) such descriptors (61, 62).  2D descriptors 

include topological indices and substructural descriptors.  A topological index is a single 

number that typically characterises a structure according to its size and shape (63, 64).  There 
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are many such indices: the simplest characterise molecules according to their size, degree of 

branching and overall shape, while more complex indices take account of the properties of 

atoms as well as their connectivities.  As with 1D descriptors, multiple different indices are 

normally combined for similarity searching (65).  Substructure-based descriptors characterise 

a molecule by the substructural features that it contains, either by the molecule’s 2D chemical 

graph, or by its fingerprint.  Fingerprints are the focus of this chapter and are hence discussed 

in more detail below.  They have been found to be at least as effective, if not more so, for 

virtual screening than chemical graphs (66) despite the fact that they provide a much less 

precise representation of a molecule’s structure than does the underlying graph (which 

contains a full description of the molecule’s topology).  There is hence some interest in the use 

of simplified graph representations for virtual screening (67-70), and it is likely that work in 

this area will be developed further in the future.  3D descriptors are inherently more complex 

since they need to take account of the fact that many molecules are conformationally flexible 

(although some successful 3D similarity measures have assumed that a molecule can be 

represented by a single, low-energy conformation).  Similarity measures have been reported 

that are based on inter-atomic distances (71), molecular surfaces (72), electrostatic fields (73, 

74) and molecular shapes (75, 76) inter alia.   

 This chapter focuses on fingerprint-based similarity searching, and it is hence 

appropriate to discuss the various types of fingerprint that are available in more detail.  

Fingerprints enable effective similarity searching, but they were first developed for efficient 

substructure searching.  This involves using a subgraph isomorphism algorithm to check for an 

exact mapping of the atoms and bonds in a query substructure onto the atoms and bonds of 

each database structure (23, 24).  Graph matching algorithms are far too slow to enable 

interactive substructure searching of large files on their own, and it is hence necessary to use 

an initial screening search.  This filters out of the great majority of the database structures that 

do not contain all of the substructural fragments present in the query substructure, with only 

those few molecules that do contain all of these fragments being passed on for the time-

consuming graph-matching stage.  The presence or absence of fragments in a query 

substructure or in a database structure is encoded in a binary vector that is normally referred to 

as a fingerprint.   

 There are two main ways of selecting the fragments that are encoded in a fingerprint 

(23, 24, 77, 78).  In a dictionary-based approach, there is a pre-defined list of fragments, with 

normally one fragment allocated to each position in the bit-string.  A molecule is checked for 

the presence of each of the fragments in the dictionary, and a bit set (or not set) when a 

fragment is present (or absent).  The dictionary normally contains several different types of 

fragment.  For example, an augmented atom contains a central atom together with its 

neighbouring atoms and bonds, and an atom sequence contains a specific number of connected 
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atoms and their intervening bonds.  The effectiveness of the dictionary is maximised if a 

statistical analysis is carried out of the sorts of molecules that are to be fingerprinted, so as to 

ensure that the most discriminating fragments are included (79-81).  In a molecule-based 

approach, hashing algorithms are used to allocate multiple fragments to each bit-position.  

Here, a generic fragment type is specified, e.g., a chain of four connected non-hydrogen 

atoms, and a note made of all fragments of that type that occur in a given molecule.  Each 

fragment is converted to a canonical form and then hashed using several (typically two or 

three) hashing algorithms to set bits in the fingerprint.  The first widely used fingerprint of this 

sort was that developed by Daylight Chemical Information Systems Inc. (at 

http://www.daylight.com).  This fingerprint encodes atom sequences up to a specified length 

(typically from 2 to 7 atoms), with each such sequence being hashed using multiple hashing 

procedures so that each bit is associated with multiple fragments and each fragment with 

multiple bit positions. 

 Both the dictionary-based and the molecule-based approaches are represented in the 

fingerprints encountered in operational chemoinformatics systems.  For example, the 

fingerprints produced by Digital Chemistry (formerly Barnard Chemical Information, at 

http://www.digitalchemistry.co.uk,), by Sunset Molecular (at 

http://www.sunsetmolecular.com) and by Symyx Technologies (formerly MDL Information 

Systems at http://www.symyx.com) are dictionary-based, the Daylight fingerprints mentioned 

previously and the fingerprints produced by Accelrys (at http://www.accelrys.com) are 

molecule-based (using linear chains and circular substructures, respectively), and the Unity 

fingerprints produced by Tripos (at http://www.tripos.com) are based on both approaches.   

 Most of the fingerprints above were originally developed for efficient substructure 

searching, and it is perhaps surprising that they have also been found to provide a highly 

effective, alternative type of database access.  There are also fingerprints that have been 

developed specifically for similarity searching (14, 51, 82-87).  It is noteworthy that many of 

the newer types of fingerprint describe the atoms not by their elemental types but by their 

physicochemical characteristics, so as to enable the identification of database structures that 

have similar properties to the reference structure in a similarity search but that have different 

sets of atoms.  This increases the chances of scaffold-hopping, i.e., the identification of novel 

classes of molecule with the requisite bioactivity (88-91).  We should also note that the 

discussion here is restricted to fingerprints that encode structural fragments: other types of 

fingerprint used for similarity searching have involved other types of information such as 

property information (46, 92, 93) or affinities to panels of proteins (94, 95). 

 

3.2 Weighting schemes   

http://www.daylight.com/
http://www.sunsetmolecular.com/
http://www.symyx.com/
http://www.accelrys.com/
http://www.tripos.com/
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Most fingerprints are binary in nature, with each bit denoting the presence/absence of 

a substructural fragment in a molecule.  However, the elements of a fingerprint can also 

contain non-binary information that assigns a weight, or degree of importance, to the 

corresponding features.  Thus, a feature that had a large weight and that occurred in both the 

reference structure and a database structure would contribute more to the overall similarity of 

those molecules than would a common feature with a small weight.  Weighting features in 

fingerprints lies at the heart of many approaches to substructural analysis and related machine-

learning approaches where large amounts of training data are available (vide infra) (27, 96, 

97), but has been much less studied in the context of similarity searching, where the only 

information that is available is the reference structure and the database structures that are to be 

searched.   

Willett and Winterman suggested that three types of weighting could be used for 

fingerprint-based similarity searching: weighting based on the number of times that a fragment 

occurred in an individual molecule; weighting based on the number of times that a fragment 

occurred in an entire database; and weighting based on the total number of fragments within a 

molecule (41).  Of these three types of weight, the last is accommodated in many of the 

common similarity coefficients (vide infra) since they include a factor describing the sizes (in 

terms of numbers of fragments) of the two molecules that are being compared, whilst studies 

of the second type of weight have been limited to date (98, 99).  However there have been 

several studies of the use of information about fragment occurrences in a single molecule (41, 

43, 70, 84, 85, 100-102).  These studies have suggested that fingerprints encoding the 

occurrences of substructural fragments may be able to give better screening performance than 

conventional, binary fingerprints.  However, the results have been far from consistent; and the 

performance differences often quite small; many of the previous studies were limited, either in 

terms of the numbers of molecules involved or in the extent to which the weighted and binary 

fingerprints differed; and there has been no attempt to explain the observed levels of 

performance.  This situation has been addressed in a recent study by Arif et al. (103), which 

has demonstrated conclusively the general superiority of occurrence-based weighting and also 

rationalised the different (and sometimes very different) levels of performance that were 

observed in experiments involving a range of weighting schemes, types of fingerprint and 

chemical databases.  Their recommended scheme involves encoding both the reference 

structure and the database structures using the square root of a fragment’s occurrence; the 

study was, however, limited to the use of the Tanimoto coefficient (vide infra) and it remains 

to be seen whether analogous results are obtained with other types of coefficient. 

