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SYNOPSIS

Using similar assumptions to those adopted in a companion paper( ) for
tray column analysis, a parametric transfer-function (T.F.M.) is here derived
completely analytically for packed, binary distillation columns. For simpli-|
city, the method of calculation is illustrated for'a column that is symmetrical
statically and dynamically i.e. having a rectifier vapour/stripping section
liquid capacitance ratio ¢ = 1.0. This produces a completely diagonal T.F.M.
between the sum and difference of output composition changes and the circula-
ting and product take-off flow rates. The T.F.M. is also presented for ¢ # 1.0
and, although no longer diagonal at all frequencies, analysis and simulation
show that the column behaviour is not greatly affected by changes in tyis
parameter.

Long packed columns are shown to produce novel nonminimum phase effects
when twin product control is attempted, whereas serious travelling-wave
phenomena can limit controller prerformance in short columns. The possibility
of zero separation-gain is also revealed. The computed shapes of inverse
Nyquist loci are confirmed by analysis and by numerical time-domain simulation.
The chief cause of discrepancy between tray and packed column behaviour is
shown to result from the continuous equilibrium assumption for theoretical

trays.




1. Symbols
In the present paper, identical symbols to those used in the preceeding

1)

companion paper( here have the same physical significance, with the

following exceptions:

h — normalised distance (measured from top and bottom of column)
= h'k/V
and T - normalised time = tk/Hv

Additional symbols used are:

c - ratio of vapour/liquid capacitance in rectifier and stripper
respectively.

HV,HV' - vapour capacitance p.u. length in rectifier and stripping sections

J - variable defined by equation (62)

kr,ks (=k where equal) - evaporation raterconstants p-u. length p.u.

departure from equilibrium in rectifier and stripping sections.

P - (1-¢)p/2
. D ;

a - /(1+e)p (44ptcp) /4 ( =/ p“+2p , ¢ = 1.0)
é}s) - 2x2 matrix defined by equation (33)

% =
R(s) - s Q(s)
Q(h) - Inverse Laplace transform of é(s)

* n L B
g (h) = n [1] n n 2(_5)
B(h) — 11 " n n é(s)

* ~
E (h) - n n n " E(_S)
Tl'TZ - time constants defined by equations (65) and (66).
X - vector of tilt and total equilibrium composition changes ye and xe'
Xé,xé - equilibrium liquid mol-fraction in stripping section and small

perturbation therein.

Ye,ye - equilibrium vapour mol-fraction in rectifier and small perturbation
therein.

zy - (G/V)v

z - (G/V) 2




Z Introduction

In a companion paper(l) Edwards and Tabrizi derived a parametric
transfer-function matrix (T.F.M) model for the composition dynamics of
long, binary distillation columns of the tray type. Simplifying assump-
tions were made at the outset and, thereafter, the derivation proceeded
completely analytically and without subsequent approximation. Of the initial
assumptions, most were those adopted by seﬁeral previous researchers and in- '
volved the piecewise linearisation of the equilibrium curve, constant molar
overflow, zero vapour capacitance, parallel equilibrium and operating lines
(leading to equal tray-loading). Variation of tray-holdup through hydrodynamic
effects was shown not to affect the small-perturbation behaviour of the com-
position dynamics about the steady-state. The additional assumption made,
initially in the interests of ease of analysis, was that of static symmetry,
involving equal lengths of rectifier and stripping section, feed-composition
coordinates located at the knee of the linearised equilibrium curve, equal
vapour and liquid feed rates and nominally equal take-off rates of top and
bottom product. Such operating conditions were shown to produce top and bottom
products of nominally equal purity, in terms of lighter and heavier component
respectively: a condition judged by the authors to represent ideal plant
design for the composition control of twin products and therefore a practically
useful special case. Although precisely derived for this special case, it is
anticipated that the model should still stand as a useful approximation for
asymmetric situations, hopefully up to the point where a single- rather than
a twin-stage analysis might become more appropriate. Supporting experimental
data was given.

In the.present paper we apply somewhat similar techniques to packed
columns which yield rather more complex equationsand important behavioural
differences. Additional symmetry assumptions need to be introduced, particularly

in respect of liquid and vapour'capacitance_ih the column, to keep algebraic

complexity manageable within the confines of a single paper, but final results



are also given for general capacitance ratios. References

(2) and (3) must be consulted for their detailed derivation. In the following
derivations, assumptions of the type made in the companion paper are not re-
justified here. New assumptions are highlighted however where appropriate.
After deriving the model we examine some of the plant behaviour predictions

it yields.

