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ABSTRACT

Exact and explicit string solutions in de Sitter spacetime are found. (Here,

the string equations reduce to a sinh-Gordon model). A new feature without flat

spacetime analogy appears: starting with a single world-sheet, several (here two)

strings emerge. One string is stable and the other (unstable) grows as the universe

grows. Their invariant size and energy either grow as the expansion factor or tend

to constant. Moreover, strings can expand (contract) for large (small) universe

radius with a different rate than the universe.
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String propagation in curved spacetimes reveals new insights for string theory.

The string behaviour in strong gravitational fields and in the vicinity of spacetime

singularities is especially interesting. In gravitational shock-waves and singular

plane wave spacetimes the string equations are exactly (and explicitly) solvable

even at the spacetime singularities uncovering a rich variety of physical phenom-

ena[1]. The classical string propagation in D-dimensional de Sitter spacetime is an

integrable model as it has been explicitly shown in ref.[3] where, in addition, all the

1+1 dimensional string solutions were given. It is clearly an appealing challenge

to explicitly solve the string propagation in such a relevant cosmological spacetime

as the de Sitter universe.

The string solutions reported here indeed apply to cosmic strings in de Sitter

spacetime as well. The dynamics of cosmic strings in expanding universes has

been studied in the literature for the Friedman-Robertson-Walker (FRW) cases

(see for example [2, 7, 8]). It must be noticed that the string behaviour we found

here in de Sitter universe is essentially different from the standard FRW where

R(t0) is a positive power of the cosmic time t0. In such FRW universes, strings

always oscillate in time, the comoving spatial string coordinates contract and the

proper string size stays constant asymptotically for t0 → ∞. In the cosmic string

literature this is known as ’string stretching’. We called such behaviour ’stable’

[6]. On the contrary, in de Sitter spacetime, as we show below, two types of

asymptotic behaviors are present : (i) the proper string size and energy grow with

the expansion factor (’unstable’ behaviour) or (ii) they tend to constant values

(’stable’ strings).

The unstable string solutions in de Sitter universe may provide a mechanism

to self-sustain inflation as proposed in refs.[9]-[6] without advocating an inflaton

field. The present note is a first step in the investigation of multi-string exact

solutions in de Sitter spacetime using soliton methods [4]. Such general solutions

should provide essential clues about the feasability of inflationary string scenarios.

In this letter we present exact and explicit solutions for strings propagating
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in the 2+1 dimensional de Sitter spacetime. In this case, de Sitter spacetime can

be considered as a 3-dimensional hyperboloid embedded in a 4 dimensional flat

Minkowski spacetime with coordinates (q0, q1, q2, q3) and metric

ds2 =
1

H2
[−(dq0)2 + (dq1)2 + (dq2)2 + (dq3)2] (1)

where H is Hubble’s constant and

(q0)2 = (q1)2 + (q2)2 + (q3)2 − 1 , (2)

In the comoving coordinates (t0, X
1, X2) the de Sitter metric takes the form

ds2 = −(dt0)
2 + e2Ht0

[

(dX1)2 + (dX2)2
]

(3)

where the cosmic time t0 and the conformal time η are given by

η = − 1

H
exp[−Ht0] = − 1

H(q0 + q1)
(4)

and

X1 =
q2

H(q0 + q1)
, X2 =

q3

H(q0 + q1)
, (5)

The string equations of motion take here the form

∂2q

∂x−∂x+
+ [

∂q

∂x+
.

∂q

∂x−
] q = 0 (6)

where . stands for the Lorentzian scalar product a.b ≡ −a0b0 + a1b1 + a2b2 + a3b3

, x± ≡ 1
2(τ ± σ) , σ and τ being the string world sheet coordinates. In addition,
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we have eq.(2) , i.e. q.q = 1 , and the string constraints on the world sheet are

T±± =
∂q

∂x±
.

∂q

∂x±
= 0 (7)

We define

exp[α(σ, τ)] = − ∂q

∂x−
.

∂q

∂x+
(8)

As it is shown in ref.[3], α(σ, τ) obeys the sh-Gordon equation

∂2α

∂τ2
− ∂2α

∂σ2
− exp α + exp−α = 0 (9)

Notice that for closed strings q(σ, τ) and hence α(σ, τ) are periodic functions of σ

with period 2π. Therefore, to find string solutions in de Sitter spacetime we can

start from a periodic solution of eq.(9), and insert it on the field equations (6):

[
∂2

∂τ2
− ∂2

∂σ2
− exp α(σ, τ) ]q(σ, τ) = 0 (10)

Once this linear equation in q(σ, τ) is solved, it remains to impose the constraints

(7) and eq.(8).