 

3.3 Similarity coefficients   
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The calculation of inter-object similarities by means of a similarity coefficient lies at 

the heart of cluster analysis, a multivariate data analysis technique that is used across the 

sciences and social sciences (104), and very many different similarity coefficients have thus 

been developed for this purpose (105, 106).  Willett et al. provide an extended account of 

those that have been used for applications in chemoinformatics (35), focusing on the 

mathematical characteristics of the various coefficients that they discuss and, in particular, on 

the broad class of similarity coefficients known as association coefficients.  These are all 

based on the number of fragments, i.e., bits in a fingerprint, common to the fingerprints 

describing a reference structure and a database structure, with this number normalised by some 

function based on the numbers of non-zero bits in the two fingerprints that are being 

compared.  An example of an association coefficient is the Tanimoto coefficient.  This was 

found to work well in Willett and Winterman’s early similarity study of QSAR datasets (41) 

and was hence adopted as the coefficient of choice when the first operational searching 

systems were introduced a few years later.  Subsequent work has demonstrated the 

appropriateness of this choice: the Tanimoto coefficient has been found to perform well in a 

wide range of applications, and not just similarity searching, and remains the yardstick against 

which alternative approaches are judged, despite the many years that have passed since Willett 

and Winterman’s initial study in 1986.  Like most association coefficients, the Tanimoto 

coefficient takes values between zero and unity when used with binary fingerprints: a value of 

zero corresponds to two fingerprints that have no bits in common, while a value of unity 

corresponds to two identical fingerprints (35).   

 Whilst widely used, the Tanimoto coefficient is known to give low similarity values in 

searches for small reference structures (where just a few bits are switched on in the reference 

structure’s fingerprint) (107-109), and is also known to have an inherent bias towards specific 

similarity values (110).  These observations spurred several comparative studies (summarised 

in (28)) that involved over 20 different fingerprint-based similarity coefficients.  None of the 

coefficients was found to be consistently superior to the Tanimoto coefficient, and it was 

shown (both experimentally and theoretically) that most coefficients exhibit at least some 

degree of dependence on the sizes (i.e.., numbers of set bits) of the molecules that are 

compared in a similarity search.  Later studies have focussed on the use of asymmetric 

coefficients, based on ideas first put forward by Tversky (111), for the calculation of inter-

molecular structural similarities (112, 113).  In a symmetric coefficient, the value of the 

coefficient is independent of whether a reference structure is mapped to a database structure or 

vice versa.  This is not so with asymmetric coefficients and it has been suggested that this may 

be beneficial for database searching (30, 114), although the merits of such coefficients are still 

the subject of debate (115, 116). 
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The coefficients discussed thus far focus on the substructural fragments that are 

common to a reference structure and a database structure, i.e., those positions in the fingerprint 

where the bit is switched on.  Information about the other bits, i.e., those that are switched off, 

may be included implicitly, typically via a contribution to the overall coefficient that reflects 

sizes of the two molecules that are being compared.  Extended versions have been reported of 

the Tanimoto and Tversky coefficients where the overall value of the coefficient is the 

weighted sum of one coefficient based on the bits switched on and of one coefficient based on 

the bits switched off (109, 117). 

Association coefficients are specifically designed for use with binary data.  If interval 

or ratio data is used, as would be the case if some form of fragment weighting scheme was to 

be employed in the generation of a fingerprint, other types of coefficient may then be 

appropriate.  The Euclidean distance has been found to work well in many data analysis 

studies, both in chemoinformatics and more generally (35, 104); however, Varin et al. (118) 

have recently suggested that a coefficient described by Gower and Legendre (119), which 

reduces to the Tanimoto coefficient when applied to binary data, performs very well when 

weighted fingerprints are used for clustering and similarity searching.  

 

4. Evaluation of Similarity Measures 
It will be clear from the above that there are very many possible combinations of 

fingerprint, coefficient, and weighting scheme that could be used to build a similarity measure 

for similarity searching.  It is hence reasonable to ask how one can assess  the effectiveness of 

different measures and thus how one can identify the most appropriate for a particular 

searching application.  

The aim of similarity searching, as of any virtual screening method, is to identify 

bioactive molecules and the evaluation of search effectiveness is hence normally carried out 

using datasets for which both structure and bioactivity data are available.  There is, of course, 

a vast amount of such data available in corporate databases as a result of the massive 

biological screening programs carried out by industry, but intellectual property considerations 

mean that this rarely, or ever, becomes available for more general use.  This is a severe 

limitation since the development of the science of similarity searching requires standard 

datasets that can be used for the evaluation and comparison of different methods as they 

become available.  Instead, most reported studies of similarity measures make use of a limited 

number of public datasets for which both structural and activity data are available.  Examples 

of such datasets that have become widely used include the MDL Drug Data Report database 

(available from Symyx Technologies at http://www.symyx.com), the World Of Molecular 

Bioactivity database (available from Sunset Molecular at http://sunsetmolecular.com/), the 

National Cancer Institute AIDS database (available from the National Library of Medicine 

http://www.symyx.com/
http://sunsetmolecular.com/
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Developmental Therapeutics Programme at http://dtp.nci.nih.gov), and the Directory of Useful 

Decoys (DUD) database (available from http://www.dud.docking.org/).  

Although standard datasets are widely used, it is important to recognise that they do 

have some limitations.  First, they contain molecules that have been reported as exhibiting 

some particular bioactivity but may say nothing as to their activity or inactivity against other 

biological targets; instead, it is normally the case that the absence of activity information is 

taken to mean inactivity.  Second, molecules that reach the published literature (and that are 

hence eligible for inclusion in such databases) may be only a small, carefully studied and high-

quality subset of those that were actually synthesised and tested in a screening program.  

Third, the “me too” or “fast follower” nature of research in the pharmaceutical industry means 

that some structural classes are overly represented in a dataset.  Finally, the numbers of 

molecules in these datasets are typically an order of magnitude less than in corporate 

databases, which may contain several million molecules.  Notwithstanding these 

characteristics, the existence of these datasets does mean that there is a natural platform for 

evaluating new methods and for comparing them with existing methods. 

 The bioactivity data can be either qualitative (e.g., a molecule is categorised as either 

active or inactive) or quantitative (e.g., an IC50 value is available for a molecule), but the 

Similar Property Principle provides the basis for performance evaluation irrespective of the 

precise nature of the biological data.  If the Principle does hold for a particular dataset, i.e., if 

structurally similar molecules have similar activities, then the nearest-neighbour molecules in 

a similarity search are expected to have the same activity as the bioactive reference structure.  

The effectiveness of a similarity measure can hence be quantified by determining the extent to 

which the similarities resulting from its use mirror similarities in the bioactivity of interest.  

Several reviews are available of effectiveness measures that can be used when 

qualitative activity data are available (38, 120, 121).  Most if not all of the common measures 

can be regarded as a function of one or both of two underlying variables: the recall and the 

precision.  Assume that a similarity search has been carried out, and a threshold applied to the 

resulting ranked list to retrieve some small subset, e.g., 1%, of the database.  Then the recall is 

the fraction of the total number of active molecules retrieved in that subset; and the precision 

is the fraction of that subset that is active.  A good search is one that maximises both recall and 

precision so that, in the ideal case, a user would be presented with all of the actives in the 

database without any additional inactives: needless to say, this ideal is very rarely achieved in 

practice.   

 Examples of measures that have been extensively used include the enrichment factor, 

i.e., the number of actives retrieved relative to the number that would have been retrieved if 

compounds had been picked from the database at random (122), the numbers of actives that 

have been retrieved at some fixed position in the ranking (123), and the Receiver Operating 

http://dtp.nci.nih.gov/
http://www.dud.docking.org/
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Characteristic (or ROC curve) (124, 125).  A ROC curve plots the percentage of true positives 

retrieved against the percentage of false positives retrieved at each position in the ranking (or 

at some series of fixed positions, e.g., the top 5%, the top 10%, the top 15% etc).  ROC curves 

are widely used in machine learning and pattern recognition research but their use in virtual 

screening has been criticised (126) since no particular attention is paid to the top-ranked 

molecules, and it is these that would actually be selected for testing in an operational screening 

system.  There is much current interest in the evaluation of virtual screening (based on 

similarity searching, docking or whatever) and it is likely to be some time before full 

agreement is reached as to the best approaches to evaluation (127, 128). 

