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Similarity-Based Data Mining in Files of Two-Dimensional Chemical Structures 
using Fingerprint Measures of Molecular Resemblance 

 

Abstract 

This paper reviews the use of measures of inter-molecular similarity for processing databases of 
chemical structures, which play an important role in the discovery of new drugs by the pharmaceutical 
industry.  The similarity measures considered here are based on the use of a fingerprint representation 
of molecular structure, where a fingerprint is a vector encoding the presence of fragment 
substructures in a molecule and where the similarity between pairs of such fingerprints is computed 
using an association coefficient such as the Tanimoto coefficient.  The Similar Property Principle 
provides the basic rationale for the use of similarity methods in three important chemoinformatics 
applications: similarity searching, database clustering, and molecular diversity analysis.  Similarity 
searching enables the identification of those molecules in a database that are most similar to a user-
defined, biologically active query molecule, with data fusion providing an effective way of combining 
the results of multiple similarity searches.  Cluster analysis, typically using the Jarvis-Patrick, Ward or 
divisive k-means clustering methods, enables the cost-effective selection of molecules for biological 
testing, for property prediction and for investigating database overlap.  Molecular diversity analysis, 
typically using cluster-based, dissimilarity-based or optimisation-based approaches, enables the 
identification of structurally diverse sets of molecules, so as to ensure that the full chemical space 
spanned by a database is tested in the search for novel bioactive molecules.   

Keywords: Association coefficient; Chemical database; Chemoinformatics; Cluster analysis; Cluster-
based selection; Data fusion; Dissimilarity measure; Dissimilarity-based selection; Diversity; Divisive k-
means clustering method; Drug discovery; Fingerprint; Fragment substructure; Jarvis-Patrick clustering 
method; Molecular diversity analysis; Pharmaceutical research; Similar Property Principle; Similarity 
measure; Similarity searching; Subset selection; Tanimoto coefficient; Ward’s clustering method 

INTRODUCTION  

Research and development in the fine chemicals industry is driven by the need to discover novel 
molecules with useful physical, chemical or biological properties, e.g., lowering a person’s cholesterol 
level in the pharmaceutical industry or having a pleasant aroma in the personal products industry.  The 
structures, whether in two dimensions (2D) or three dimensions (3D), of chemical molecules hence 
form an extremely important component of a company’s intellectual property and there has been 
interest for many years in computer techniques for processing databases of chemical structures [1, 2].   

Chemical databases are used extensively in both the public and the private sectors.  The longest-
established public database system is the CAS Registry from Chemical Abstracts Service (at 
http://www.cas.org/), which contains all molecules that have been reported in the open chemical 
literature.  Other important public databases include ChemSpider (at http://www.chemspider.com/), 
which brings together compound information from ca. 400 Web sources, and PubChem (at 
http://pubchem.ncbi.nlm.nih.gov/), which contains compound information contributed from 
governmental and academic sources with associated bioactivity data in many cases.  Private, corporate 
databases play a key role in industrial research and development, and contain the records of all of the 
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molecules that a specific organization has studied.  Chemical databases can be very large: The Registry 
System now (late 2010) contains ca. 55 million molecules and is growing by ca. 12 thousand molecules 
a day; while the corporate database of a major pharmaceutical company may contain several million 
molecules, many of which have never been made public.  The importance of such databases has driven 
the development of a specialist discipline, chemoinformatics, in just the same way as the increasing 
volumes of biological sequence data has driven the development of bioinformatics.   

Chemoinformatics encompasses the interpretation of molecular spectra, the design of complex 
organic syntheses, the prediction of biological activity, and the analysis of the interactions between 
drugs and biological macromolecules such as proteins, inter alia, with these data being mined using 
statistical, graph theoretic, machine learning and evolutionary techniques [3, 4].  In this contribution, 
we review one such topic, the ways in which the concept of molecular similarity can be used to 
support drug discovery.  Analogous techniques are used for the discovery of novel agrochemicals and 
other types of fine chemical, but the focus is on drug discovery since it is here that chemoinformatics 
has had its greatest impact; indeed, many of the techniques in current use have been developed by 
industrial, rather than academic, research groups.   

