
promoting access to White Rose research papers 
   

White Rose Research Online 
eprints@whiterose.ac.uk 

 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 
 

 
This is an author produced version of a paper published in Future Medicinal 
Chemistry. 
 
 
White Rose Research Online URL for this paper: 
http://eprints.whiterose.ac.uk/76255  
 

 
 
Published paper 
 
Gardiner, E.J., Holliday, J.D., O'Dowd, C. and Willett, P. (2011) Effectiveness of 2D 
fingerprints for scaffold hopping. Future Medicinal Chemistry, 3 (4). 405 - 414. ISSN 
1756-8919 
 
http://dx.doi.org/10.4155/FMC.11.4  
 

 

http://eprints.whiterose.ac.uk/76255
http://dx.doi.org/10.4155/FMC.11.4


1 
 

Effectiveness of 2D Fingerprints for Scaffold Hopping 
 

Eleanor J. Gardiner, John D. Holliday, Caroline O’Dowd and Peter Willett1 
Information School, University of Sheffield, 

Western Bank, Sheffield S10 2TN, UK 
 

ABSTRACT 
 
Background.  It has been suggested that similarity searching using 2D fingerprints may not 
be suitable for scaffold hopping.   
Methods.  This paper reports a detailed evaluation of the effectiveness of six common types 
of 2D fingerprint when they are used for scaffold hopping similarity searches of MDDR, 
WOMBAT and MUV data.   
Results.  The results demonstrate that 2D fingerprints can be used for scaffold hopping, with 
novel scaffolds being identified in nearly every search that was carried out.  The degree of 
enrichment depends on the structural diversity of the actives that are being sought, with the 
greatest enrichments often being obtained using ECFP4 fingerprints. 
Conclusions.  2D fingerprints provide a simple, and computationally efficient, way of 
identifying novel chemotypes in lead-discovery programmes. 
 
 

KEYWORDS 
 
Enrichment.  The ability of a virtual screening (vide infra) method to retrieve more bioactive 
molecules in a database search than would random selection. 
Fingerprint. A compact representation of molecular structure widely used in 
chemoinformatics systems.  A fingerprint is a (normally) binary vector string encoding the 
presence or absence of topological substructures in a molecule.  
Scaffold hopping. A database search for molecules that have a different central ring system 
from that of an existing lead, such as might be used as the reference structure in a similarity 
search 
Similarity search. Search of a chemical database that computes the similarity between each 
database structure and an input reference structure, and that returns as output the most similar 
molecules.   
Virtual screening.  A computational procedure that ranks the structures in a chemical 
database in order of decreasing probability of activity in a bioassay of interest.   
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INTRODUCTION 
 
Virtual screening plays an increasingly important role in the discovery of novel, bioactive 
molecules, such as pharmaceuticals and agrochemicals.  We focus here on similarity 
searching, which is based on the idea that molecules that are structurally similar are likely to 
have similar properties [1-4].  It involves the identification of those molecules in a database 
that are most similar to a known active ligand (the reference structure) since these are 
expected to have the highest probabilities of exhibiting the activity of interest and will hence 
be candidates for biological testing.  
 
At the heart of any similarity searching system is the similarity measure that forms the basis 
for the ranking of the database structures.  A very common approach to determining the 
similarity between two molecules is a comparison of their corresponding fingerprints, where 
a fingerprint is a (normally) binary string encoding the presence or absence of topological 
substructures, or fragments, in a molecule.  The comparison enables the subsequent 
calculation of the Tanimoto coefficient, which is based on the numbers of fragments common 
and non-common to the two fingerprints.  This very simple approach to the quantification of 
molecular resemblances was first described some 25 years ago but is still very extensively 
used for ligand-based virtual screening since it has been found to be both efficient and 
effective in operation [1, 5].  
 