3. Equilibrium and Material BRalance Formulations

{

The column is illustrated diagramaticélly in Fig. 1 the rectifier and
stripping section being compartmentalised, vertically into counterflow vapour
and liquid streams separated by a conceptudl inter-phase barrier and hori-
zontally into a number of conceptual cells to which dynamic méss balances may
be applied. As before the equilibrium curve is linearised thus:

(1-X) = a(l—Ye) 7 rectifier (1)
and i = aXé , stripping section (2)

Ye being the equilibrium value of vapour composition* associated with
rectifier liquid of composition X, whilst Xé is the equilibrium value of liquid
composition associated with stripping section vapour of composition Y'. The
initial slope of the linearised curve is the constant a.

Taking a material balance for the flow of lighter component through
and within an arbitrary cell of the rectifier and stripping section, applying

a Taylor expansion and letting cell length &h -+ O, vields. the following partial

differential equations (p.d.e's), having eliminated X and Y' using (1) and (2):

B(HVY)/Bt - VraY/ah' = kr(Ye—Y) (3).
- uB(HgYe)/Bt - LruaYe/Bh' = kr(Ye~Y) (4)
- B(HéX')/&t + Lsax'/ah' = ks(x'—Xé) (5)
uB(H;Xé)/Bt + avs axé/at = ks(x' - Xé) (6)

where Y and X' are the actual vapour and liquid compositions in rectifier and

stripping section respectively, Vr(ys), Lr(LS) are the vapour and liquid molar

*
The term composition is used throught to mean mol-fraction of the lighter

component in the binary mixture.



flow-rates in the rectifier (stripper), HV(HG) HR(Hé) the vapour and liquid
capacitances p.u. length and kr(ks) the evaporation rate constants p.u. length
for the rectifier (stripper). 2As before, h' denotes the distance to the point
in question measured from the end-vessel (accumulator or reboiler).

4. Normalisation

As previously, we shall choose a plant built and operated symmetrically

|
thus

V = oL =L =0V =V (7)
X k= =] s

with a mixed feed of vapour, at rate Fv’ composition z and liquid at rate Fg,

composition Z where

FR - Fv - F @
z = 0Z = a/(l+a) (2)
H = aH' = H (10)
v v 1

HQ = oaH2 = H2 (11)

k =k =k (12)
equation (7) and (8) producing nominally equal product flows (=F) at top and
bottom. It should be emphasised however, that equation (7) describes only
the nominal (quiescent) operating condition of the plant and does not prevent
the application of small, independent changes v,% in, say, VS and Lr.

Under these conditions the system p.d.e's may be normalised to

d(cY) /3t - 3Y¥/5h = Ye - Y
- 3Y /3t - ?Y /dh =Y - Y
e e e (13)
- 9X'/9tT + 3X'/dh = X' - xé

9(eX")/8T + 0X'/dh = X' -'X'
e e e

where normalised time T and distance h are given by

h = h'k/v (14)

I

I

T t k/H2 (15)

the base time H2/k being the time for liquid (in the stripping section) to travel




base distance V/k which may be regarded as the tray spacing of the equivalent

tray-column . It has a further physical significance demonstrated in Section 6 .

The vapour/liquid capacitance ratio c is defined as
c = Hl/H2 (16)

53 Large-Signal Boundary Conditions

5.1 At the feedpoint If L is the normalised length of either section of the

columns ) |
L=1rIKk/V (17)
then the feed boundary conditions are simply
VY (L) +F z =V Y(L) ' (18)
S v r
and L X(L) +F 2=1L_ X'(L) (19)
s % s
On substituting our chosen symmetrical operating conditions (7) (8) and (9)
and eliminating X(L) and Y'(L) in favour of Ye(L) and Xé(L) using (1) a=xd (2)
we obtain the normalised forms
Xé(L) + {1 - ¥Y(L)} = 2/(a+1) (20)
and {1 - Ye(L)} + X'(L) = 2/(o0+l) (21)

5.2 At the end-vessels. Material balances on the accumulator and reboiler (of

constant capacitance Ha and Hb moles respectively), yields the differential

equations (d.e's)