The paper is structured as follows.  The next section introduces the concept of molecular similarity and 
its quantification, and briefly describes how chemical structures can be encoded in machine-readable 
form.  We then discuss the use of one type of representation (the chemical fingerprint, vide infra) for 
the three principal applications of molecular similarity, these being similarity searching, database 
clustering and molecular diversity analysis.  Finally, we compare fingerprint-based approaches with 
more complex ways of processing molecular similarity data.  Further details of the theory and practice 
of molecular similarity are available from the extensive literature that is available [5-9]. 

COMPUTING MOLECULAR SIMILARITIES 

The Similar Property Principle 

The identification of a novel molecule with a desired bioactivity, often referred to as lead discovery, is 
that stage of a drug programme where chemoinformatics makes its main contribution; it also 
contributes to the subsequent, lead optimization stage where the lead compound is systematically 
modified to obtain the best combination of activity, specificity, pharmacology etc.  One of the ways in 
which chemoinformatics supports lead discovery is by drawing on what is commonly referred to as the 
Similar Property Principle.  The Principle states that molecules that have similar structures will have 
similar properties; thus, if a molecule is known to exhibit the activity of interest, e.g., an existing drug 
for a disease of interest, it may be possible to identify potential bioactive substances by considering 
molecules that are structurally similar to the known compound.  In 1990, Johnson and Maggiora edited 
the first book to deal with molecular similarity [10], and this is often cited as the source of the 
Principle; however, it had been discussed a decade before by Wilkins and Randic [11] and had almost 
certainly been known, albeit not as a formal principle, for many years prior to then.  After all, 
medicinal chemistry has always made extensive use of analogy because if some relationship between 
the structures of molecules and their biological activities did not exist then drug discovery would be 
effectively a random process.  The continuing success of the pharmaceutical industry over many years 
would suggest that this is not the case, and further evidence of the general validity of the Principle 
comes from the many experimental studies that have been carried out.  The first detailed study of this 



type was by Willett and Winterman [12], who found that computed molecular similarities could be 
used to predict a range of physical, chemical and biological properties in a range of small datasets for 
which both structural and property information were available.  There have been many subsequent 
examples of this approach to the evaluation of similarity procedures [13-17], and further supporting 
evidence for the general applicability of the Principle comes from studies in chemogenomics [18-21].  
It must be emphasized that there are many exceptions to the Principle [22, 23], but it has been found 
to provide a very useful basis for the development of a range of similarity-based approaches for the 
processing of large chemical databases.    

The degree of resemblance between two molecules is computed using a similarity measure, which has 
three components.  First is the representation used to describe the two molecules that are to be 
compared, i.e., the manner in which the molecules are encoded for machine processing.  Second, the 
weighting scheme that is used to prioritize (or de-prioritize) the contributions of different parts of the 
representation; related to weighting schemes are standardization schemes that are used to ensure 
that all parts of a representation contribute equally.  Third, the similarity coefficient that computes the 
degree of resemblance between the molecules’ representations.  These three components are 
discussed further below. 

Structure representations 

Molecules are most commonly represented in the published literature by their names and/or by 
images of their 2D structure diagrams.  Although familiar to the chemist, these are not suitable for 
detailed machine processing; instead, molecules are normally represented in chemical databases by 
connection tables, graphs in which the atoms and bonds of a molecule are denoted by the nodes and 
edges of a graph [4].   

There are many different types of connection table, but they all provide an exact and explicit 
description of a molecule’s topology that can be processed using the various types of isomorphism 
algorithm that permit the identification of areas of structural commonality in pairs of graphs [4].  In 
particular, a maximum common subgraph isomorphism provides a natural measure of molecular 
similarity since it identifies the largest overlap (in terms of atoms and bonds) when two chemical 
graphs are compared [24].  Isomorphism algorithms are effective in operation but are highly 
inefficient, requiring numbers of node-to-node comparisons that are factorial functions of the 
numbers of nodes in the graphs that are being compared.  Whilst considerable effort has been 
devoted to maximising the efficiency of chemical graph matching [25] much use is made of simpler 
molecular representations that do not contain a complete description of molecular topology.  Two 
types of simpler representation are of importance: reduced graphs and fingerprints.  In a reduced 
graph, sets of individual atoms that are bonded together are merged into larger, reduced graph nodes, 
e.g., the six carbon atoms comprising a phenyl ring may be merged into a single node of type ‘Ring’ 
[26, 27].  Matching operations can then be carried out on these more compact molecular encodings, 
with substantial increases in efficiency; the new merged nodes are often designed to encode 
functionally important parts of molecules that are known to interact with proteins (and hence to 
exhibit some particular type of bioactivity) and searches using reduced graphs may hence also be more 
effective than when the full set of nodes is used.   