Although widely used, the application of simple, topological fragments to the matching of 
two molecules has been criticised on the grounds that a similarity search is likely to retrieve 
only those molecules that have a close topological relationship to the reference structure.  In 
particular, it has been suggested that 2D fingerprints are unlikely to be able to retrieve 
molecules that have a different central ring-system from that of the reference structure, i.e., 
that belong to different chemotypes.  The ability to identify such novel ring-systems, an 
ability that is often referred to as scaffold hopping or lead hopping, is a key capability of an 
effective method for virtual screening [6-9]. Bohm et al. state that “The aim of scaffold 
hopping is to discover structurally novel compounds starting from known active compounds 
by modifying the central core structure of the molecule” [10]; and in like vein, Zhou defines 
scaffold hopping as “a computational technique that identifies a topologically different 
scaffold from the parent compound but with similar or improved activity and other properties 
from a given database” [11].  Scaffold hopping is important for three principal reasons: it can 
provide a back-up if the existing lead series in a project subsequently proves to exhibit poor 
ADMET properties; some positions around a given scaffold may be synthetically difficult, 
where as an alternative may enable the creation of the desired substitution pattern; most 
importantly, it provides a way of circumventing the structural coverage of an existing, 
competitor patent.   
 
The use of 3D structural information lies at the heart of pharmacophore searching and 
docking, which are two of the most important current approaches to virtual screening, and 
many of the published methods for scaffold hopping use similarity measures that are based on 
3D descriptors of various sorts [6].  This is entirely appropriate given that protein-ligand 
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binding is an inherently 3D event.  However, the geometry of a molecule is determined, in 
part at least, by its underlying topology, and it is hence of interest to study the extent to which 
such information, as encoded by 2D fingerprints, is applicable to virtual screening.  We have 
previously reported a detailed study of the merits of several different 2D fingerprints for 
similarity-based virtual screening in general [12]; here we extend that work by considering 
the suitability of this popular structure representation for the specific task of scaffold 
hopping.   
 

METHODS 
 
The experiments simulated a typical virtual screening environment.  A bioactive reference 
structure was matched against each database structure in turn, the similarities computed, and 
the database ranked in decreasing similarity order.  A threshold was then applied – the top-
1% of the ranking in our experiments – and then the effectiveness of the search determined 
on the basis of the activity, or otherwise, of the top-ranked molecules.  This was possible 
since the three databases used here all contain data regarding the biological activity of their 
constituent structures.  The three databases were the MDL Drug Data Report database 
(MDDR, from Accelrys Inc. [101]), the World of Molecular Bioactivity database 
(WOMBAT, from Sunset Molecular Discovery LLC [102]), and the Maximum Unbiased 
Validation database (MUV, from the Carolo-Wilhelmina Technical University in 
Braunschweig [103]).  Full details of these three datasets are given by Gardiner et al. [13] and 
by Rohrer and Baumann [14].   
 
Several activity classes were available for each of the three datasets, as listed in Table 1(a)-
(c).  Each row of the table contains an activity class, the number of molecules in the database 
belonging to that class, the number of scaffolds present in the molecules belonging to that 
class (which we shall refer to subsequently as the active scaffolds), and the structural 
diversity of that class, and we now describe the entries in the second and third columns of 
each table.  
 
Brown and Jacoby [6] and Xu and Johnson [15] review a range of definitions that have 
appeared in the literature, with the former noting that the molecular frameworks first reported 
by Bemis and Murcko [16] have been widely adopted.  A molecular framework is obtained by 
pruning all acyclic parts of a molecule, whilst maintaining the atom and bond types for the ring 
system, and we have used this definition here, specifically the implementation available in the 
Murcko Scaffold routine in the Pipeline Pilot software.   
 
The diversity value for a class was computed as the mean similarity when averaged over all 
pairs of molecules in the class, using Tripos Unity 2D binary fingerprints and the Tanimoto 
coefficient.  It will be seen that the MDDR (Table 1a) and WOMBAT (Table 1b) datasets 
have examples both of classes involving actives that are structurally homogeneous and of 
classes involving actives that are structurally heterogeneous (i.e., structurally diverse).  The 
use of homogeneous sets of actives can give overly-optimistic results (referred to as analogue 
bias) as to the effectiveness of topologically-based virtual screening methods [17, 18].  MUV 
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has been designed specifically to assess the performance of virtual screening methods when 
diverse sets of actives are being sought.  Thus, while the MDDR and WOMBAT datasets 
used here contained fixed sets of 102,516 molecules and 138,127 molecules, respectively, the 
MUV dataset contained 15,000 carefully selected inactives to go with each set of 30 actives; 
moreover, these actives have been chosen to be structurally diverse, with a mean of only 1.16 
examples for each scaffold present in the set of actives.   
 