 Similarity searching is normally used in the lead discovery stage of a drug discovery 

programme, when only qualitative biological data are available and when the evaluation 

criteria mentioned in the previous paragraph are appropriate.  However, the Similar Property 

Principle can also be applied to the analysis of datasets with quantitative data, using a leave-

one-out approach analogous to those used in QSAR studies (121).  Assume that the activity 

value for the reference structure R is known and is denoted by A(R).  A similarity search is 

carried out and some number of R’s nearest neighbours identified.  The predicted activity 

value for R, P(R), is then taken to be the arithmetic mean of the known activity values for this 

set of nearest neighbours.  The similarity search is repeated using different reference 

structures, and the correlation coefficient is then computed between the resulting sets of A(R) 

and P(R) values.  A large correlation coefficient implies a good fit between the known and 

predicted bioactivities and hence strict adherence to the Similar Property Principle by the 

similarity search procedure that was used to generate the sets of nearest neighbours.  This 

approach to performance evaluation was pioneered by Adamson and Bush (34); it formed the 

basis for Willett’s extensive studies of similarity and clustering methods in the Eighties (42) 

and, more recently, was used in Brown and Martin’s much-cited comparison of structural 

descriptors for compound selection (43, 44).  

 A focus on the number of active molecules retrieved by a similarity search is entirely 

reasonable, but the needs of lead discovery mean that it is also important to consider the 

structural diversity of those active molecules (129).  Specifically, account needs to be taken of 

the scaffold-hopping abilities of the similarity search since, e.g., a search retrieving 25 active 

analogues that all have the same scaffold as the reference structure is likely to be of much less 

commercial importance than a search retrieving just five actives if each of these has a different 

scaffold.  It is often suggested that fragment-based 2D similarity searching has only a limited 

scaffold-hopping capability, especially when compared with more complex (and often much 

more time-consuming) 3D screening methods.  This suggestion is clearly plausible but there is 

a fair amount of evidence to suggest that 2D methods can exhibit non-trivial scaffold-hopping 

capabilities (16) MORE REFS FROM BOX  
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 The evaluation criteria described above have been used in a very large, and constantly 

increasing, number of studies that discuss the effectiveness of similarity searching.  Even a 

brief discussion of these many studies would require a totally disproportionate amount of 

space, and the reader is accordingly referred to the many excellent reviews that exist (2, 5-7, 

35, 60).   

 
5. Use of Multiple Reference Structures 
 As discussed thus far, similarity searching has involved matching a single bioactive 

reference structure against a database using a single similarity measure.  Over the last few 

years, perhaps the principal development in the field of similarity searching has been the 

appearance of a range of methods that involve the use of additional information in generating a 

ranking of the database.  It is possible to identify two broad classes of approach: the first class 

involves the use of data fusion, or consensus, methods; while the second class involves the use 

of machine learning methods to develop predictive models that can guide future searches 

given a body of training data.  It is debateable where similarity searching stops and where 

machine learning starts, but the main difference is in the amounts of bioactivity data available 

and the way that data is used.  One of the principal attractions of similarity searching as a tool 

for virtual screening is that it requires just a single known active molecule; whereas the 

application of machine learning to virtual screening requires a pool of molecules (this pool 

ideally including not just actives but also inactives) to enable the development of a predictive 

model.  In this review we shall focus more on data fusion since work in this area is more 

tightly aligned to conventional similarity searching, but make some remarks about machine 

learning approaches at the end of the section. 

 The comparative studies referenced in Section 4 have typically sought to identify a 

single “best” similarity method; hardly surprisingly, it has not been possible to identify a 

single approach that is consistently superior to all others across a range of reference structures, 

biological targets and performance criteria (7, 16).  The data fusion approach involves carrying 

out multiple similarity searches and then combining the resulting search outputs to give a 

single fused output that is presented to the searcher.  For example, assume that three different 

types of 2D fingerprint are available.  A search is carried out using the first fingerprint-type to 

describe the reference structure and each of the database structures, and the database ranked in 

decreasing order of the computed similarity.  The procedure is repeated using each of the other 

two types of fingerprint in turn, and the three database rankings are then combined using a 

fusion rule, e.g., taking the mean rank for each database structure when averaged across the 

three rankings.  Data fusion was first used for similarity searching in the mid-Nineties as 

discussed in an extensive review by Willett (130); analogous techniques are used in docking, 

where the approach is called consensus scoring (131).   
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Early studies of data fusion involved combining searches that were based on different 

types of structural representation.  For example, Ginn et al. reported studies involving a wide 

range of types of representation (2D fingerprints, sets of physicochemical properties, 

Molecular Electrostatic Potential descriptors, and infra-red spectral descriptors) and of 

combination rules (132, 133).  This work, and analogous studies by the Sheridan group (122, 

134), suggested that fusion could give search outputs that were more robust, in the sense of 

offering a consistently high level of performance, than those obtainable from the use of a 

single type of similarity search.  More recent work in this area has considered the combination 

of further types of representation, and the combination of searches that involve different 

similarity coefficients (135, 136).   

 Thus far, we have considered data fusion to involve a single reference structure but 

multiple similarity measures, an approach that Whittle et al. refer to as similarity fusion (137).  

The alternative, group fusion approach inverts the relationship between similarity measure and 

reference structure, so that the multiple searches that are input to the fusion procedure result 

from using multiple reference structures and a single similarity measure (e.g., the Tanimoto 

coefficient and 2D fingerprints).  This idea seems to have been first reported by Xue et al. 

(138) and then by Schuffenhauer et al. (51) some time after the initial studies of similarity 

fusion; however, group fusion appears from the literature to have become much more widely 

used.  Its popularity dates from a study by Hert et al. (123) who found that fusing the 

similarity rankings obtained from as few as ten reference structures enabled searches to be 

carried out that were comparable to even the very best from amongst many hundreds of 

conventional similarity searches using individual reference structures.  Subsequent studies 

demonstrated the general validity of the approach, and it has now been widely adopted (139, 

140).   

 Hert et al. have also described a modification of conventional similarity searching that 

makes use of group fusion (141, 142).  A similarity search is carried out in the normal way 

using a single reference structure, and the nearest neighbours identified.  The assumption is 

then made that they also are active, as is likely to be the case if the Similar Property Principle 

applies to the search.  Each of these nearest neighbours is used in turn as a reference structure 

for a further similarity search, and the complete set of rankings (one from the original 

reference structure and one from each of the nearest neighbours) is then fused to give the final 

output ranking.  This turbo similarity searching approach resulted in searches that were nearly 

always superior to conventional similarity searching (where just the initial reference structure 

is used) in its ability to identify active molecules, although performance appears to be crucially 

dependent on the effectiveness of the initial search based on the original reference structure 

(143).  
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 Most studies of fusion methods have found that they seem to work well in practice but 

have not provided any rationale for why this might be so (130).  Two studies have addressed 

this question.  An empirical study by Baber et al. (144) showed that active molecules are more 

tightly clustered than are inactive molecules (as would indeed be expected if the Similar 

Property Principle holds).  Thus, when multiple scoring functions are used in similarity fusion, 

they are likely to repeatedly select many actives but not necessarily the same inactives, 

providing an enrichment of actives at the top of the final fused ranking.  Whittle et al. provide 

a rigorous theoretical approach to the modelling of data fusion (145, 146).  Their model 

suggests that the origin of performance enhancement for simple fusion rules can be traced to a 

combination of differences between the retrieved active and retrieved inactive similarity 

distributions and the geometrical difference between the regions of these multivariate 

distributions that the chosen fusion rule is able to access.  Although their model gave 

predictions in accord with experimental data, it was concluded that improvements over 

conventional similarity searching would be obtained only if large amounts of training data are 

available; however, this is not normally the case in the early stages of drug-discovery 

programmes where similarity searching is most commonly used.   