In a fingerprint, a molecule is indexed by some number of chemical fragments.  These fragments are 
typically small substructures that are generated automatically from a connection table so that a 



molecule might, e.g., be encoded using the fragments describing a phenyl group, a nitro group, and a 
carboxylic acid group (it must be emphasised that these example fragments are designed simply to 
illustrate the concept and a large body of work has gone into the design of atom-, bond- and ring-
centred substructures for a whole range of chemoinformatics applications [28, 29]).  The use of a set of 
fragments to characterise a molecule means that the contents of the molecule are indexed but not the 
precise way that these are linked together, whereas a connection table records the full topology of a 
molecule.  In similar vein, a journal article might be indexed by a set of keywords and phrases, with the 
full text being required to understand the precise relationships between these textual elements.  
However, the fact that most text search engines employ this so-called ‘bag of words’ model very 
successful without recourse to sophisticated natural language processing suggests that an analogous 
simplified representation may be equally effective in the chemoinformatics context, as is clearly 
demonstrated in the remainder of this contribution.   

The fragments generated for a molecule can be encoded in a bit-string, a binary vector in which bits 
are switched ‘on’ or ‘off’ depending whether particular fragments are present or absent in that 
molecule; there are several different ways in which fingerprints can be generated, and the reader is 
referred to the standard texts for details of fingerprinting procedures [3, 4].  There have been many 
comparisons of fingerprints, with the evidence to date suggesting that the most generally effective 
are based on circular substructures.  These encode the immediate environment of each individual 
atom in a molecule, with the environment being defined as all of the atoms within some fixed 
number of bonds of the chosen, central atom.  Such approaches have been known for many years, 
both for chemical substructure searching (vide infra) and for the analysis of spectroscopic data [30].  
Early examples of circular substructures are described by Bremser [30], Attias [31] and Willett [32] 
inter alia with the Atom Environment fragments described by Bender et al. [33] a morerecent 
example.  The most widely used circular substructures are those encoded in the Extended 
Connectivity Fingerprints and the Functional Connectivity Fingerprints included in the Pipeline Pilot 
software (from Accelrys Inc. at http://www.accelrys.com); these have been shown to be effective 
in a number of comparative studies of fingerprinting methods [34].  Fingerprints provide the basis 
for much of the processing that is carried out to support similarity applications in drug discovery, 
and hence form the focus of this review.  

Weighting schemes and similarity coefficients 

Having introduced fingerprints as the most common type of representation, we now turn to the other 
two components of a similarity measure: the weighting scheme and the similarity coefficient.  There 
have been only a few studies of the use of weighting schemes for fingerprint-based similarity 
measures: the most detailed are two recent ones [35, 36], which show that encoding how frequently a 
fragment occurs within a molecule can give better results in some circumstances than encoding just its 
presence or absence (as is the case when conventional bit-strings are used).  That said, the many 
successful applications of binary fingerprints over the years (as discussed below) suggest that they 
provide an appropriate representation in many cases.   

Many different types of coefficient are available for computing the degree of resemblance between 
pairs of objects [8, 37], with the class of association coefficients having found most application in 
chemoinformatics.  Association coefficients were originally developed to compare binary vectors and 
they are thus very well suited to the calculation of fingerprint-based similarities.  An early study [12] 
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suggested the use of the Tanimoto coefficient for molecular similarity studies, and it rapidly became 
the coefficient of choice from amongst the more than 20 association coefficients that have been 
published in the literature [38].  Indeed, unless stated otherwise, references in the chemoinformatics 
literature to molecular similarity will normally involve the use of fingerprint-based Tanimoto 
calculations.  Given two molecules, A and B, having a and b bits switched ‘on’ in their fingerprints, and 
with c of these bits being in common (i.e., having c fragment substructures in common), then the 
Tanimoto similarity between A and B is given by  
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+ −       (1)

 

It will be seen that the coefficient takes values between zero and unity, these lower- and upper-bound 
values corresponding to having no bits in common and to having identical fingerprints, respectively.  In 
the form shown in (1), the Tanimoto coefficient [39] is identical to the Jaccard coefficient [40].  
However, the Tanimoto coefficient, and some other association coefficients, can be extended to 
encompass non-binary data, e.g., if a fingerprint encodes not just fragment incidences but the 
frequencies of occurrence.  In this case, the coefficient is given by   
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where xjA denotes the number of times that the j-th fragment occurs in A (and correspondingly for B) 
and where the summations are over the n elements of each fingerprint.  It will be realized that this 
reduces to the simpler form if all the elements xjA are zero or unity. The upper-bound for this 
formulation is again unity; the lower-bound is -1/3, or again zero if only positive values are allowed for 
the elements xjA and xjB. 