In each case, ten representative reference structures were chosen from an activity class using 
a MaxMin diversity selection routine to ensure coverage of the full range of structural types 
within each activity class.  The conventional approach to measuring the effectiveness of a 
similarity search is by using some function of the recall, i.e., the percentage of the active 
molecules retrieved at some cut-off point in the ranking (for which we have used the top-1% 
in our experiments).  Examples of such measures include enrichment factors, cumulative 
recall, and ROC curves.  Here, however, we wished to focus on the active scaffolds, and we 
hence adopted three different criteria for the evaluation of search performance.  The first 
criterion was the percentage of the active scaffolds identified in all the molecules (not just the 
active molecules) retrieved in the top-1% of a ranking.  The second, more stringent criterion 
was the percentage of the active scaffolds identified in the active molecules retrieved in the 
top-1% of a ranking.  The third criterion was the percentage of the active molecules in the 
top-1% of the ranking that had a scaffold different from that of the reference structure.  All 
three criteria were used to evaluate the MDDR and WOMBAT searches, and only criterion-3 
for the MUV searches given the manner in which this dataset has been constructed.  The 
screening performance for each activity class was obtained by calculating first the appropriate 
criterion value for each search and then the arithmetic mean when averaged over the ten 
chosen reference structures for that class. 
 
The focus of this study is the use of 2D fingerprint representations of molecular structure, 
where a fingerprint is a binary vector encoding the presence or absence of substructural 
fragments.  There are two main ways in which a fingerprint can be generated [19, 20].  
Dictionary-based approaches involve a pre-defined list of fragments, with normally one 
fragment allocated to each position in the vector.  A molecule is checked for the presence of 
each of the fragments in the dictionary, and bits are then set (or not set) depending on the 
presence (or absence) of that fragment.  Molecule-based approaches involve the use of 
hashing algorithms to allocate multiple fragments to each bit-position.  A fragment definition 
is provided, e.g., all chains of five bonded non-hydrogen atoms, and the presence identified 
within a molecule of all such fragments matching the definition.  Each of the resulting 
fragments is then hashed to set multiple bits in the fingerprint.   
 
The experiments involved testing six different types of fingerprint that are available in 
widely used chemoinformatics systems: ECFP4 (for Extended Connectivity Fingerprint 
encoding circular substructures of diameter four bonds) fingerprints from the Pipeline Pilot 
software (hashed to a fixed length of 1024 bits, and available from Accelrys Inc. [101]); 
FCFP4 (for Functional-Class Fingerprint encoding circular substructures of diameter four 
bonds) fingerprints (1024 bits, also available in the Pipeline Pilot software); Tripos Unity 
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fingerprints (988 bits, available from Tripos LP [104]), BCI fingerprints (1052 bits, available 
from Digital Chemistry [105]), Daylight fingerprints (2048 bits, available from Daylight 
Chemical Information Systems Inc. [106]) and MDL key fingerprints (166 bits, available 
from Accelrys Inc. [101]).  The BCI and MDL fingerprints are dictionary-based, the Daylight 
and Pipeline Pilot fingerprints are molecule-based, and the Unity fingerprints employ both 
types of generation method.  The use of these and other types of fingerprints for similarity-
based virtual screening are described by Hert et al. [12], Sastry et al. [21] and Duan et al. 
[22].   
 