 Group fusion requires multiple reference structures but the processing involves them 

being treated on an individual basis, with each one generating their own similarity ranking.  It 

is arguable that this wastes available information since it takes no account of the relationships 

between the reference structures, as reflected in the bits that are, and that are not, set in their 

fingerprints.  This is valuable information that can be correlated with the other information 

that we have available, i.e., that these reference structures are known to exhibit the activity that 

is being sought in the similarity search.  Put simply, if a bit is set in many of the reference 

structures’ fingerprints, then it seems likely that the corresponding 2D fragment is positively 

associated with the activity of interest, and this information can be used to enhance the 

effectiveness of a similarity search.   

The relationship between fragment occurrences and bioactivity in large databases was 

first studied by Cramer et al. (147).  Their substructural analysis approach (148-151) and the 

closely related naïve Bayesian classifier (82, 142, 152-154) are widely used examples of the 

application of machine learning methods to virtual screening (97).  These applications require 

considerable amounts of training: this is normally HTS data that contains many examples of 

both active and inactive molecules.  The use of such approaches for similarity searching 

typically uses training data based on the set of reference structures (for the actives) and on any 

large set of molecules from which the known actives have been removed (for the inactives).  

One example of this approach is the MOLPRINT system of Bender et al. (82, 155), who have 

used a naïve Bayesian classifier with atom-centred substructures chosen using a feature 

selection algorithm.  However, the largest body of work in this area has been carried out by the 
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Bajorath group, who have used a Bayesian approach to derive functions that relate the 

probability of a molecule exhibiting bioactivity to the statistical distributions of the descriptor 

values for that molecule’s descriptors (156).  The procedure involves estimating the 

probability that a molecule will be active given a particular value of a descriptor, where the 

descriptor can be binary (as with a bit in a fingerprint) or non-binary (as with a molecular 

property).  The probabilities of activity for different descriptors are assumed to be statistically 

independent, and it is hence possible to compute the overall probability of activity (or 

inactivity) for a molecule by taking the product of the individual descriptor probabilities.  It 

should be noted that the independence assumption is generally incorrect (indeed, it is naïve, 

which is why the approach is called a naïve Bayesian classifier) but has been found to work 

well in practice.  The overall approach is markedly more complex than with group fusion, 

where the reference structures are used for individual similarity searches; however, detailed 

comparisons suggest the greater search effectiveness of the Bayesian approach (157).  An 

interesting application of this work is the ability to predict the probability that a similarity 

approach will be able to identify novel molecules that exhibit the reference structures’ 

bioactivity when searching a particular database: if this probability is low then it may be worth 

considering an alternative type of structure representation for the search (156).  Other recent 

studies by this group have included: ways of weighting the bits in fingerprints (158); the use of 

quantitative, rather than qualitative, bioactivities for the training data (159); and the use of a 

different machine learning tool, a support vector machine, for similarity searching (160).  

We have thus considered two ways of using multiple reference structures: combining 

rankings based on each structure in turn (group fusion), and combining information about the 

bits that are and are not set in the structures’ fingerprints.  There is a much simpler approach, 

involving the combination of the multiple reference structures’ fingerprints into a single, 

combined fingerprint (51, 161); however, this appears to be less effective than the other two 

approaches (123, 162).  There is also a considerably more complex approach, which involves 

combining the actual chemical graphs of the reference structures (rather than fingerprints 

derived from those graphs) (163); however, this hardly comes within the scope of a review of 

fingerprint-based methods 

 

6. Conclusions 
Similarity searching of chemical databases using 2D structural fingerprints was first 

described almost a quarter of a century ago.  Since that time, it has established itself as one of 

the most valuable ways of accessing a chemical database to identify novel bioactive 

molecules, providing a natural complement to the long-established systems for 2D 

substructure searching.  It is now routinely used in the initial stages of virtual screening 

programmes, where very little structure-activity data may be available at the start of a research 
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project, and has proved to be remarkably effective in this role, despite the inherent simplicity 

of the methods that are being used.  There are very many different types of similarity measure 

that can be used to determine the similarity between a pair of molecules: at present, the 

Tanimoto coefficient and binary fingerprints are the method of choice, but it would be 

surprising if it did not prove possible to identify more effective ways of searching, e.g., using 

some type of fragment weighting scheme.  Current research in similarity searching is looking 

at ways of exploiting the information that is available when multiple reference structures are 

available. 

 

References 

1. Rouvray, D. H. (1990) The evolution of the concept of molecular similarity, in 
Concepts and Applications of Molecular Similarity (Johnson, M. A., and Maggiora, 
G. M., Eds.), pp 15-42, John Wiley, Chichester. 

2. Bender, A., and Glen, R. C. (2004) Molecular similarity: a key technique in 
molecular informatics, Organic and Biomolecular Chemistry 2, 3204-3218. 

3. Dean, P. M., (Ed.) (1994) Molecular Similarity in Drug Design, Chapman and Hall, 
Glasgow. 

4. Downs, G. M., and Willett, P. (1995) Similarity searching in databases of chemical 
structures, Reviews in Computational Chemistry 7, 1-66. 

5. Maldonado, A. G., Doucet, J. P., Petitjean, M., and Fan, B.-T. (2006) Molecular 
similarity and diversity in chemoinformatics: from theory to applications, Molecular 
Diversity 10, 39-79. 

6. Nikolova, N., and Jaworska, J. (2003) Approaches to measure chemical similarity - a 
review, Quantitative Structure-Activity Relationships and Combinatorial Science 22, 
1006-1026  

7. Sheridan, R. P., and Kearsley, S. K. (2002) Why do we need so many chemical 
similarity search methods?, Drug Discovery Today 7, 903-911. 

8. Alvarez, J., and Shoichet, B., (Eds.) (2005) Virtual Screening in Drug Discovery, 
CRC Press, Boca Raton. 

9. Bajorath, J. (2002) Integration of virtual and high-throughput screening, Nature 
Reviews Drug Discovery 1, 882-894. 

10. Böhm, H.-J., and Schneider, G., (Eds.) (2000) Virtual Screening for Bioactive 
Molecules, Wiley-VCH, Weinheim. 

11. Klebe, G., (Ed.) (2000) Virtual Screening: an Alternative or Complement to High 
Throughput Screening, Kluwer, Dordrecht. 

12. Lengauer, T., Lemmen, C., Rarey, M., and Zimmermann, M. (2004) Novel 
technologies for virtual screening, Drug Discovery Today 9, 27-34. 

13. Oprea, T. I., and Matter, H. (2004) Integrating virtual screening in lead discovery, 
Current Opinion in Chemical Biology 8, 349-358. 

14. Gedeck, P., Rhode, B., and Bartels, C. (2006) QSAR - how good is it in practice?  
Comparison of descriptor sets on an unbiased cross section of corporate data sets, 
Journal of Chemical Information and Modeling 46, 1924-1936. 

15. McGaughey, G. B., Sheridan, R. P., Bayly, C. I., Culberson, J. C., Kreatsoulas, C., 
Lindsley, S., Maiorov, V., Truchon, J.-F., and Cornell, W. D. (2007) Comparison of 
topological, shape, and docking methods in virtual screening, Journal of Chemical 
Information and Modeling 47, 1504-1519. 

16. Sheridan, R. P. (2007) Chemical similarity searches: when is complexity justified?, 
Expert Opinion on Drug Discovery 2, 423-430. 



 19 

17. Sheridan, R. P., McGaughey, G. B., and Cornell, W. D. (2008) Multiple protein 
structures and multiple ligands: effects on the apparent goodness of virtual screening 
results, Journal of Computer-Aided Molecular Design 22, 257-265. 

18. Talevi, A., Gavernet, L., and Bruno-Blanch, L. E. (2009) Combined virtual screening 
strategies, Current Computer-Aided Drug Design 5, 23-37. 