Inspection of (2) will reveal that the numerator is a simple vector dot product, and many different 
similarity coefficients can be obtained merely by changing the precise form of the normalization that is 
applied to this product [37, 41, 42].  This being so, one may well ask why the Tanimoto coefficient is by 
far the most widely used coefficient in chemoinformatics applications of similarity.  Arguably the most 
important reason is that its use was highlighted at a very early stage in the development of the 
subject.  Specifically, studies in the mid-Eighties by Willett et al. showed that it gave results that were 
superior to the cosine coefficient for purposes of similarity searching (vide infra) [43] and that it was 
superior to the cosine and correlation coefficients and the average, Canberra and Euclidean distances 
for the prediction of molecular properties [12].  It was hence adopted for use by many subsequent 
workers in the field.  The Tanimoto coefficient is not without its limitations, as noted by Flower [44] 
and by Fligner et al. [45]; however, extended comparative studies have shown that it performs at least 
as well as any of the other coefficients that have been suggested to date [38, 46].   

Having described how molecular similarities can be calculated, the next three sections describe the 
main ways in which similarity concepts are currently used for processing chemical databases.   

SIMILARITY SEARCHING 



Early systems for querying chemical databases focussed on substructure searching, i.e., the retrieval of 
information about all molecules containing a specific query substructure [4].  An example of this would 
be a search for antibiotic substances, where a possible starting point would be to retrieve all of those 
molecules that contain the highly specific ring systems that characterise penicillin and cephalosporin 
antibiotics.  Substructure searching is a powerful technique but one that requires that the searcher 
already knows the types of molecule that are of interest for the bioactivity of interest.  This 
information is, of course, not generally available in the early stages of a discovery programme where 
less specific, more browsing-like searches need to be carried out: this can be effected by means of 
similarity searching [43, 47].   

A similarity search assumes that a molecule is available, referred to variously as the target structure or 
the reference structure, that is of interest to the searcher, typically because it exhibits (or is expected 
to exhibit) the biological activity of interest, e.g., an existing drug molecule produced by a competitor 
company.  When presented to a database, a similarity search ranks the database in order of decreasing 
similarity with the reference structure, so as to identify the nearest neighbours, i.e., those most similar 
to the reference structure.  If the Similar Property Principle holds for the similarity measure that is 
being used, then the nearest neighbours are the molecules that have the greatest likelihood of 
exhibiting the reference structure’s bioactivity and are hence prime candidates for biological testing if 
samples of these molecules are available to hand.  If this is not the case, e.g., if the database being 
searched is a publicly available one rather than an in-house database, then these molecules will need 
to be synthesised or purchased; indeed, one of the main applications of similarity searching is for 
scanning suppliers’ catalogues that contain millions of molecules that are available for purchase.  

The first reports of similarity searching came from two pharmaceutical companies – Pfizer [43] and 
Lederle Laboratories [47] – and were at one in suggesting the use of fingerprint representations and an 
association coefficient as a simple but effective way of ordering a database in response to an input 
molecule of interest.  The approach was rapidly and widely adopted and is now a standard feature in 
chemoinformatics software systems.  The precise way in which it is implemented does, of course, vary 
from system to system, and there is still much discussion as to how to maximise the effectiveness of 
searching [7, 9, 48].  Two important areas of current research are data fusion and scaffold hopping, as 
discussed further below. 

There have been many comparative studies of similarity measures over the years, but it has not 
proved possible to identify a single combination of fingerprint, weighting scheme and similarity 
coefficient that will give a consistently high level of performance across all the many different types of 
search that may be required by a medicinal chemist [49].  There has hence been much interest in data 
fusion, viz the idea of combining (or fusing) the rankings resulting from multiple similarity searches to 
give a new ranking that is expected to maximise the clustering of actives at the top of the fused 
ranking [50].  Two main approaches have been described, often referred to as similarity fusion and 
group fusion.  In the more common similarity fusion approach, a single reference structure is searched 
against a database using multiple similarity measures, e.g., using several different types of fingerprint 
or of similarity coefficient.  In group fusion, alternatively, multiple reference structures are searched 
against a database using a single similarity measure.  The latter approach obviously requires the 
availability of multiple bioactive molecules, rather than just a single one as in conventional similarity 
searching, but has been found to be notably more effective in operation [6, 48, 51].  Current areas of 



research include, e.g., how different rankings should be combined [52] and whether it is possible to 
provide a theoretical model of the fusion process [53].   