It should be noted that any comparison of virtual screening methods is inherently complex 
given the many variables that can affect the results, such as the choice of structure 
representation, of reference structure, of biological activity, of similarity coefficient, and of 
weighting scheme inter alia.  The methods used here have been chosen specifically to 
represent those most commonly encountered, in both the published literature and currently 
available chemoinformatics software.  For example, Holliday et al. have discussed the use of 
22 different similarity coefficients for the matching of chemical fingerprints [23]; however, 
despite the many alternatives and despite the known limitations of the Tanimoto coefficient 
[3], it is this coefficient that continues to be the most widely used.  As another example, Duan 
et al. note that fingerprints can often be implemented in multiple ways, with their extensive 
comparison of similarity methods for virtual screening involving 11 different parameterisations 
of the atoms involved in each substructural fragment encoded in a fingerprint [22]; the 
comparison here has used two popular representations (ECFP4 and FCFP4) in the Pipeline 
Pilot software to exemplify the use of alternative approaches to atom-typing.  Other factors that 
may affect the effectiveness of fingerprint implementations include: the length of the 
fingerprint that is used, especially if hashing techniques are employed that can result in 
substantial numbers of collisions [21]; and whether incidence or occurrence data is used, i.e., 
whether the fingerprint encodes merely the presence of a fragment, its frequency of 
occurrence, or some standardised form of the latter [24].   
 
The results that are presented and discussed in the following section are hence typical of those 
that might be obtained using the default implementations of much current chemoinformatics 
software.  Increases in retrieval effectiveness could certainly be obtained by appropriate choice 
of method and/or parameterisation for specific activity classes and/or reference structures [4, 
22]; however, the training data necessary for such tuning is often unavailable in the early 
stages of a discovery project when similarity methods are most commonly employed.   
 

RESULTS AND DISCUSSION 
 
The results of the searches, using all three evaluation criteria for the MDDR and WOMBAT 
datasets and criterion-3 for the MUV dataset, are shown in Tables 2-4.  Each column in each 
of the tables is headed by an abbreviation of the name of the activity class as detailed in Table 
1.  The best performance in each column has been bold-faced and italicised for ease of 
identification.   
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The first, and most important, general conclusion that can be drawn from the data is that 2D 
fingerprints are indeed capable of being used for scaffold hopping searches.  The figures 
listed in these tables are the percentages of active molecules or active scaffolds retrieved in 
just the top-1% of the ranking.  If a search had been no better than random then one would 
expect this top-1% to contain approximately 1% of the active molecules or scaffolds; figures 
greater than that percentage hence demonstrate the ability of the screening method to enrich 
the search outputs, as compared to random selection.  Inspection of the tables shows clearly 
that some degree of enrichment is obtained in all cases, with the sole exception of the MUV 
SF1A searches where sub-random performance is observed; in some cases there is a very 
considerable degree of enrichment indeed.  Examples of some of the scaffold hops that were 
identified are shown in Figure 1, these being for MDDRD searches using reference structures 
in the HIV and 5HT1A activity classes.  A second conclusion, and one that might be 
expected, is that the degree of enrichment decreases as one moves from criterion-1 to 
criterion-3 and as the strictness of the retrieval criterion is increased.  Thirdly, there is a 
considerable degree of variation in the recall obtained with the different activity classes (and 
also a considerable degree of variation in the recall obtained using different reference 
structures for the same activity class [4]).  One obvious factor that affects the recall is the 
diversity of an activity class: one would expect that a search for a class that is tightly 
clustered in chemical space would retrieve more actives than it would when those actives are 
more widely dispersed.  This is observed to some extent in practice.  For example, the best 
results in the MDDR and WOMBAT datasets were normally obtained in the renin searches, 
and this is the most homogeneous class; excellent results are also obtained for the PKC 
searches of WOMBAT, where this is the second most homogeneous class.  As another 
example, the results for the MUV dataset are noticeably inferior to those for the other two 
datasets, in line with the fact that this dataset has been carefully designed to involve only 
highly diverse sets of actives.  That said, there are obvious discrepancies; for example, the 
MDDR D2 searches give noticeably worse results than do the corresponding COX searches, 
despite the latter class being more diverse. 
 