Hadx(o)
T = vr{y(o) - X(o)}
or,
HaadYe(o)
o =V, L1 -y @} -{1-v0]] (22)
and
H, dX! (o)
—Eﬁ?—— = L_{X'(0) - ¥'(0)}
or
H, dX! (o)
= =L {X'(0) - aX'(0)} (23)
dt s =]

assuming the end vessel to run in equilibrium




Again, for symmetry, we set
Ho=H =H (24)

and normalising (22) and (23) then gives

dYe(o)
T —3 =a{l - Y (o)} - {1 - Y(0)} (25)
¥ e
and
dxé(o)
T T = X'(o) - Xe'(O} , (26)‘
where
T=H /V (27)
e :
6. Steady-State Solution

The system is now completely specified and steady-state conditions (needed
as parameters for the subsequent small perturbation model) may be calculated by
setting the time derivatives in (13),(20),(21),(25) and (26) to zero .»d solving
the resulting spatial d.e. subject to its now static boundary conditions. The
solutions, given in Fig. 2, for X'(h) {= 1 - Y(h)} and Xé(h) {=1 - Yé(h)} are
linear in h for our chosen symmetrical conditions. We note in particular that
the steady-state gradients
dx'
g2 g - B% S =g (28)

dh an dh ~ an

where, as for the equivalent tray-column, G is again given by

G = 2e /{(a+1) (2L + a + 1)} (29)
and that the equilibrium and actual composition profiles are separated by unit
normalised distance: i.e. by the base distance V/k in units of h'. This distance
therefore now acquires a fuller physical significance. It is interesting also
to note that the tray-column solutions(l) for ¥ and X' are identical to those
for Ye and Xé in the equivalent packed-column as might be expected since the
trays were assumed to operate in continuous equilibrium.

7. Small Perturbation Equations

Implicit differentiation of p.d.e's (3) - (6), writing ¥. ye,x‘,xé,v and %
for small changes in Y,Ye, X',Xé, VS and Lr respectively and substituting the

calculated steady-state values for the remaining upper-case symbols yields the



following normalised small-signal p.d.e's for behaviour around the steady-state,

irrespective of hydrodynamic influence on the tower capacitances (?,ie,i’ and ié
being zero), viz.

c 9y/at - d¥y/9h + G v/V = ¥y, —¥

- Bye/aT - Bye/ah + aGL'V=y -y

© (30)

- 3x'/dT + 9x'"/dh + GL/V = x' - xe'

¢ ax'/dT1 + 3x'/ dh + aG v/V = x' - x! |
e e e )

After double Laplace transformation in s w.r.t h and in p w.r.t T using super-
script ¥ to denote variable transforms w.r.t. h and T and ~ to represent trans-

forms w.r.t. T only, these equations may be written thus

)

y y (o) 1 offz

oty | = | 4] - £t =0 (31)

= ye ye(o) o] o 22 =

and

;' x' (o) a o (2

~_q e 5} -1 1 . .

g "l-8Y} o [|=] . + s . 1=0o (32)
x! x' (o) 0 1l |z

y(p),ye(o),xé(o),x'(o) being the transformed variables at h = o and

1l +cp-s ’ =i,
~-1
Q (s) = 41 , (1L +p + 2) (33)
and lzl,zzl = (G/V) |v,2| (34)

Now some of the unknowns, say 53(0) and Qé(o), may be eliminated at this stage
using the small perturbation version of boundary equations (25) and (26) which,

after Laplace transformation and normalisation may be expressed:

v (o) ~ y(o)
= = ) | 5, (35)
xe(o}

where he(p) = 1/(1 + Tp) (36)

Performing this elimination and inverting back to the h,p domain, gives, on




= B o=
substituting L = h,
(L) ) 1 1 o él
- + y(o) Q(L) -1 |t R(D =0 (37)
ye(L) @ “hy o al |z,
x!' (L) u_lh o o] (z
and we = ﬁ'(o)gf(L)[ €l - Ef(L) gl =0 (38)
x' (L) Ll o 1 z,

* 4
where Q(h), Q (h) are the inverse Laplace transforms (w.r.t. h) of

= - Tk -1~ o
Q(s), Q(-s) and R(h), R (h) are those of s Q(s), -s Q(-s).