The nearest neighbours retrieved in a similarity search often have the same central ring system (or 
scaffold), as the reference structure, meaning that these neighbours may not be novel in so far as they 
may well be covered by an existing patent.  There has hence been considerable discussion as to 
whether fingerprint-based similarity searching is appropriate for scaffold hopping, i.e., the 
identification of bioactive molecules with novel scaffolds [54], since one might reasonably expect that 
more sophisticated similarity measures involving 3D structural information would be necessary for this 
purpose.  It is hence of interest to note that two of the leading groups in the area of molecular 
similarity, led by Sheridan and by Bajorath, have recently reported studies in which fingerprint-based 
similarity measures do exhibit a fair level of scaffold hopping ability [6, 55].   

Similarity searching is the earliest, but still the most widely used, example of what is commonly 
referred to as virtual screening, i.e., the ranking of a database so that synthesis and biological testing 
activities can be focussed on those molecules that have the greatest probabilities of activity [56-60].  A 
simple association coefficient such as the Tanimoto coefficient clearly does not compute a probability 
per se, although there are more sophisticated types of similarity measure that do attempt this [61, 62]. 
None the less, the approach has been found to provide a database access mechanism that facilitates 
the identification of novel classes of compounds that would not be obtained from the more 
sophisticated types of virtual screening method that are available (viz pharmacophore analysis [63], 
machine learning [64] or ligand-protein docking [65]).  

CLUSTER ANALYSIS 

Cluster analysis involves grouping a set of objects (the molecules comprising a chemical database in 
the present context) into smaller groups, or clusters, in which the members of each cluster are similar 
to each other but dissimilar to the members of other clusters [66, 67].  Cluster analysis can hence be 
regarded as a natural extension of similarity searching: the latter identifies the nearest neighbours that 
are most similar to an input reference structure, while cluster analysis identifies groups of molecules 
that are highly similar (and many of which will in fact be nearest neighbours).  The similarity measures 
that have been discussed previously are hence equally applicable to the clustering of chemical 
databases, with a clustering method processing the computed inter-molecular similarities to identify 
the groups that are present.    

The principal application of cluster analysis in chemoinformatics has been to select molecules for 
biological testing.  Despite substantial technological advances over the last few years, the testing of 
large numbers of molecules for bioactivity remains both time-consuming and expensive, and there is 
hence a need for methods that will ensure coverage of as wide a range of types of molecule as 
possible whilst minimising the costs of testing.  If a database has been clustered then a cost-effective 
approach is to select one molecule from each of the clusters, with the selected molecule (which is 
often referred to as the cluster representative) in each case normally being that closest to the centre of 
the cluster.  Only this selected subset of the database then undergoes biological testing.  If a cluster 
representative proves to be bioactive then it will be appropriate to test the other molecules in that 
cluster; alternatively, the cluster can be removed from further consideration.  Given an effective 
clustering method, this systematic, approach should ensure full coverage of all of the various structural 



types present in the database that is being studied [68].  Alternative approaches to the selection of 
database subsets are discussed further in the following section on Molecular Diversity Analysis.   

Cluster-based selection of database subsets was first described over a quarter of a century ago [69].  It 
continues to be widely used, but is by no means the only application of cluster analysis.  Substructure 
searching has been introduced above.  It is one of the most important facilities in modern 
chemoinformatics systems but can result in very large hit-lists if it is not possible to specify a 
sufficiently detailed query substructure and/or if a big database, such as the CAS Registry, is being 
searched.  In such cases, it can be helpful to cluster the molecules that have been retrieved, with the 
resulting cluster representatives then being used to obtain an overview of the range of structural types 
present in the hit-list [69].  Clustering can be used as a method of property prediction for structure-
activity relationship (or SAR) studies [13], where SAR covers a range of methods for identifying 
statistical relationships between chemical structure and biological activity data [4].  An alternative, but 
related, application is to identify one, or some small number, of clusters that can then be analysed to 
determine the nature and the extent of any SAR present in the chosen sets of molecules [70].  Finally, 
clustering two or more databases together can serve to identify the extent of the overlap between sets 
of molecules from different sources [71].  For example, the degree of overlap between a corporate 
chemical database and one offered by a commercial supplier could be assessed by examining the 
contents of each cluster in turn: if a pharmaceutical company’s molecules were notably under-
represented in a particular cluster then it might be appropriate to purchase some of the vendor 
molecules to augment the corporate database.   