A further conclusion from the data in Tables 2-4 is that there is a considerable degree of 
variation in the recall obtained with the different fingerprints, with the Pipeline Pilot circular 
fingerprints (ECFP4 or sometimes FCFP4) generally giving the best performance using all 
three criteria for the MDDR and WOMBAT datasets.  The significance, if any, of the 
differences in performance was tested with Kendall’s W test of statistical significance, which 
is used to evaluate the consistency of k different sets of ranked judgements of the same set of 
N different objects.  Specifically, each of the activity classes was considered as a judge 
ranking the different similarity measures in order of decreasing recall.  Thus, for the MDDR 
searches, the eleven activity classes were used to rank the six fingerprints, so that k=11 and 
N=6.  Converting the recall values in each sub-table to ranks one can then compute W and test 
the significance of the observed value using tables provided by Siegel and Castellan [25].  If 
a statistically significant value is obtained then these authors suggest that the best overall 
ranking of the N objects can be obtained using their mean ranks when averaged over the k 
judges.  The W values (all statistically significant at p <= 0.01) and resulting mean ranks for 
the MDDR and WOMBAT searches are listed in Table 5 where, as before, the best 
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performance is bold-faced and italicised.  Two recent comparisons of 2D fingerprints have 
shown the general effectiveness of circular substructures for similarity applications [21, 22], 
and the results in the table show that this is also the case here for the ECFP4 and FCFP4 
substructures [26] when used with the MDDR and WOMBAT datasets.  The MUV searches 
have been excluded from Table 5 as the W value of 0.03 was not statistically significant at the 
0.01 level, i.e., there was no degree of consistency in the ranking of the different fingerprints.  
Similar comments apply to the MDDR and WOMBAT datasets if attention is restricted to 
just those activity classes with mean similarities < 0.40 in Tables 1a and 1b. 
 
While this article was being prepared for publication, we became aware of a very recent 
report by Vogt et al. that is closely related to our work [27].  They used sets of known actives 
for 17 biological targets, adding these to ZINC and ChEMBL datasets each containing ca. 
500K presumed inactives and then carrying out scaffold hopping searches that were evaluated 
in a manner similar to our criterion-2.  They used five different types of fingerprint, including 
the MDL and ECFP4 fingerprints employed in our experiments, and carried out each search 
using a 1-NN (or group fusion) strategy.  Here, five different actives that shared a common 
scaffold were taken in turn as the reference structure, and then each database structure ranked 
on the basis of the largest similarity with any of these five reference structures.  They found 
that retrieving the top-1% of a ranking resulted in the retrieval of 30-40% of the active 
Murcko scaffolds using the most effective fingerprints, with lower recall levels being 
achieved when less precise ring definitions were employed.  They also reported extensive 
studies of the precise similarity values required for adequate scaffold retrieval with the 
different types of fingerprint, and noted that the best results were generally obtained with the 
ECFP4 fingerprint.  It is not possible to compare the two sets of results directly owing to the 
different data and search strategies that were employed; however, the two reports are at one 
in concluding that 2D fingerprints can indeed be used for scaffold hopping searches.   
 

FUTURE PERSPECTIVE 
 
Similarity searching using 2D fingerprints is a simple approach to virtual screening that is 
very widely used.  It has, however, been criticised on two, related grounds.  First, it has been 
suggested that the topological nature of the fragment substructures encoded in a fingerprint 
will mean that such searches are unlikely to exhibit any significant capacity for scaffold 
hopping; second, that the apparently good results obtained by 2D fingerprints in retrospective 
studies of screening performance have been due to analogue bias in the databases that are 
being searched.  In this paper, we have reported similarity-based virtual screening searches 
that have been evaluated so as to minimise the effects of analogue bias.  Our results show 
clearly that at least some of the fingerprints studied here can be used in scaffold hopping 
applications, even when structurally diverse sets of actives are sought.  The enrichments are 
often not large but they are consistently superior to those obtained from random screening.  
Given the simplicity of the approach and its very limited computational requirements, we 
conclude that 2D fingerprints provide a viable way of scanning a database for novel 
scaffolds.   
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That said, the use of 3D methods provides an alternative, and potentially complementary, 
source of information.  An obvious approach is hence to combine the outputs of different 
scaffold-hopping methods that exploit both types of information.  This can be done by 
applying data fusion to ranked search outputs [28] or, if appropriate training data are 
available, by using belief theory [29].  Thus, Muchmore et al. have described the use of the 
latter approach on Abbott internal data, and demonstrated that effective scaffold-hopping can 
be achieved by combining 2D and 3D similarity measures (specifically fingerprints encoding 
ECFP6 circular substructures, analogous to, but larger than, the ECFP4 ones used here, and 
the ROCS shape-similarity software from OpenEye Scientific [107]).  We believe that such 
combined approaches are likely to become increasingly important as computational costs 
continue to fall (making multiple searches increasingly feasible) and as new virtual screening 
methods are developed.  
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EXECUTIVE SUMMARY 
 