The feedpoint boundary conditions (derived by implicit differentiation of (18)
and (19) and substitution of the now known steddy-state operating conditions)

may be expressed thus

v(L) = xé(L) - (8/2)2l (39)
and x" (L) = ye(L) + (E/2)22 (40)
where e =oa-1 (> 0) ; (41)

so that (39) and (40) may be used to eliminate the feedpoint variables (i.e. at

h = L) from (37) and (38) giving

1 . a'lhe 7 (o) 1o , fa o _ (1 ofz
Q(L) /Q (L) = - | R(L) +R (L) o
& ) %' (o) 0 a 0o 1 o 1|}z
e 2
(42)

All variables other than the outputs §(o), x' (o) of main interest, and the inputs
El and 22 are thus eliminated and matrices Q(L), Q*(L), R(L) and R*(L) are readily
determined by straightforward Lalpace transform inversion, knowing Q(s) from
equation (33). It is then a completely straightforward task of matrix algebra

to obtain a parametric transfer-function matrix (T.F.M) between E;(o),Q'(oi]T

and [;,i]T. Though straightforward, the work required in tedious and must be
performed painstakingly to avoid the ever present risk of simple but disas-

trous errors. Space constraints here demand that we illustrate the method with

a simpler special case: that of equal vapour/liquid capacitance i.e.




c = 1.0 (43)
The additional symmetry that this generates allows considerable simplification
of the working involved and yet, as we shall see; does not greatly restrict
the scope of the predictions obtained. Results for the general case, ¢ # 1.0
have been produced by the authors and are given in Section 10. For their
detailed derivation, however, interested readers should consult references
(2) and (3).

8. T.F.M. Derivation for ¢ = 1

From (33) we deduce that

—(14p+s) , 1
g 1
Qls) = 7 72
{s + O.5Ll—c)p} - (cp + ¢ + l)p - 0.25(1-¢) p

-1, L +cp - s
simplifying, for ¢ = 1, to
-(1+p+s) ’ 1

2 1 : !
D(s) & FT———= (44)

® T [ -1 i l+p-s

2
where g = p2 + 2p (45)
thus giving

-(1+4p) (sinhql) /g F coshqL , (sinhglL) /g

*

Q(L) ,{Q (L)} = ) (46)
l —(sinhql) /g ; (14p) (sinhql) /g  coshqL
*

(the top and bottom signs applying to Q(L) and Q (L) respectively), from which

we obtain the L.H.S of (42) as:

=1,

a sinhgL - coshglL : bsinhgl. - ¢' coshgL ﬁ(o)
(47)

-(bsinhgl. - c'coshgl) , -(asinhgL - coshqlL) x' (o)




= L@ =
-1 ~L =1
where a = {g h_  — (1+p)}/g, b = {1l - q h (1+p)}/q and ¢' = - q h,
Exploiting the cbvious symmetry of (47) we can therefore write
2l . = 5 .
(o he - 1) (g/p)sinhgL - (l+g he)costh ’ O] [ y(o)-x"'(0)

ak =1 = .
o ~ {iel lhe) (p/a) sinh q L~ (1 - o h_)coshqL]| ¥ (0)+X" (o)

I

1 1 R.H.S5. of eqguation (42)
= (48)
L =1

Turning to the R.H.S of (42), E}s) is just é_léjs) and by inverse Laplace ]

Transforms we get

+(1+p) (1-coshqgl) -gsinhqL , F (l-coshql)
" -2 ' (49)
R(L),{R (W} =g

+(1l-coshqlL)  § (14p) (1-coshglL) -g sinhqL

and after careful manipulation and observation of the system symmetry we obtain

1 -1 (e/p(l-coshgl)+(1l+q) (sinhgl) /q+e/2 , 0 z_+z
R.H.S.(42) |= L&
1 -1 ‘ (50)
2 ~ =
9] ’ (ep/q ) (L-coshgL) +(1+q) (sinhql) /q+g/2 z,-2,
Combining (48) and (50) therefore yields the T.F.M. relationship
v (o) - x' (o) v+ 3
. B = Glo,p) | . [(G/V) (51)
y(o) + x' (o) V-2
fqll(O.p) p 0
where G(o,p) is diagonal, viz G(o,p) = |. & boynd (52)
L0 22
where gll(O;P)= {E/piicosth—l) = (l+d)(51n??L)/q - 8yE (53)
(1-o he)(q/p)sinth + (l+o he)costh
2 .
and g, (0,p) = (ep/q ){cfith-l) = (l+a)(si§th)/q - €/2 (54)
(p/q) (140 he)sinth + (1l-o he)costh
and, for the static gains, taking limits as p * o we obtain
5 .
g,,(0/0) = alel” - (@+1)L - e/2} A 2en + 2 + 1} (55)
= —al (@+1)L +e/2}/ € (56)

and g22(o,o)




9. Behavioural Predictions

We have thus obtained a completely parametric T.F.M., initially for the
special case of ¢ = l; (The result for any arbitrary value of c is given in
Section 10.) From given plant pérameters therefore, normalised model parameters
L, T, (recall h;{p) =1+ Tp),% and €(= 0-1) are readily calculated and, by
choosing values of normalised-frequency p (set = jW§), frequency-response loci
for, say, gli(o,jw) and g;;(d,jw) may be computed from (53) thro (56). Such |
loci are given inSectioh9.3and from them the main characteristics of the
open-and closed-loop behaviour of the column may be deduced. Much can be
learned, however, by inspection and straightforward simplification of equations
(53) thro (56) as is now demonstrated.