19. Warren, G. L., Andrews, C. W., Capelli, A.-M., Clarke, B., LaLonde, J., Lambert, M. 
H., Lindvall, M., Nevins, N., Semus, S. F., Senger, S., Tedesco, G., Wall, I. D., 
Woolven, J. M., Peishoff, C. E., and Head, M. S. (2006) A critical assessment of 
docking programs and scoring functions, Journal of Medicinal Chemistry 49, 5912-
5931. 

20. Wilton, D., Willett, P., Lawson, K., and Mullier, G. (2003) Comparison of ranking 
methods for virtual screening in lead-discovery programs, Journal of Chemical 
Information and Computer Sciences 43, 469-474. 

21. Bajorath, J., (Ed.) (2004) Chemoinformatics. Concepts, Methods and Tools for Drug 
Discovery, Humana Press, Totowa NJ. 

22. Gasteiger, J., and Engel, T., (Eds.) (2003) Chemoinformatics: A Textbook, Wiley-
VCH, Weinheim. 

23. Leach, A. R., and Gillet, V. J. (2007) An Introduction to Chemoinformatics, 2nd 
edition ed., Kluwer, Dordrecht. 

24. Gasteiger, J., (Ed.) (2003) Handbook of Chemoinformatics, Wiley-VCH, Weinheim. 
25. Johnson, M. A., and Maggiora, G. M., (Eds.) (1990) Concepts and Applications of 

Molecular Similarity, John Wiley, New York. 
26. Willett, P. (2009) Similarity methods in chemoinformatics, Annual Review of 

Information Science and Technology 43, 3-71. 
27. Eckert, H., and Bajorath, J. (2007) Molecular similarity analysis in virtual screening: 

foundations, limitation and novel approaches, Drug Discovery Today 12, 225-233. 
28. Willett, P. (2006) Similarity-based virtual screening using 2D fingerprints, Drug 

Discovery Today 11, 1046-1053. 
29. Hagadone, T. R. (1992) Molecular substructure similarity searching - efficient 

retrieval in two-dimensional structure databases, Journal of Chemical Information 
and Computer Sciences 32, 515-521. 

30. Senger, S. (2009) Using Tversky similarity searches for core hopping: finding the 
needles in the haystack, Journal of Chemical Information and Modeling 49, 1514-
1524. 

31. Willett, P. (1985) An algorithm for chemical superstructure searching, Journal of 
Chemical Information and Computer Sciences 25, 114-116. 

32. Carhart, R. E., Smith, D. H., and Venkataraghavan, R. (1985) Atom pairs as 
molecular-features in structure activity studies - definition and applications, Journal 
of Chemical Information and Computer Sciences 25, 64-73. 

33. Willett, P., Winterman, V., and Bawden, D. (1986) Implementation of nearest-
neighbour searching in an online chemical structure search system, Journal of 
Chemical Information and Computer Sciences 26, 36-41. 

34. Adamson, G. W., and Bush, J. A. (1973) A method for the automatic classification of 
chemical structures, Information Storage and Retrieval 9, 561-568. 

35. Willett, P., Barnard, J. M., and Downs, G. M. (1998) Chemical similarity searching, 
Journal of Chemical Information and Computer Sciences 38, 983-996. 

36. Wilkins, C. L., and Randic, M. (1980) A graph theoretical approach to structure-
property and structure-activity correlation, Theoretica Chimica Acta 58, 45-68. 

37. Patterson, D. E., Cramer, R. D., Ferguson, A. M., Clark, R. D., and Weinberger, L. E. 
(1996) Neighbourhood behaviour: a useful concept for validation of "molecular 
diversity" descriptors, Journal of Medicinal Chemistry 39, 3049-3059. 

38. Dixon, S. L., and Merz, K. M. (2001) One-dimensional molecular representations and 
similarity calculations: methodology and validation, Journal of Medicinal Chemistry 
44, 3795-3809. 



 20 

39. Papadatos, G., Cooper, A. W. J., Kadirkamanathan, V., Macdonald, S. J. F., McLay, 
I. M., Pickett, S. D., Pritchard, J. M., Willett, P., and Gillet, V. J. (2009) Analysis of 
neighborhood behaviour in lead optimisation and array design, Journal of Chemical 
Information and Modeling 49, 195-208. 

40. Perekhodtsev, G. D. (2007) Neighbourhood behavior: validation of two-dimensional 
molecular similarity as a predictor of similar biological activities and docking scores, 
QSAR and Combinatorial Science 26, 346-351. 

41. Willett, P., and Winterman, V. (1986) A comparison of some measures of inter-
molecular structural similarity, Quantitative Structure-Activity Relationships 5, 18-25. 

42. Willett, P. (1987) Similarity and Clustering in Chemical Information Systems, 
Research Studies Press, Letchworth. 

43. Brown, R. D., and Martin, Y. C. (1996) Use of structure-activity data to compare 
structure-based clustering methods and descriptors for use in compound selection, 
Journal of Chemical Information and Computer Sciences 36, 572-584. 

44. Brown, R. D., and Martin, Y. C. (1997) The information content of 2D and 3D 
structural descriptors relevant to ligand-receptor binding, Journal of Chemical 
Information and Computer Sciences 37, 1-9. 

45. Martin, Y. C., Kofron, J. L., and Traphagen, L. M. (2002) Do structurally similar 
molecules have similar biological activities?, Journal of Medicinal Chemistry 45, 
4350-4358. 

46. Steffen, A., Kogej, T., Tyrchan, C., and Engkvist, O. (2009) Comparison of 
molecular fingerprint methods on the basis of biological profile data Journal of 
Chemical Information and Modeling 49, 338-347. 

47. Sheridan, R. P., Feuston, B. P., Maiorov, V. N., and Kearsley, S. K. (2004) Similarity 
to molecules in the training set is a good discriminator for prediction accuracy in 
QSAR, Journal of Chemical Information and Computer Sciences 44, 1912-1928. 

48. He, L., and Jurs, P. C. (2005) Assessing the reliability of a QSAR model's 
predictions, Journal of Molecular Graphics and Modelling 23, 503-523. 

49. Bostrom, J., Hogner, A., and Schmitt, S. (2006) Do structurally similar ligands bind 
in a similar fashion?, Journal of Medicinal Chemistry 49, 6716-6725. 

50. Paolini, G. V., Shapland, R. H. B., van Hoorn, W. P., Mason, J. S., and Hopkins, A. 
L. (2006) Global mapping of pharmacological space, Nature Biotechnology 24, 805-
815. 

51. Schuffenhauer, A., Floersheim, P., Acklin, P., and Jacoby, E. (2003) Similarity 
metrics for ligands reflecting the similarity of the target proteins, Journal of Chemical 
Information and Computer Sciences 43, 391-405. 

52. Hert, J., Keiser, M. J., Irwin, J. J., Oprea, T. I., and Shoichet, B. K. (2008) 
Quantifying the relationship among drug classes, Journal of Chemical Information 
and Modeling 48, 755-765. 

53. Keiser, M. J., Roth, B. L., Armbruster, B. N., Ernsberger, P., Irwin, J. J., and 
Shoichet, B. K. (2007) Relating protein pharmacology by ligand chemistry, Nature 
Biotechnology 25, 197-206. 

54. Cleves, A. E., and Jain, A. N. (2006) Robust ligand-based modeling of the biological 
targets of known drugs, Journal of Medicinal Chemistry 49, 2921-2938. 

55. Stahura, F. L., and Bajorath, J. (2002) Bio- and chemo-informatics beyond data 
management: crucial challenges and future opportunities, Drug Discovery Today 7, 
S41-S47. 

56. Kubinyi, H. (1998) Similarity and dissimilarity: a medicinal chemist's view, 
Perspectives in Drug Discovery and Design 9-11, 225-232  

57. Maggiora, G. M. (2006) On outliers and activity cliffs - why QSAR often disappoints, 
Journal of Chemical Information and Modeling 46, 1535. 

58. Peltason, L., and Bajorath, J. (2007) SAR index: quantifying the nature of structure-
activity relationships, Journal of Medicinal Chemistry 50, 5571-5578. 