Inspection of the pattern recognition, multivariate statistics and data mining literatures reveals a huge 
number of different clustering methods, with new approaches continuing to be described for a range 
of applications.  Early studies of over 30 hierarchic and non-hierarchic methods [72] suggested that the 
best chemical classifications (in the sense of successfully grouping molecules with similar biological 
activities) were obtained using Ward’s hierarchical-agglomerative method [73], with the non-
hierarchical Jarvis-Patrick method [74] also performing well.  Jarvis-Patrick is by far the more efficient 
of these two methods, and it was hence the method of choice for clustering large chemical datasets 
for many years.  However, improvements in both hardware and software, coupled with further 
demonstrations of the greater effectiveness of Ward’s method [13, 75] mean that this has now largely 
replaced the Jarvis-Patrick method for clustering databases containing up to ca. half-a-million 
structures.  For larger files, the current standard is the divisive k-means method [76], with recent 
reported applications including SAR studies [77], comparing classifications based on substructural 
fragments and on ring scaffolds [78], and merging corporate databases [79]. 

Cluster analysis is hence extensively used in chemoinformatics, providing a simple, readily 
comprehendible way of grouping structurally related molecules.  Its principal limitations are those of 
cluster analysis itself, such as the parameter-driven nature of many of the clustering methods that can 
be used, and the variant (and often non-unique) solutions that result from the use of different 
methods.    

MOLECULAR DIVERSITY ANALYSIS 

The use of clustering methods to identify subsets of databases (as described above) was the first 
approach to be used that comes under the general heading of molecular diversity analysis.  This is the 



name given to techniques that maximise the degree of diversity (or dissimilarity or resemblance) in a 
set of molecules.  As noted above when discussing cluster analysis, a cost-effective approach to 
biological testing involves a limited number of molecules that, taken together, describe the chemical 
space spanned by the complete set of molecules comprising a database (where this database could be 
an in-house corporate file, an external public or vendor database, or a set of molecules that could 
potentially be synthesised).  The Similar Property Principle means that structurally similar molecules 
are likely to exhibit similar properties, and hence testing sets of similar molecules is unlikely to provide 
much more SAR information than would be obtained by testing just one or a few such molecules; 
instead, most information is likely to be obtained by testing sets of molecules that are as diverse, i.e., 
structurally dissimilar, as possible [80].  

Many techniques for molecular diversity analysis have been described [81-83]; here we focus on those 
that make use of fingerprint-based calculations of inter-molecular dissimilarity (where the dissimilarity 
is normally the complement of the Tanimoto similarity).  Similarity and dissimilarity are properties of a 
pair of molecules, whereas diversity is the property of a set of molecules (either an entire database or 
a subset thereof) and is computed by combining sets of pair-wise similarities or dissimilarities.  For 
example, a common measure of diversity for a set of n molecules (and the measure considered in what 
follows) is the sum of the n(n-1)/2 pair-wise dissimilarities.  Given this definition it is trivial in principle 
to identify the most diverse n-molecule subset of an N-molecule database (and hence the subset that 
should be submitted for biological testing) simply by computing the sum of the similarities for each 
possible n-molecule subset in turn.  However, this is computationally infeasible, requiring 
consideration of up to 

N
n N n

!
!( )!−       (3)

 

different subsets, and practical methods for subset selection hence make use of more approximate 
methods.  There are three main approaches that use fingerprint-based similarities: cluster-based 
selection as described previously; and dissimilarity-based selection and optimisation-based selection 
as described below.   