9.1 Static gains

It is interesting firstly to compare the expressions for gll(o,o),
_ g22(o,o) deduced for packed columns (equations 55 and 56) with these derived
in the companion paper for tray-columns, viz:

gll(o,o) = E(L2+L + 0.5) /(2eltot+l) (57)

and (0,0) =={(a+tl)L + 0.5(3at+l) } e (58)

923
The results are clearly very similar for long columns (L >> 1.0) but it
is important to note the distinction that gll(o,o) can be negative for shorter

packed columns. Such columns can still yield practical separations 2GL
(see equation k29)). It is however at the high frequency end of the spectrum

that major differences between the two columns appear.

9.2 High-frequency (H.F.) behaviour

Noting that , if p = juw,
g +Jjw + 1 , 1.0 =% g (59)
then it is readily shown, from (53) and (54), that

Lim {jmgll(o,jw) } »- 0 ’ T >>1.0 (60)
1 << w << 4/¢

or =~ J/{L + exp(—2qL)u_l} , T=0 (61)

where J =1 -agexp(-2qL) +¢e exp(-qL) (62)



v

The transfer-function 971 thus approaches a basically integrating process
at high-frequency (H.F), but here the H.F. gain is negative, unlike the tray
column where H.F. gain (for gll) is positive.

For long columns separating difficult mixtures (i.e. € << 1.0 requiring
L >> 1.0 for a reasonable separation 2GL: see equation 29) the exponential terms
in (61l) and (62) are clearly negligible but for larger values of e, necessitating
a shorter column for the same separation, thé term eexp(-qL) acquires importance.
It represents a composition wave reflected from thé feed boundary and yields
the approximate H.F. transfer function

Lim {jwg, . (o,jw)} + - {1 + eexp(-L)exp (-jwL) } ' (63)
11
l<<w<<d /e

An identical expression may also be derived for the H.F. limit of g22(o,jm).
% . , -1 , =L :

Diverging loops on the inverse Nyquist loci of gll(o,jm) and g22(o,jm; may

therefore be anticipated to become increasingly noticeable as L is reduced.

=1
each loop occupying a frequency increment A w =27L .

9.3 Inverse Nyquist Loci

Two examples of the loci of g;i(o,jm) and g;;(o,jm) computed from (53)
and (54) are given in Figs. 3,4,5 and 6, the so called 'short' column parameters
being € = 0.75, L = 2.8 whilst for the 'longer' column, € = 1.0 and L = 5.0.
T = 5.0 in both cases. The stronger wave effects on gii in the short column
case are obviously present, whilst in the longer column (which has a positive

gll(o,o)) nonminimum-phase behaviour of 9,1 is clearly predicted by virtue of

*
Simplified H.F. analysis (similar to that carried out in the companion paper)

may be carried out by ignoring all dependent variables in p.d.e. (30) (Laplace
transformed in p. w.r.t. 1) not multiplied by p, giving, with ¢ = 1.0,:

Lim (p gll) = Lim (p g22) == 1.0
ol i

Such analysis clearly predicts the negative integrating behaviour of the process
at H.F. but fails to reveal the travelling wave effects.




= S =

the locus orbiting the origin. The loci predictions are borne out by the
unit-step-responses computed directly from the p.d.e's (30) for identical
parameters and shown in Figs. 7 and 8. Thenonminimum phase behaviour of 91
for the large column is obvious. The steady-states and basic time-constants
of the step-responses are likewise found to be in accordance with locus
predictions.

The inverse Nyquist loci are thus confirmed by the analysis of Section 9f2
and by step response tests. Being of an open-loop nature however, the latter
do not bring out the wave motions within the column, predictedAby analysis.
These acquire significance once closed-loop control is applied and it is
readily shown from (63) that, in the shorter column, taking feedback temperature
measurements at, say, h = 0.5L (= 1.0) would generate an additional H.F. phase-
lag ¢, E=si£l {Eexp(—L+h)£], of 22° in this case.