Let us remark that exp[α(σ, τ)] has a clear physical interpretation. The invari-

ant interval between two points on the string computed with the spacetime metric

(1) is given by

ds2 =
1

H2
dq.dq =

1

2H2
exp[α(σ, τ)] (dσ2 − dτ2) (11)

Therefore we can define

S(σ, τ) ≡ 1√
2H

exp[α(σ, τ)/2] (12)

as the invariant string size. The energy density for the sinh-Gordon model reads
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here

H =
1

2
[(

∂α

∂τ
)2 + (

∂α

∂σ
)2] − 2 cosh α (13)

That means a potential unbounded from below

Veff = −2 cosh α , (14)

with absolute minima at α = +∞ and at α = −∞. As the time τ evolves, α(σ, τ)

will generically approach these infinite minima. The first minimum corresponds to

an infinitely large string whereas the second describes a collapsed situation. That

means that strings in de Sitter spacetime will generically tend either to inflate at

the same rate as the universe (when α → +∞) or to collapse to a point (when

α → −∞). As we shall see below these general trends are confirmed by the explicit

string solutions. Let us start by studying solutions where α = α(τ). Then, the

energy is

1

2
α′2 − 2 cosh α = E = constant (15)

α(τ) describes the position of a non-relativistic particle with unit mass rolling

down the effective potential Veff = −2 cosh α . A particularly interesting situation

is the critical case E = −2 when one starts to roll down from the maximun of

Veff . That is, the initial speed is zero and the ’time’ τ to reach either minimun

(α = ∞ or −∞) is infinity. The corresponding solutions are

α−(τ) = log

[

coth2

(

τ√
2

)]

and α+(τ) = log

[

tanh2

(

τ√
2

)]

(16)

α−(τ) starts at α = 0 for τ = −∞ and rolls down to the right reaching α = +∞
for τ → 0−. The behaviour of α−(τ) near the initial and final points is as follows:

α−(τ)
τ→−∞

= 4 eτ
√

2 + O(e2τ
√

2)

α−(τ)
τ→0
= log

2

τ2
+

1

3
τ2 + O(τ4)

(17)

The solution α+(τ) also starts at α = 0 for τ = −∞ but rolls down to the left
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reaching α = −∞ for τ → 0−. We have for α+(τ) :

α+(τ)
τ→−∞

= −4 eτ
√

2 + O(e2τ
√

2)

α+(τ)
τ→0
= − log

2

τ2
− 1

3
τ2 + O(τ4)

(18)

Notice that α+(τ) = −α−(τ). In addition we have the trivial (but exact) solution

α(o)(τ) ≡ 0. Now that the function α(τ) is known, we proceed to solve eq.(10)

for q(σ, τ) with the constraints (7) and (8) . Since q0 is a time-like coordinate, we

shall assume q0 = q0(τ). A natural ansatz is then

q = (q0(τ), q1(τ), f(τ) cos σ, f(τ) sin σ) (19)

Then, eqs.(2) and (6) - (8) require

q0(τ)2 = q1(τ)2 + f(τ)2 (20)

[
dq0

dτ
]2 = [

dq1

dτ
]2 + [

df

dτ
]2 + f2 (21)

eα(τ ) = [
dq0

dτ
]2 − [

dq1

dτ
]2 − [

df

dτ
]2 + f2 (22)

and

d2

d2τ
q0 − eα(τ )q0(τ) = 0

d2

d2τ
q1 − eα(τ )q1(τ) = 0

d2

d2τ
f(τ) + f(τ) − eα(τ )f(τ) = 0

(23)

In addition, it seems reasonable to choose the time coordinate q0(τ) to be an odd

function of τ . Remarkably enough, eqs.(20) - (23) admit consistent solutions for
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α(τ) = α+(τ), α(τ) = α−(τ) and α(τ) = 0. For α(τ) = α(o)(τ) = 0 , we find

q(o)(σ, τ) =
1√
2
(sinh τ, cosh τ, cos σ, sin σ) (24)

For α(τ) = α−(τ), we have

q−(σ, τ) = (sinh τ − 1√
2

cosh τ coth[
1√
2
τ ], cosh τ − 1√

2
sinh τ coth[

1√
2
τ ],

1√
2

cos σ coth[
1√
2
τ ],

1√
2

sin σ coth[
1√
2
τ ]),

(25)

And for α(τ) = α+(τ) we find

q+(σ, τ) = (sinh τ − 1√
2

cosh τ tanh[
1√
2
τ ], cosh τ − 1√

2
sinh τ tanh[

1√
2
τ ],

1√
2

cos σ tanh[
1√
2
τ ],

1√
2

sin σ tanh[
1√
2
τ ]) .