59. Todeschini, R., and Consonni, V. (2002) Handbook of Molecular Descriptors, Wiley-
VCH, Weinheim. 



 21 

60. Glen, R. C., and Adams, S. E. (2006) Similarity metrics and descriptor spaces - which 
combinations to choose?, QSAR and Combinatorial Science 25, 1133-1142. 

61. Godden, J. W., Xue, L., Kitchen, D. B., Stahura, F. L., Schermerhorn, E. J., and 
Bajorath, J. (2002) Median partitioning: a novel method for the selection of 
representative subsets from large compound pools, Journal of Chemical Information 
and Computer Sciences 42, 885-893. 

62. Godden, J. W., Furr, J. R., Xue, L., Stahura, F. L., and Bajorath, J. (2004) Molecular 
similarity analysis and virtual screening by mapping of consensus positions in bnary-
tansformed cemical descriptor spaces with variable dimensionality, Journal of 
Chemical Information and Computer Sciences 44, 21-29. 

63. Kier, L. B., and Hall, H. L. (1986) Molecular Connectivity in Structure-Activity 
Analysis, Wiley, New York. 

64. Lowell, H., Hall, H. L., and Kier, L. B. (2001) Issues in representation of molecular 
structure: The development of molecular connectivity, Journal of Molecular 
Graphics and Modelling 20, 4-18 check. 

65. Estrada, E., and Uriarte, E. (2001) Recent advances on the use of topological indices 
in drug discovery research, Current Medicinal Chemistry 8, 1573-1588. 

66. Raymond, J. W., and Willett, P. (2002) Effectiveness of graph-based and fingerprint-
based similarity measures for virtual screening of 2D chemical structure databases, 
Journal of Computer-Aided Molecular Design 16, 59-71. 

67. Rarey, M., and Dixon, J. S. (1998) Feature trees: A new molecular similarity measure 
based on tree matching, Journal of Computer-Aided Molecular Design 12, 471-490. 

68. Rarey, M., and Stahl, M. (2001) Similarity searching in large combinatorial chemistry 
spaces, Journal of Computer-Aided Molecular Design 15, 497-520. 

69. Barker, E. J., Buttar, D., Cosgrove, D. A., Gardiner, E. J., Gillet, V. J., Kitts, P., and 
Willett, P. (2006) Scaffold-hopping using clique detection applied to reduced graphs, 
Journal of Chemical Information and Modeling, 46, 503-511. 

70. Stiefl, N., Watson, I. A., Baumann, K., and Zaliani, A. (2006) ErG: 2D 
pharmacophore descriptions for scaffold hopping, Journal of Chemical Information 
and Modeling 46, 208-220. 

71. Mason, J. S., Morize, I., Menard, P. R., Cheney, D. L., Hulme, C., and Labaudiniere, 
R. F. (1999) New 4-point pharmacophore method for molecular similarity and 
diversity applications: Overview of the method and applications, including a novel 
approach to the design of combinatorial libraries containing privileged substructures, 
Journal of Medicinal Chemistry 42, 3251-3264. 

72. Mount, J., Ruppert, J., Welch, W., and Jain, A. N. (1999) Icepick: a flexible surface-
based system for molecular diversity, Journal of Medicinal Chemistry 42, 60-66. 

73. Cheeseright, T., Mackey, M., Rose, S., and Vinter, A. (2006) Molecular field extrema 
as descriptors of biological activity: definition and validation, Journal of Chemical 
Information and Modeling 46, 6650-6676. 

74. Mestres, J., Rohrer, D. C., and Maggiora, G. M. (1997) MIMIC: A molecular-field 
matching program. Exploiting applicability of molecular similarity approaches, 
Journal of Computational Chemistry 18, 934-954. 

75. Ballester, P. J., and Richards, W. G. (2007) Ultrafast shape recognition to search 
compound databases for similar molecular shapes, Journal of Computational 
Chemistry 28, 1711-1723. 

76. Rush, T. S., Grant, J. A., Mosyak, L., and Nicholls, A. (2005) A shape-based 3-D 
scaffold hopping method and its application to a bacterial protein-protein interaction, 
Journal of Medicinal Chemistry 48, 1489-1495. 

77. Barnard, J. M. (1993) Substructure searching methods - old and new, Journal of 
Chemical Information and Computer Sciences 33, 532-538. 

78. Brown, N. (2009) Chemoinformatics - an introduction for computer scientists, in 
ACM Computing Surveys. 

79. Adamson, G. W., Cowell, J., Lynch, M. F., McLure, A. H. W., Town, W. G., and 
Yapp, A. M. (1973) Strategic considerations in the design of screening systems for 



 22 

substructure searches of chemical structure files, Journal of Chemical Documentation 
13, 153-157. 

80. Durant, J. L., Leland, B. A., Henry, D. R., and Nourse, J. G. (2002) Re-optimisation 
of MDL keys for use in drug discovery, Journal of Chemical Information and 
Modeling 42, 1273-1280. 

81. Hodes, L. (1976) Selection of descriptors according to discrimination and redundancy 
- application to chemical-structure searching, Journal of Chemical Information and 
Computer Sciences 16, 88-93. 

82. Bender, A., Mussa, H. Y., Glen, R. C., and Reiling, S. (2004) Molecular similarity 
searching using atom environments: information-based feature selection and a naive 
Bayesian classifier, Journal of Chemical Information and Computer Sciences 44, 
170-178. 

83. Bender, A., Jenkins, J. L., Scheiber, J., Sukuru, S. C. K., Glick, M., and Davies, J. W. 
(2009) How similar are similarity searching methods?  A principal components 
analysis of molecular descriptor space, Journal of Chemical Information and 
Modeling 49, 108-119. 

84. Ewing, T. J. A., Baber, J. C., and Feher, F. (2006) Novel 2D fingerprints for ligand-
based virtual screening, Journal of Chemical Information and Modeling 46, 2423-
2431. 

85. Fechner, U., Paetz, J., and Schneider, G. (2005) Comparison of three holographic 
fingerprint descriptors and their binary counterparts, QSAR and Combinatorial 
Science 24, 961-967. 

86. Hert, J., Willett, P., Wilton, D. J., Acklin, P., Azzaoui, K., Jacoby, E., and 
Schuffenhauer, A. (2004) Comparison of topological descriptors for similarity-based 
virtual screening using multiple bioactive reference structures, Organic and 
Biomolecular Chemistry 2, 3256-3266. 

87. Schneider, G., Neidhart, W., Giller, T., and Schmid, G. (1999) "Scaffold-hopping" by 
topological pharmacophore search: A contribution to virtual screening, Angewandte 
Chemie-International Edition 38, 2894-2896. 

88. Böhm, H.-J., Flohr, A., and Stahl, M. (2004) Scaffold hopping, Drug Discovery 
Today: Technologies 1, 217-224. 

89. Brown, N., and Jacoby, E. (2006) On scaffolds and hopping in medicinal chemistry, 
Mini-Reviews in Medicinal Chemistry 6, 1217-1229. 

90. Schneider, G., Schneider, P., and Renner, S. (2006) Scaffold-hopping: how far can 
you jump?, QSAR and Combinatorial Science 25, 1162-1171. 

91. Martin, Y. C., and Muchmore, S. (2009) Beyond QSAR: lead hopping to different 
structures, QSAR & Combinatorial Science 28, 797-801. 

92. Eckert, H., and Bajorath, J. (2006) Determination and mapping of activity-specific 
descriptor value ranges for the identification of active compounds Journal of 
Medicinal Chemistry 49, 2284-2293. 

93. Xue, L., Godden, J. W., Stahura, F. L., and Bajorath, J. (2003) Design and evaluation 
of a molecular fingerprint involving the transformation of property descriptor values 
into a binary classification scheme, Journal of Chemical Information and Computer 
Sciences 43, 1151-1157. 

94. Briem, H., and Lessel, U. F. (2000) In vitro and in silico affinity fingerprints: finding 
similarities beyond structural classes, Perspectives in Drug Discovery and Design 20, 
231-244. 