Twin product control of packed columns is therefore made difficult by
additional phase-lag due to travelling waves in shorter towers and by the non-
minimum-phase behaviour of 991 in taller plants. Neither problem was revealed
by similar analysis of tray columns in the companion paper. In practice,
however, the continuous equilibrium assumption made for the tray column may not
be realised leading to behaviour somewhere between the two idealised cases
studied here.

9.4 Non-minimum-phase behaviocur of 9i1° A physical explanation

The initial negative response of y(o,t) - x'(o,T) (i.e. the negative H.F.
gain of gll(o,jw)) is readily explained in physical terms. When VS and Lr
are simultaneously increased, (i.e. v+% > 1.0), weak vapour from the bottom of
the column will be moved initially upwards, whilst rich liquid will be moved
initially downwards so reducing Y(o) - X'(o). Only EEEEJ will the cross-flow
between liquid and vapour commence to change towards the new operating condi-

tion, the final extent of this change depending on column parameters. Accepting



o 4 =

that the final response may be positive, with a sufficient value of I, then
the predicted non-minimum-phase response is explained. The argument does
not rely on the assumption that ¢ = 1.0, or indeed that c = any specific value.

9.5 Low-frequency (L.F.) behaviour: Effect of Terminal Capacitance

Additional features of the system frequency response can be deduced directly
from expressions (53) and (54) without needing computation. we haveso far
deduced only the zero frequency and H.F. reéponse. In particular the L.F. |
behaviour of the system may be examined by retaining the first power of p in
approximating these expressions as p + 0. Such a procedure applied to (53)

leads to the result

-1
g,;(0,p) * g,](0,0) (1+T,p)/ (14T p) Llp| << 1.0 (64)
where
B = e L2 {2L(a+1) —3E}/6{EL2 - (a+1)L - e/2}
(T = 0) _ (65)
T, = L {(a+1)T. 42} /(2eL, + & + 1)
or
A'I'l='I', ’I‘2= oT(2L +1)/(2eL + o + 1) , To>>1 (66)
% g {1+ - T)p } 67
911(0.10) gll(o,OJ (T2 1P (67)

|
|
so that, for small |pf
As with tray-columns therefore, end-vessel capacitance, affects only the
L.F. response and hence the final tail of the step-response, this prediction
being confirmed by the step-responses of Fig. 9, for L = 5, ¢ = 1.0.
In addition we note that, provided |
|

>
T2 Tl (68)

then the direction of locus departure from the point gli(o,o) + jo is + 900
for gll(o,o) > 0,0 (i.e. for long columns) and - 90° for gll(o,o) < 0.0 (i.e.
for short columns), in accordance with the compuﬁed loci of Figs. 4 and 3
respectively: and again confirming the non-minimum-phase nature of gll for

long columns. Constraint (68) is clearly satisfied in the presence of T,

provided L *» 0.5, and for very large and very small L when T = o. Intermediate
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cases need deeper investigation.

10. Unequal Vapour and Liquid Capacitance (c # 1.0)

Predictions made so far have been for the special case c¢ = 1. This case
was chosen to ease mathematical derivation. The conditions can be approached
practically (see for instance Strigle and Perry (4)) but is atypical of common
practice where c is generally far smaller than unity. Fortunately, the system
behaviour is not greatly sensitive to wide fariations in c, as will be |
demonstrated.

Once we set c # 1.0, calculations on the lines set out in Sectioﬁ 8 can
still be carried out but, because of the loss of absolute symmétry, the system
matrices are no longer readily diagonalised and analytic expressions become
much more cumbersome. Care and algebraic persistance are all that is required
however, to yield ultimately{B) the solution for G(o,p) given in matrix
equation (69). It is readily checked that the off-diagonal terms become zero
at p = o and gll{o,p) and g22(o,p) are identical to the wvalues given for the
¢ = 1 case (equations 55 and 56) as would be expected since capacitance should
not influence the steady-state gains. At higher-frequencies, however, the
T.F.M. ceases to be diagonal since the plant is now symmetrical only for p = o,
whereas with ¢ = 1 symmetry clearly pertains for all frequencies.