(26)

These string solutions are given for a fixed de Sitter frame. Applying the de Sitter

group to them yields a multi-parameter family of solutions. As it is clear, we can

study them in the frame corresponding to eqs.(24) - (26) without loss of generality.

Let us now discuss the physical interpretation of these solutions.

The string energy can be easily computed from the spacetime string energy-

momentum tensor:

√
−G TAB(X) =

1

2πα′

∫

dσdτ
(

ẊAẊB − X ′AX ′B
)

δ(D)(X − X(σ, τ)) (27)

Whenever t0 = t0(τ), the string energy at a time t0 is given by:

E(t0) =

∫

dD−1X
√
−G T 00(X) =

1

α′
dt0
dτ

(28)

where α′ stands for the string tension.
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We recall that for a given time q0 = q0(τ), the de Sitter space is a sphere S2

with radius R(τ) = 1
H

√

1 + q0(τ)2. The solution q(o)(σ, τ) [eq.(24) ], describes a

string of constant size S(o) = 1√
2H

and constant energy E(o) = 1
α′H

, in a de Sitter

universe that inflates for τ → ∞ since for this solution R(τ) = 1
H

√

1 + sinh2 τ
2 .

This solution is probably unstable under small perturbations.

Let us analyze now the solution q−(σ, τ). Fig. 1 depicts the time coordinate

q−(σ, τ)0. We see that this solution describes actually two strings, since for a

given value of q0 , there are two values of τ . That is, τ is a two-valued function of

q0. Each branch of τ as a function of q0 (or t0 ) corresponds to a different string.

This an entirely new feature for strings in curved spacetime. It has no analogy

in flat spacetime where the time coordinate obeys the D’Alambert equation and

therefore one can always choose a gauge where the time is proportional to τ . The

appearence of multiple strings is a generic feature in de Sitter spacetime as shown in

ref.[4], where exact multistring solutions are constructed. For this solution q−(σ, τ),

the string size and energy are

S−(τ) =
1√
2H

coth

∣

∣

∣

∣

1√
2
τ

∣

∣

∣

∣

, E−(τ) =
1

α′H

∣

∣

∣

∣

∣

1 +
1

cosh(
√

2τ) − 1√
2

sinh(
√

2τ) − 1

∣

∣

∣

∣

∣

.

(29)

That is, the string size increases for τ < 0 and decreases for τ > 0 with a singular

behaviour 1
|τ | for τ → 0.

We first analyze the inflationary expansion phase q0 > 0. For q0 = 0 , the two

strings correspond to (we call them I and II) :

String(I) : τ = − τ0

String(II) : τ = + τ0

where τ0 = 1.4890... is the positive root of q−0(τ) = 0 (see eq.(25)). Both strings

have at q0 = 0 the same size

S−(±τ0) =
.903..

H

and different energies, E−(τ0) = 4.260...
α′H > E−(−τ0) = 1.166...

α′H .
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For q0 → +∞, the two strings correspond to

String(I) : τ = − 1

q0
→ 0−

String(II) : τ = log q0 − log

[

1

2

(

1 − 1√
2

)]

→ +∞

Asymptotically, the string sizes and energies are

(I) : S−
q0→∞

=
1

H|τ | ≃
R(q0)

H
→ +∞

E−
q0→∞

=
1

α′H

(

1

|τ | + 1

)

≃ 1

α′H
(R(q0) + 1) → +∞.

(II) : S−
q0→∞

=
1√
2H

, E−
q0→∞

=
1

α′H

(30)

We see that for the string (I) both its size and energy grow monotonically, this

growing becoming explosive for q0 → ∞ when the size of the de Sitter space

diverges. Actually, the string grows there at the same rate as the whole space.

This describes an unstable string. The branch II represents a stable string for

q0 → ∞, both size and energy being asymptotically constant. It must be noticed

that the size and the energy of the string I monotonically increase with q0 whereas

for the string II, S− and E− both monotonically decrease with q0.

Let us describe now the solution q−(σ, τ) for q0 < 0, that is in the contracting

phase of de Sitter universe. For q0 → −∞ we have for the strings I and II :

(I) : τ = − log(−q0) + log

[

1

2

(

1 − 1√
2

)]

→ −∞

(II) : τ = − 1

q0
→ 0+

The string size and energy are in this limit:

(I) : S−
q0→−∞

=
1√
2H

, E−
q0→−∞

=
1

α′H

(II) : S−
q0→−∞

=
1

Hτ
≃ R(q0)

H
→ +∞

E−
q0→−∞

=
1

α′H

(

1

τ
+ 1

)

≃ 1

α′H
(R(q0) + 1) → +∞.