• Similarity searching using 2D fingerprints is a simple approach to virtual screening that 

is very widely used.  However, the focus on the 2D nature of molecules might suggest 
that it would not be appropriate for scaffold-hopping applications 

• Experiments with three standard datasets and six widely used fingerprints show that 
this is not the case, with enrichments consistently superior to those obtained from 
random screening. 

• The best results are obtained with fingerprints based on circular substructures 
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CAPTIONS 
 
Figure caption.   
 
Figure 1.  Active scaffolds, together with ECFP4 Tanimoto similarities, retrieved in the top-
1% of the rankings in searches of the MDDR database for the HIV (a) and 5HT1A (b) 
activity classes using the reference structure in the centre of the figure.   
 
Table captions 
Table 1 Activity classes used in virtual screening with (a) MDDR, (b), WOMBAT and (c) 
MUV.  The mean similarity for each class here was obtained by averaging over all pairs of 
molecules in the class, using Tripos Unity 2D binary fingerprints and the Tanimoto 
coefficient.   
Table 2.  Scaffold-hopping searches on the MDDR dataset using (a) criterion-1, (b) criterion-
2 and (c) criterion-3 
Table 3.  Scaffold-hopping searches on the WOMBAT dataset using (a) criterion-1, (b) 
criterion-2 and (c) criterion-3 
Table 4.  Scaffold-hopping searches on the MUV dataset using criterion-3 
Table 5  Kendall W analyses for MDDR  and WOMBAT searches using criteria 1-3 
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Activity class Active molecules Active scaffolds Mean similarity 
5HT1A agonists 827 271 0.34 
5HT3 antagonists 752 237 0.35 
5HT reuptake inhibitors 359 126 0.35 
Angiotensin II AT1 antagonists 943 285 0.40 
Cyclooxygenase inhibitors 636 139 0.27 
D2 antagonists 395 187 0.35 
HIV protease inhibitors 750 331 0.45 
Protein kinase C inhibitors 453 134 0.32 
Renin inhibitors 1125 339 0.57 
Substance P antagonists 1246 380 0.40 
Thrombin inhibitors 803 295 0.42 

(a) 
 
Activity class Active molecules Active scaffolds Mean similarity 
5HT1A antagonists 592 135 0.40 
5HT3 antagonists  220 68 0.38 
Acetylcholine esterase inhibitors 503 150 0.37 
Angiotensin II AT1 antagonists 724 154 0.44 
Cyclooxygenase inhibitors 965 93 0.32 
D2 antagonists 910 191 0.37 
Factor Xa inhibitors 842 181 0.39 
HIV protease inhibitors 1128 314 0.44 
Matrix metalloprotease inhibitors 694 164 0.44 
Phosphodiesterase inhibitors 596 161 0.36 
Protein kinase C inhibitors 142 23 0.57 
Renin inhibitors 474 124 0.59 
Substance P antagonists 558 110 0.43 
Thrombin inhibitors 421 138 0.42 

(b) 
 
Activity class Active molecules Active scaffolds Mean similarity 
S1P1 receptor agonists 30 28 0.29 
PKA inhibitors 30 27 0.29 
SF1 inhibitors 30 24 0.29 
Rho-Kinase2 inhibitors 30 27 0.27 
HIV RT-RNase inhibitors 30 27 0.26 
Eph receptor A4 inhibitors 30 29 0.27 
SF1 agonists 30 30 0.25 
HSP 90 inhibitors 30 27 0.26 
ER-a-Coactivator binding inhibitors 30 26 0.26 
ER-β-Coactivator binding inhibitors 30 28 0.27 
ER-a-Coactivator binding potentiators 30 28 0.30 
FAK inhibitors 30 28 0.28 
Cathepsin G inhibitors 30 28 0.32 
FXIa inhibitors 30 21 0.28 
FXIIa inhibitors 30 24 0.30 
D1 receptor allosteric modulators 30 24 0.25 
M1 receptor allosteric inhibitors 30 29 0.28 