(2)

If, as an extreme example, we consider ¢ = o, then from (69) we can deduce

that 1
_ o exp(-2L) - 1 - 1l.5eexp(-L) {l

: L -1, 1
- gexp (-L)exp (-jwl) 1
2

1)+
4

Lim gﬁo,jm)
w =+ @
so that the four Nyquist loci converge to small orbits of radius eexp(-L)/4
about the real point -{1 + 1.5 ¢ exp(-L) - o exp(-2L)}/2. The result is
simply checked from the original p.d.e's (30) noting that, immediately
following step-changes v and %, the liquid composition changes, and hence

Yo and x' will remain zero initially because of liquid capacitance. Furthermore




(1) v/ (do+d+y)d(2+1) 4 = b pue (oL) m.mxu|ﬂ = d 2I3UyM
(69) ‘
w 3
Tb ysoo ( fla - T)bz + 1b :ﬁmﬁwfuaﬁhvmﬁoﬁ:
4 Z . 4 _ o
ﬁmm+o+ﬁvwwmlmwm|mﬁmﬁwu+a4a+av+qmwﬁm Sr5 tP+D)] TP uuTs (041) (g2 (02-T) 1g° (°-P)] TP ysoo b

=] 2
Tb ysoo ( e 1)bz + 1b yurs( sH|a+HVon+Hv

[4 4 _ _
WAU|Hvu|ﬁWQ|wﬁQ T +mlv+qmmﬁm.mum +wvqu YUTS (9+T) ﬁHmlmAdU+Hv ﬂmmﬁo+avqu ysoo b
=) 2
Tb yuts ( gﬂua - T)bz + 1b ysoo( QH|5+HVQHU+HV
d( o-1)3- ® (0D~ 0-0 byuts b - Bt - -t 4p bysoo (o
e/ate-mis-[ . e D)+, ®(9-0) ] 1byur 8¢ oy 1O+ =2 (d 55 +P+T)]Tbusoo (o+1)
C) =]
Th yurs( y JaJHVWN + Tb ysoo( y |6+HVQAU+HV

T T
¢ [ c
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dot+o+ =
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terminal capacitance will keep ye(o) and xé(o) at zero initially. Transformed
p.d.e's (31) and (32) thus yield the following vapour-change equations:
(1 -8y =-y() - z/s (73)

and

1+ s)ié = - %l/s (74)

which may be solved subject to the feed boundary equations (30) and (40) to give

(o) = - {1.5 eexp(-L) + 1 - aexp(-2L)}z, (75)
or, knowing that ;'(o) = o initially,

~ By .

yla)-x' o) _ -{1.5cexp(-L) + 1 - a exp(-2L)} Lw & Zl + Z2 (76)
5 ~ 5 - .

y(o)+x' (o) 1,1 z, = 2,

Apart from the small orbital term: therefore, the initial unit step-response
of the system obtained from (76) is identical to Lim G(o,jw) as w + @

This predicted initial wvalue compares most favourably with the initial
negative step-response obtained by numerical simulation typified by Fig. 10O
which also shows the computed response of gll for various values of O < ¢ < 1.0.
for the case of L =5, ¢ = 1.0, T=5. It is interesting to note the persis-
tence of the initial negative dip in the responses despite the variation in c:

This is not therefore a feature of the ¢ = 1 case alone.

ll(o,jm) for the two extreme cases of ¢ = 0.0

Fig. 11 compares the loci of g
and ¢ = 1.0 computed from equations (69) and (53) respectively for the same
parameters as used for Fig. 10. The similarity of the loci confirms the similar
transient responses, the finite negative destination of the ¢ = o locus merely
indicating the abrupt negative initial step-response rather than the slightly
more gradual initial response exhibited when c > o.

It should, of course, be noted that in the situation ¢ = 0.0, since T.F.M.
G(o,Jjw) is nondiagonal, gli(o,jm) is the inverse Nyguist locus between
v(o) - x'(o) and v + ¢ only when input v - £ = o, i.e. when y(o) + x'(0) is

totally uncontrolled. It is therefore important also to examine the locus

produced when output y(o) + x'(o) is under control and, as an extreme case,
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we consider y(o) = x'(o) = 0, {i.e. yv(0) x' (o) perfectly controlled}. Under

these circumstances it is readily shown that the inverse transfer-function

*
between y(o) - x'(o) and v + { becomes gll(o,jm) where

*

*
gll(o,jm) y 912(o,jw)

..l . * i
G "(o,Jw) =G (o,ju) = % @
921(0’3‘”) ' g2z(o,jm)

s 1 {g22(o,jm) , 912(O’jm)
{gn(o,jm)gzz(o,jm) - glz(O,jw)gzl(o,jm)} (77)

21(0,jw) J g'll(o,jw)

The locus of gzl(o,jw) derived from (69) and (77) is compared with that of

_ gli(o,jw) in Fig. 12 for ¢ = o, L = 5, ¢ = 1 and T =5. The obvious simi-
larity of shape and frequency calibration over a wide range further justifies
the prediction (from Fig. 11) of similarity of transient behaviour for any c
in the range o < ¢ < 1.0 (observed in Fig. 10).