(31)
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The string I starts in the contracting phase with a stable behaviour for q0 → −∞,

while string II starts with an infinite size (the size of the de Sitter space) for

q0 → −∞. The size and energy of the string I grow monotonically with q0. String

II contracts with the universe itself for q0 < 0 and continues to contract for q0 > 0

until reaches the constant value S− = 1√
2H

for q0 → ∞.

The behaviour for small |τ | confirms the asymptotic results found in refs.[3- 5-

6].

It is interesting to study this string solution in the comoving de Sitter coordi-

nates. The cosmic time t0 and the conformal time η [eq.(4) ] take for q−(σ, τ) the

form:

eHt0 = − 1

Hη
=

∣

∣

∣

∣

1 − 1√
2

coth(
1√
2
τ)

∣

∣

∣

∣

eτ

ρ =
e−τ

∣

∣

∣
1 −

√
2 tanh( 1√

2
τ)

∣

∣

∣

(32)

where

ρ ≡
√

(X1)2 + (X2)2 (33)

Therefore, for t0 → +∞, we have :

string(I) : η =
τ

H
→ 0− , ρ =

1

H
+ O(τ2)

t0 = − 1

H
log |τ | + O(τ) → +∞

string(II) : η = − 2 +
√

2

H
e−τ → 0− , ρ =

e−τ

H(
√

2 − 1)
→ 0

t0 =
τ

H
+

1

H
log(1 − 1√

2
) → +∞

(34)

We see that in the unstable regime (string I for t0 → +∞), the comoving string

coordinates (X1, X2) stay constant whereas the proper string size S− and the

energy E− blow up [see eqs.(30)]. In this regime τ is proportional to the conformal

time η. On the other hand, in the stable regime (string II for t0 → +∞), the
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comoving string coordinates (X1, X2) vanish and S− and E− keep constant, [see

eqs.(30)]. In this stable regime, τ is proportional to the cosmic time t0. Notice that

these results confirm the asymptotic behavior (34) discussed in previous works[3,

5, 6].

Let us now discuss the solution q+(σ, τ) [eq.(26)]. Here τ is a single value

function of q0, and hence this solution describes only one string.

There are two phases here:

(i) q0 < 0 i. e. τ < 0 : contraction phase, R(τ) decreases,

(ii)q0 > 0 i. e. τ > 0 : expansion phase, R(τ) grows.

Here,

q0
τ→±∞

= ±1

2
(1 − 1√

2
)e±τ → ±∞.

The string size and energy are here

S+(τ) =
1√
2H

tanh

∣

∣

∣

∣

1√
2
τ

∣

∣

∣

∣

E+(τ) =
1

α′H

[

1 − 1

cosh(
√

2τ) + 1 − 1√
2

sinh(
√

2τ)

] (35)

Therefore, the string contracts from a fixed size S+ = 1√
2H

and energy E+ = 1
α′H

at q0 = −∞ during (i) until the collapse at q0 = 0 where S+ vanishes but not the

energy which takes the value E+ = 1
2α′H . At this point the de Sitter space has

a minimun size 1
H . For q0 > 0 , the string size grows from zero until it takes the

value S+ = 1√
2H

for q0 → ∞, and the energy reaches again the value E+ = 1
α′H

,

while the de Sitter space radius tends to infinity as

R+(q0)
q0→∞

=
q0

H

q0→∞
= (1 − 1√

2
)

1

2H
eτ (36)

This behaviour is different from q−(σ, τ) and was not found before. Additional
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solutions follow by replacing

σ → nσ, τ → nτ, nǫZ (37)

in eqs.(24) - (26) . In these solutions the string is winded n times around the q1

axis.

Strings propagating in de Sitter spacetime enjoy as conserved quantities those

associated with the O(3,1) rotations on the hyperboloid (2) . They can be written

as

LAB =

2π
∫

0

dσ ( qA q̇B − qB q̇A ) , 0 ≤ A, B ≤ 3.

where LAB = −LBA. For the solutions q(o), q− and q+ , only L01 does not vanish,

taking the value:

L01 = −L10 = nπ.
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FIGURE CAPTIONS

Fig.1. The time coordinate q0(τ) for the solution q−(σ, τ) as a function of τ . Since

two values of τ correspond to each value of q0, the solution q−(σ, τ) describes

two strings.
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