In dissimilarity-based selection the subset of selected molecules is initiated by choosing a molecule at 
random, then adding that molecule that is most dissimilar to the first molecule, then that molecule 
that is most dissimilar to the first two molecules, and so on until a subset of the desired size has been 
obtained [84].  An alternative, sphere-exclusion approach involves selecting an initial molecule and 
then excluding from further consideration all molecules that have a similarity greater than some 
threshold with the chosen molecule.  In subsequent stages, that non-excluded molecule is chosen for 
inclusion in the subset that has the largest dissimilarity to those molecules that have already been 
selected, and further molecules excluded if they are nearest neighbours of the one that has been 
chosen [85] (other approaches have also been described [86]).  These approaches involve the 
identification of the most dissimilar molecule at each stage, and different results can be obtained 
depending on how ‘most dissimilar’ is defined: the MaxMin approach is widely used, and involves 
selecting that molecule for inclusion that has the maximum dissimilarity to its nearest neighbour in the 
current subset of selected molecules [87].   



The final approach involves use of a combinatorial optimisation procedure, with the optimisation 
being driven by the need to maximise the diversity of the chosen subset.  The diversity is typically the 
sum of pair-wise dissimilarities for the molecules chosen for inclusion in the subset.  Both genetic 
algorithms [88, 89] and simulated annealing [90, 91] have been used for this purpose, with Waldman 
et al. providing a detailed overview of the diversity criteria that can be employed [92].  The focus of 
the present review is the use of fingerprint methods; optimisation-based selection often uses 
additional information to ensure that the molecules chosen for inclusion in the subset are not just 
structurally diverse but also exhibit physicochemical properties typical of those for a drug [91, 93, 94].  
A sophisticated example of this is provided by the work of Gillet, who uses Pareto optimization to 
obtain a family of equivalent solutions, each of which represents a different trade-off between the 
often conflicting requirements of the various objectives in the optimisation [95]. 

Molecular diversity analysis rapidly established itself as an effective tool for identifying structurally 
dissimilar sets of compounds.  However, it came to be realised that the pursuit of diversity alone is not 
sufficient for the purposes of drug discovery: not only must the compounds selected for testing be 
structurally diverse, but they must also be drug-like, in the sense of exhibiting physical and chemical 
properties characteristic of known bioactive molecules.  This can be achieved in part by using Pareto-
based selection methods (as in the work of Gillet et al. mentioned above).   Current drug-discovery 
programmes hence complement diversity methods with filters designed to ensure the drug-like nature 
of the compounds that are to be selected for testing [96, 97].  

Conclusion 

This review has discussed measures of inter-molecular structural similarity based on chemical 
fingerprints, and their use for three data mining applications in large chemical databases.  Fingerprints 
provide a compact but effective description of the 2D substructures present in a molecule, but without 
an explicit description of the molecule’s topology.  It is hence not unreasonable to suspect that the 
inclusion of such information would result in more effective measures of similarity, and one might 
reasonably ask why such a simple, indeed crude, approach to the quantification of similarity is still in 
widespread use more than a quarter-of-century after the first publications [43, 47].  The main reason is 
the huge numbers of similarity calculations required for the processing of large databases: there is 
hence a considerable premium associated with computational efficiency, and comparing two binary 
vectors is far faster than the operations required if more complex representations are adopted.  We 
have noted previously that the graph-matching operations required for a full topology match are 
extremely time-consuming, and yet comparisons of fingerprints and graph matching for similarity 
searching [98] and for clustering [99] suggest that the former, more efficient approaches are of 
comparable or superior effectiveness.  Thus, we do not observe the trade-off between efficiency and 
effectiveness that might have been expected.   

Similar comments apply to the use of measures of 3D similarity.  The shape of a molecule is often a key 
factor in determining whether a molecule will be bioactive, and many types of 3D representation have 
thus been reported in the similarity literature [7].  Examples include fingerprints that encode inter-
atomic distance or angular information [100, 101], and descriptions of molecular shape [102, 103] and 
of the distribution of electrostatic charge around a molecule [104, 105].  However, these all need to 
take account of the fact that most molecules are flexible, i.e., they can adopt several or many different 
3D shapes (called conformations) (where as a molecule has only a single 2D topology).  These multiple 



conformations need to be considered if one wishes to provide a comprehensive description of 
molecular geometry, which has inevitable, and often large, computational requirements.  Moreover, 
even if account is taken of conformational flexibility, there is again little evidence to suggest that the 
results are notably better than those obtained with 2D fingerprints [13, 49, 106].   

At some point, it will surely prove possible to identify measures of topological and geometric similarity 
that are both efficient and effective in operation.  Till then, 2D fingerprints provide an appropriate tool 
for data mining in the large databases that characterise pharmaceutical research.  
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