11. Reconciling the Predicted Behaviour of Tray and Packed Columns

In Section 10 we have shown that the predicted behaviocur of packed columns
is not highly sensitive to variations in c. The gualitative explanation of
Section 9.4 was likewise independent of c¢. The assumption that ¢ = o made in
tray column analysis is therefore not the source of behavioural difference
between the two types of column. An examination of both the derived inverse
Nyquist loci and simulated time responses of the two types indicates that it
is the parameter L which chiefly controls the response differences. Furthermore
as L is increased the behaviour of packed and tray columns approach equality.
This is here demonstrated by Fig. 13 which shows how, as L increases from 5 to 7 for
a packed column (¢ = 1, ¢ = 1.0), there is a movement of the locus of
gii(o,jw) away from the origin and towards the much straighter tray column
locus (L = 10, € = 0.1) of similar gain. This suggests a reduction in the

nonminimum phase dip of the transient response of y(o) - x'(o) as L increases




= 19 =

and this is dramatically confirmed by the computed step responses of
Fig. 14 for L = 20, for packed and tray columns of identical static gain.
The effect of ¢ = change is also shown. That L should be the controlling
parameter (for packed and tray column discrepancies) is not surprising with
hindsight: Recalling that L = L'k/V for the packed column then, for a given
real length L' and vapour rate V, an increase of L implies an increase in
evaporation coefficient k and hence column opératiop closer to equilibrium
at all points in the tower. An increase in L for packed columns thus causes a
closer approach to the operating condition (i.e. continuous equilibrium} assumed
in tray column analysis.
12. Conclusions
A parametric 2x2 T.F.M. model for packed distiliation columns, (derived
completely analytically and precisely), has been presented for columns that are
built and operated symmetrically. Apart from the symmetry assumption, all other
assumptions, made entirely and only at the outset, are those which have been adopted
in part analytic studies of previous investigators. The model should apply as a
‘good approximation to towers operated with a reasonable degree of assymmetry.
The calculation of the T.F.M. was illustrated for the special case of
dynamic symmetry, i.e. for a vapour/liquid capacitance ratic, ¢, = 1.0 in the
interests of simplicity of analysis. The result for general c is stated and
interested readers may acquire its derivation via references (2) and (3).
If the chosen outputs and inputs are Ey(o) - x"(0), y(o) + x'(oiIT and
E? + R, v {]T then the T.F.M. is found to be diagonal, (as for the tray columns
case(l)) over the entire frequency range, if ¢ = 1. When ¢ # 1, the T.F.M. is
diagonal only at zero frequency, but comparison of the inverse Nyquist loci of

the ¢ = 1 and ¢ = o cases indicates that variation of ¢ does not greatly affect

system behaviour.
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An essential difference revealed between packed and tray columns is
the appearance of a nonminimum phase response of y(o) - x'(0) to v + £ in the
¢ = 1.0 case. The associated negative dip in the step-response is found to
persist (and increase slightly) when c¢ is reduced in the range 0.0 <@ < L.0.
This characteristic suggests potential difficulties in controlling product
separation in packed columns. Indeed the static 'tilt' or separation gain
can vary in sign depending on parameter values and, for short columns, becomes
negative, thus eliminating the nonminimumwphaselbehaviour under these circum-
stances. BShort columns however, have been shown to produce other problems,
i.e. travelling wave phenomena which can contribute additional phase-shift of
some 93 and which should be accounéed for in controller design.

The possibility of zero separation-gain cleérly arises, depending on
plant and mixture parameters and upon operating conditions. This could explain
the practical difficulties in controlling this quantity sometimes experienced
in practice: even in tray columns which never operate in precise equilibrium.

Because of wave effects in short packed columns and nonminimum phase :
behaviour in larger towers, approximate (e.g. first-order lag)models should
be applied with caution to the twin product control problem. Such models will
apply only for restricted ranges of controller gain.

It has been shown that normalised length parameter L (=L'k/V) is that
which controls the discrepancy between packed and tray columns model predictions.
As might be expected, increase of L (i.e. by increase of evaporation constant
k in a given column) brings the frequency and transient responses of the two
types of column into close proximity. It does not, however, completely elimi-
nate the nonminimum phase response of y(o) - x'(o) which arises basically from
the essential nonequilibrium of packed column operation.

Finally we should stress that the control problems raised by this analysis

apply to two~product control and not necessarily to single-product control.
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