95. Kauvar, L. M., Higgins, D. L., Villar, H. O., Sportsman, J. R., Engqvist-Goldstein, 
A., Bukar, R., Bauer, K. E., Dilley, H., and Rocke, D. M. (1995) Predicting ligand 
binding to proteins by affinity fingerprinting, Chemistry & Biology 2, 107-118. 

96. Ormerod, A., Willett, P., and Bawden, D. (1989) Comparison of fragment weighting 
schemes for substructural analysis, Quantitative Structure-Activity Relationships 8, 
115-129. 

97. Goldman, B. B., and Walters, W. P. (2006) Machine learning in computational 
chemistry, Annual Reports in Computational Chemistry 2, 127-140. 



 23 

98. Moock, T. E., Grier, D. L., Hounshell, W. D., Grethe, G., Cronin, K., Nourse, J. G., 
and Theodosiou, J. (1988) Similarity searching in the organic reaction domain, 
Tetrahedron Computer Methodology 1, 117-128. 

99. Downs, G. M., Poirrette, A. R., Walsh, P., and Willett, P. (1993) Evaluation of 
similarity searching methods using activity and toxicity data, in Chemical Structures 
2.  The International Language of Chemistry. (Warr, W. A., Ed.), pp 409-421, 
Springer Verlag, Berlin. 

100. Azencott, C.-A., Ksikes, A., Swamidass, S. J., Chen, J. H., Ralaivola, L., and Baldi, 
P. (2007) One- to four-dimensional kernels for virtual screening and the prediction of 
physical, chemical and biological properties, Journal of Chemical Information and 
Modeling 47, 965-974. 

101. Chen, X., and Reynolds, C. H. (2002) Performance of similarity measures in 2D 
fragment-based similarity searching: comparison of structural descriptors and 
similarity coefficients, Journal of Chemical Information and Computer Sciences 42, 
1407-1414. 

102. Olah, M., Bologa, C., and Oprea, T. I. (2004) An automated PLS search for 
biologically relevant QSAR descriptors, Journal of Computer-Aided Molecular 
Design 18, 437-449. 

103. Arif, S. M., Holliday, J. D., and Willett, P. (2009) Analysis and use of fragment 
occurrence data in similarity-based virtual screening, Journal of Computer-Aided 
Molecular Design 23, 655-668. 

104. Everitt, B. S., Landau, S., and Leese, M. (2001) Cluster Analysis, 4th edition ed., 
Edward Arnold, London. 

105. Gower, J. C. (1982) Measures of similarity, dissimilarity and distance, in 
Encyclopaedia of Statistical Sciences (Kotz, S., Johnson, N. L., and Read, C. B., 
Eds.), pp 397-405, John Wiley, Chichester. 

106. Hubálek, Z. (1982) Coefficients of association and similarity, based on binary 
(presence-absence) data: an evaluation, Biological Reviews of the Cambridge 
Philosophical Society 57, 669-689. 

107. Flower, D. R. (1988) On the properties of bit string based measures of chemical 
similarity, Journal of Chemical Information and Computer Sciences 38, 379-386. 

108. Dixon, S. L., and Koehler, R. T. (1999) The hidden component of size in two-
dimensional fragment descriptors: side effects on sampling in bioactive libraries, 
Journal of Medicinal Chemistry 42, 2887-2900. 

109. Fligner, M. A., Verducci, J. S., and Blower, P. E. (2002) A modification of the 
Jaccard-Tanimoto similarity index for diverse selection of chemical compounds using 
binary strings, Technometrics 44, 110-119. 

110. Godden, J. W., Xue, L., and Bajorath, J. (2000) Combinatorial preferences affect 
molecular similarity/diversity calculations using binary fingerprints and Tanimoto 
coefficients, Journal of Chemical Information and Computer Sciences 40, 163-166. 

111. Tversky, A. (1977) Features of Similarity, Psychological Review 84, 327-352. 
112. Bradshaw, J. (1997) Introduction to Tversky similarity measure, in MUG '97 - 11th 

Annual Daylight User Group Meeting Laguna Beach CA. 
113. Maggiora, G. M., Mestres, J., Hagadone, T. R., and Lajiness, M. S. (1997) 

Asymmetric similarity and molecular diversity, in 213th National Meeting of the 
American Chemical Society, April13-17, 1997, San Francisco, CA. 

114. Chen, X., and Brown, F. K. (2006) Asymmetry of chemical similarity, 
ChemMedChem 2, 180-182. 

115. Wang, Y., Eckert, H., and Bajorath, J. (2007) Apparent asymmetry in fingerprint 
similarity searching is a direct consequence of differences in bit densities and 
molecular size, ChemMedChem 2, 1037-1042. 

116. Wang, Y., and Bajorath, J. (2008) Balancing the influence of molecular complexity 
on fingerprint similarity searching, Journal of Chemical Information and Modeling 
48, 75-84. 



 24 

117. Wang, Y., and Bajorath, J. (2009) Development of a compound-class directed 
similarity coefficient that accounts for molecular complexity effects in fingerprint 
searching, Journal of Chemical Information and Modeling 49, 1369-1376. 

118. Varin, T., Bureau, R., Mueller, C., and Willett, P. (2009) Clustering files of chemical 
structures using the Székely-Rizzo generalisation of Ward’s method, Journal of 
Molecular Graphics and Modelling In press. 

119. Gower, J. C., and Legendre, P. (1986) Metric and Euclidean properties of 
dissimilarity coefficients, Journal of Classification 5, 5-48. 

120. Edgar, S. J., Holliday, J. D., and Willett, P. (2000) Effectiveness of retrieval in 
similarity searches of chemical databases: A review of performance measures, 
Journal of Molecular Graphics and Modelling 18, 343-357. 

121. Willett, P. (2004) The evaluation of molecular similarity and molecular diversity 
methods using biological activity data, Methods in Molecular Biology 275, 51-63. 

122. Kearsley, S. K., Sallamack, S., Fluder, E. M., Andose, J. D., Mosley, R. T., and 
Sheridan, R. P. (1996) Chemical similarity using physicochemical property 
descriptors, Journal of Chemical Information and Computer Sciences 36, 118-127. 

123. Hert, J., Willett, P., Wilton, D. J., Acklin, P., Azzaoui, K., Jacoby, E., and 
Schuffenhauer, A. (2004) Comparison of fingerprint-based methods for virtual 
screening using multiple bioactive reference structures., Journal of Chemical 
Information and Computer Sciences 44, 1177-1185. 

124. Cuissart, B., Touffet, F., Crémilleux, B., Bureau, R., and Rault, S. (2002) The 
maximum common substructure as a molecular depiction in a supervised 
classification context: experiments in quantitative structure/biodegradability 
relationships, Journal of Chemical Information and Computer Sciences 42, 1043-
1052. 

125. Triballeau, N., Acher, F., Brabet, I., Pin, J.-P., and Bertrand, H.-O. (2005) Virtual 
screening workflow development guided by the "Receiver Operating Characteristic" 
curve approach.  Application to high-throughput docking on metabotropic glutamate 
receptor type 4, Journal of Medicinal Chemistry 48, 2534-2547. 

126. Truchon, J.-F., and Bayly, C. I. (2007) Evaluating virtual screening methods: good 
and bad metrics for the "early recognition" problem, Journal of Chemical Information 
and Modeling 47, 488-508. 

127. Jain, A. N., and Nicholls, A. (2008) Recommendations for evaluation of 
computational methods, Journal of Computer-Aided Molecular Design 22, 133-139. 

128. Nicholls, A. (2008) What do we know and when do we know it?, Journal of 
Computer-Aided Molecular Design 22, 239-255. 

129. Good, A. C., Hermsmeier, M. A., and Hindle, S. A. (2004) Measuring CAMD 
technique performance: a virtual screening case study in the design of validation 
experiments, Journal of Computer-Aided Molecular Design 18, 529-536. 