(c) 
Table 1  
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 5HT1A 5HT3 5HTRE ANGIO COX2 D2 HIVP PKC RENIN SUBP THROM 
BCI 18.11 15.30 18.00 22.39 20.29 9.73 9.12 10.83 20.89 6.25 10.61 
Daylight 21.04 13.81 22.08 17.89 21.52 11.94 12.33 10.23 19.14 8.34 14.08 
ECFP4 21.00 20.81 22.80 26.34 28.77 14.46 15.06 16.32 33.88 10.95 18.71 
FCFP4 23.59 18.69 23.60 17.92 28.26 15.54 13.73 16.32 26.01 9.29 19.97 
MDL 18.63 16.36 21.44 19.12 28.20 13.98 11.06 12.78 18.08 9.37 15.14 
Unity 22.11 16.23 23.20 17.57 23.77 12.37 12.15 11.50 22.54 10.26 16.50 

(a) 
 
 5HT1A 5HT3 5HTRE ANGIO COX2 D2 HIVP PKC RENIN SUBP THROM 
BCI 10.93 10.34 8.24 19.26 6.45 3.92 6.27 5.34 17.99 4.49 6.56 
Daylight 12.22 8.90 10.24 15.18 4.78 4.78 8.67 4.21 15.83 6.62 7.38 
ECFP4 12.78 15.38 8.24 23.24 8.12 4.30 11.09 6.17 31.33 8.50 11.12 
FCFP4 14.07 13.01 9.60 15.46 7.17 6.02 9.33 6.17 22.84 6.65 12.31 
MDL 9.89 11.31 7.76 15.07 7.08 5.32 7.12 4.74 15.21 6.94 9.05 
Unity 12.22 11.31 9.60 14.79 5.22 4.25 8.33 5.34 19.38 8.05 9.90 

(b) 
 
 5HT1A 5HT3 5HTRE ANGIO COX2 D2 HIVP PKC RENIN SUBP THROM 
BCI 8.07 8.30 5.57 15.55 3.87 3.92 4.86 4.10 16.59 2.76 5.73 
Daylight 8.62 6.14 7.31 13.03 2.82 4.78 6.79 3.09 12.89 5.20 6.13 
ECFP4 10.06 13.29 5.27 20.21 4.19 4.30 9.49 5.67 32.76 6.66 10.08 
FCFP4 10.58 10.15 7.54 13.60 3.58 6.02 7.32 4.04 21.54 5.30 10.28 
MDL 6.58 7.68 4.74 11.75 3.66 5.32 5.41 2.74 11.34 4.08 6.37 
Unity 7.70 7.91 7.13 11.91 2.48 4.25 6.23 4.70 15.62 6.09 8.15 

(c)  
 
Table 2.   
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 5HT1A 5HT3 AChE ANGIO COX D2 FXA HIVP MMP1 PDE4 PKC RENIN SUBP THROM 
BCI 18.21 26.42 17.92 29.28 25.00 17.16 14.56 14.19 25.58 16.56 45.45 29.67 12.11 11.75 
Daylight 18.58 18.66 18.39 30.78 24.78 17.37 16.17 13.10 25.34 17.19 45.45 30.00 17.89 14.67 
ECFP4 23.73 28.36 22.21 37.39 35.98 21.37 24.17 19.39 33.74 21.25 60.00 58.54 19.27 23.65 
FCFP4 26.87 25.67 19.53 30.46 32.61 22.53 19.33 18.82 30.37 20.31 52.27 49.35 17.16 21.39 
MDL 20.60 26.12 22.01 22.68 31.20 18.89 19.11 14.15 36.63 16.13 44.09 28.54 15.41 17.37 
Unity 19.93 19.40 19.87 26.86 27.17 19.11 16.50 16.17 30.80 18.63 46.36 39.35 19.17 17.30 

(a) 
 