130. Willett, P. (2006) Data fusion in ligand-based virtual screening, QSAR and 
Combinatorial Science 25, 1143-1152. 

131. Feher, M. (2006) Consensus scoring for protein-ligand interactions, Drug Discovery 
Today 11, 421-428. 

132. Ginn, C. M. R., Turner, D. B., Willett, P., Ferguson, A. M., and Heritage, T. W. 
(1997) Similarity searching in files of three-dimensional chemical structures: 
evaluation of the EVA descriptor and combination of rankings using data fusion, 
Journal of Chemical Information and Computer Sciences 37, 23-37. 

133. Ginn, C. M. R., Willett, P., and Bradshaw, J. (2000) Combination of molecular 
similarity measures using data fusion, Perspectives in Drug Discovery and Design 20, 
1-16. 

134. Sheridan, R. P., Miller, M. D., Underwood, D. J., and Kearsley, S. K. (1996) 
Chemical similarity using geometric atom pair descriptors, Journal of Chemical 
Information and Computer Sciences 36, 128-136. 



 25 

135. Holliday, J. D., Hu, C.-Y., and Willett, P. (2002) Grouping of coefficients for the 
calculation of inter-molecular similarity and dissimilarity using 2D fragment bit-
strings, Combinatorial Chemistry and High-Throughput Screening 5, 155-166. 

136. Salim, N., Holliday, J. D., and Willett, P. (2003) Combination of fingerprint-based 
similarity coefficients using data fusion, Journal of Chemical Information and 
Computer Sciences 43, 435-442. 

137. Whittle, M., Gillet, V. J., Willett, P., Alex, A., and Loesel, J. (2004) Enhancing the 
effectiveness of virtual screening by fusing nearest neighbor lists: A comparison of 
similarity coefficients, Journal of Chemical Information and Computer Sciences 44, 
1840-1848. 

138. Xue, L., Stahura, F. L., Godden, J. W., and Bajorath, J. (2001) Fingerprint scaling 
increases the probability of identifying molecules with similar activity in virtual 
screening calculations, Journal of Chemical Information and Computer Sciences 41, 
746-753. 

139. Williams, C. (2006) Reverse fingerprinting, similarity searching by group fusion and 
fingerprint bit importance, Molecular Diversity 10, 311-332. 

140. Zhang, Q., and Muegge, I. (2006) Scaffold hopping through virtual screening using 
2D and 3D similarity descriptors: ranking, voting, and consensus scoring, Journal of 
Medicinal Chemistry 49, 1536-1548. 

141. Hert, J., Willett, P., Wilton, D. J., Acklin, P., Azzaoui, K., Jacoby, E., and 
Schuffenhauer, A. (2005) Enhancing the effectiveness of similarity-based virtual 
screening using nearest-neighbour information, Journal of Medicinal Chemistry 48, 
7049-7054. 

142. Hert, J., Willett, P., Wilton, D. J., Acklin, P., Azzaoui, K., Jacoby, E., and 
Schuffenhauer, A. (2006) New methods for ligand-based virtual screening: use of 
data-fusion and machine-learning techniques to enhance the effectiveness of 
similarity searching, Journal of Chemical Information and Modeling 46, 462-470. 

143. Gardiner, E. J., Gillet, V. J., Haranczyk, M., Hert, J., Holliday, J. D., Malim, N., 
Patel, Y., and Willett, P. (2009) Turbo similarity searching: Effect of fingerprint and 
dataset on virtual-screening performance, Statistical Analysis and Data Mining 2, 
103-114. 

144. Baber, J. C., Shirley, W. A., Gao, Y., and Feher, M. (2006) The use of consensus 
scoring in ligand-based virtual screening, Journal of Chemical Information and 
Modelling 46, 277-288. 

145. Whittle, M., Gillet, V. J., Willett, P., and Loesel, J. (2006) Analysis of data fusion 
methods in virtual screening: theoretical model, Journal of Chemical Information and 
Modeling 46, 2193-2205. 

146. Whittle, M., Gillet, V. J., Willett, P., and Loesel, J. (2006) Analysis of data fusion 
methods in virtual screening: similarity and group fusion, Journal of Chemical 
Information and Modeling 46, 2206-2219. 

147. Cramer, R. D., Redl, G., and Berkoff, C. E. (1974) Substructural analysis.  A novel 
approach to the problem of drug design, Journal of Medicinal Chemistry 17, 533-535. 

148. Capelli, A. M., Feriani, A., Tedesco, G., and Pozzan, A. (2006) Generation of a 
focused set of GSK compounds biased toward ligand-gated ion-channel ligands., 
Journal of Chemical Information and Modeling 46, 659-664. 

149. Cosgrove, D. A., and Willett, P. (1998) SLASH: a program for analysing the 
functional groups in molecules, Journal of Molecular Graphics and Modelling 16, 
19-32. 

150. Medina-Franco, J. L., Petit, J., and Maggiora, G. M. (2006) Hierarchical strategy for 
identifying active chemotype classes in compound databases, Chemical Biology & 
Drug Design 67, 395-408. 

151. Schreyer, S. K., Parker, C. N., and Maggiora, G. M. (2004) Data shaving: a focused 
screening approach, Journal of Chemical Information and Computer Sciences 44, 
470-479. 



 26 

152. Hassan, M., Brown, R. D., Varma-O’Brien, S., and Rogers, D. (2006) 
Cheminformatics analysis and learning in a data pipelining environment Molecular 
Diversity 10, 283-299. 

153. Rogers, D., Brown, R. D., and Hahn, M. (2005) Using extended-connectivity 
fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening 
follow-up, Journal of Biomolecular Screening 10, 682-686. 

154. Xia, X. Y., Maliski, E. G., Gallant, P., and Rogers, D. (2004) Classification of kinase 
inhibitors using a Bayesian model, Journal of Medicinal Chemistry 47, 4463-4470. 

155. Bender, A., Mussa, H. Y., Glen, R. C., and Reiling, S. (2004) Similarity searching of 
chemical databases using atom environment descriptors: evaluation of performance, 
Journal of Chemical Information and Computer Sciences 44, 1708-1718. 

156. Vogt, M., Nisius, B., and Bajorath, J. (2009) Predicting the similarity search 
performance of fingerprints and their combination with molecular property 
descriptors using probabilistic and information theoretic modeling, Statistical 
Analysis and Data Mining 2, 123-134. 

157. Vogt, M., and Bajorath, J. (2008) Bayesian screening for active compounds in high-
dimensional chemical spaces combining property descriptors and molecular 
fingerprints, Chemical and Biological Drug Design 71, 8-14. 

158. Wang, Y., and Bajorath, J. (2008) Bit silencing in fingerprints enables the derivation 
of compound class-directed similarity metrics, Journal of Chemical Information and 
Modeling 48, 1754-1759. 

159. Vogt, I., and Bajorath, J. (2007) Analysis of a high-throughput screening data set 
using potency-scaled molecular similarity algorithms, Journal of Chemical 
Information and Modeling 47, 367-375. 

160. Geppert, H., Horvath, T., Gartner, T., Wrobel, S., and Bajorath, J. (2008) Support-
vector-machine-based ranking significantly improves the effectiveness of similarity 
searching using 2D fingerprints and multiple reference compounds, Journal of 
Chemical Information and Modeling 48, 742-746. 

161. Shemetulskis, N. E., Weininger, D., Blankey, C. J., Yang, J. J., and Humblet, C. 
(1996) Stigmata: an algorithm to determine structural commonalities in diverse 
datasets, Journal of Chemical Information and Computer Sciences 36, 862-871. 

162. Tovar, A., Eckert, H., and Bajorath, J. (2007) Comparison of 2D fingerprint methods 
for multiple-template similarity searching on compound activity classes of increasing 
structural diversity, ChemMedChem 2, 208-217. 

163. Hessler, G., Zimmermann, M., Matter, H., Evers, A., Naumann, T., Lengauer, T., and 
Rarey, M. (2005) Multiple-ligand-based virtual screening: Methods and applications 
of the MTree approach, Journal of Medicinal Chemistry 48, 6575-6584. 

 
 


	1
	willett 2