 5HT1A 5HT3 AChE ANGIO COX D2 FXA HIVP MMP1 PDE4 PKC RENIN SUBP THROM 
BCI 9.93 18.51 10.60 27.25 11.96 8.89 10.50 10.06 14.85 9.94 43.64 26.02 9.36 6.64 
Daylight 9.33 11.19 10.13 29.67 9.35 7.16 11.72 8.27 13.56 11.69 43.64 25.61 14.04 8.91 
ECFP4 13.21 16.42 10.07 34.77 14.02 10.05 17.78 12.88 16.93 12.25 52.73 55.61 14.95 17.08 
FCFP4 16.49 13.73 8.72 28.69 12.72 10.26 14.22 12.59 15.89 12.63 45.00 45.69 12.94 13.80 
MDL 11.12 16.57 10.81 19.67 9.89 7.53 14.61 8.91 21.60 8.56 39.55 24.07 11.83 10.51 
Unity 11.49 10.90 10.47 24.97 10.43 7.79 12.33 11.25 18.28 12.25 44.09 34.31 14.86 10.73 

(b) 
 
 5HT1A 5HT3 AChE ANGIO COX D2 FXA HIVP MMP1 PDE4 PKC RENIN SUBP THROM 
BCI 6.69 17.76 9.74 26.52 6.47 6.57 8.53 7.94 11.03 8.01 40.95 20.83 6.46 3.54 
Daylight 8.74 10.77 8.59 29.27 3.50 5.23 9.77 6.67 8.81 9.75 41.76 20.98 10.31 5.53 
ECFP4 9.06 11.63 7.26 33.57 8.58 6.88 14.64 10.69 11.68 8.84 48.71 55.23 11.45 14.23 
FCFP4 12.04 10.61 6.80 28.23 6.12 6.65 11.96 9.68 10.92 9.76 41.39 41.59 9.35 10.21 
MDL 6.77 13.09 6.99 16.07 4.54 4.77 9.88 5.92 16.84 5.27 29.32 16.76 8.28 6.78 
Unity 9.10 10.76 7.44 23.01 4.05 5.44 9.57 8.36 12.80 9.19 41.83 25.51 11.00 6.60 

(c) 
 
Table 3.   
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 S1P1 PKA SF1I RK2 HIV ERA4 SF1A HSP ERaI ERbI ERaP FAK CG FX1a FXIIa  D1 M1 
BCI 2.67 8.67 2.33 4.00 1.33 6.00 0.67 12.67 7.33 5.00 1.33 3.33 12.00 7.00 14.67 2.33 2.33 
Daylight 3.00 9.33 3.33 3.67 1.33 5.33 0.33 2.67 2.00 3.00 2.33 4.00 15.33 5.00 14.67 2.00 2.33 
ECFP4 3.33 9.00 3.00 5.33 2.00 4.67 0.67 4.67 1.67 4.33 1.67 2.67 9.33 9.33 10.67 2.00 1.33 
FCFP4 3.33 10.33 2.67 7.33 2.33 4.33 0.67 4.33 2.00 3.67 2.33 2.67 11.67 8.67 13.00 2.00 2.67 
MDL 2.00 3.67 2.67 4.67 2.33 3.67 0.67 4.00 2.67 4.00 5.00 4.33 11.00 5.00 11.67 2.67 1.33 
Unity 3.00 10.67 4.00 3.33 1.67 4.00 0.33 3.67 1.33 4.00 2.00 3.33 16.67 4.67 13.00 3.00 2.67 
 
Table 4.   
 
 
 MDDR WOMBAT 
 1 2 3 1 2 3 
BCI 5.27 4.72 4.09 5.07 4.18 4.14 
Daylight 4.72 4.32 4.09 4.71 4.82 3.93 
ECFP4 1.68 1.82 1.82 1.21 1.82 1.86 
FCFP4 1.95 2.00 2.18 2.50 2.64 3.07 
MDL 3.91 4.41 4.90 4.00 4.14 4.57 
Unity 3.45 3.72 3.90 3.50 3.39 3.15 
Kendall W 0.60 0.45 0.42 0.59 0.36 0.26 
 
Table 5   
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Figure 1a 



17 
 

 

Figure 1b 
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