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ABSTRACT

The Afar Depression, at the northern end of the East African 

Rift, is the only place on land where the transition from a plume-

induced continental breakup to seafl oor spreading is active today. 

New images of seismic velocity structure, based on exceptional new 

data sets, show that the mantle plume that initiated rifting in Africa 

is absent beneath Afar today. The images are dominated by a major 

low-velocity feature at ~75 km depth closely mimicking the abrupt 

changes in rift axis orientation seen at the surface. This is likely asso-

ciated with passive upwelling beneath the rift. Additional focused 

low-velocity anomalies show that small diapiric upwellings are pres-

ent beneath major off-axis volcanoes. These multiple melting sources 

can explain the wide range of geochemical signatures seen in Afar. 

These images suggest that passive upwelling beneath Afar marks the 

initiation of rift segmentation as continental breakup progresses to 

seafl oor spreading.

INTRODUCTION

It has long been suggested that hot upwelling material from deep 

in the Earth may have instigated rifting in East Africa (Willis, 1936; 

White and McKenzie, 1989), and causes the dynamic uplift of much of 

the African continent (Ebinger and Sleep, 1998; Lithgow-Bertelloni and 

Silver, 1998). Yet, how upwelling material interacts with the lithosphere 

and uppermost asthenosphere beneath the African plate is still a matter of 

debate. Previous studies have imaged continuous low velocities extending 

from the core-mantle boundary beneath southern Africa and reaching the 

surface beneath the thinnest lithosphere in Afar, Ethiopia (Hansen et al., 

2012), supporting the idea that mantle material fl ows northward (Ebinger 

and Sleep, 1998). Others propose that upwelling material may be sourced 

from other areas of the lower mantle closer to Afar (Montagner et al., 

2007; Chang and Van der Lee, 2011). Conversely, recent seismic imaging 

and numerical models imply that the depth of melting beneath Afar is con-

sistent with decompression melting and no signifi cant thermal anomaly is 

required at present (Rychert et al., 2012). High 3He/4He ratios in Oligo-

cene fl ood basalts suggest a lower mantle source, yet Neogene–Holocene 

lavas indicate increasing dilution of the lower mantle contributions by 

upper mantle sources (Pik et al., 2006), suggesting that the plume infl u-

ence has weakened over time. Seismic tomography of the upper mantle 

can test these models of mantle circulation, but existing seismic images of 

the mantle beneath the Afar Depression lack adequate resolution. Seismic 

images of mantle structure beneath the narrow, weakly extended Main 

Ethiopian Rift show low-velocity zones near steep lithosphere-astheno-

sphere gradients beneath the rift fl anks (Bastow et al., 2008), but it remains 

unclear how mantle structure changes in the broadly rifted Afar Depres-

sion. Here we present data from fi ve new seismic experiments in Afar 

and the surrounding highlands (Fig. 1) that, combined with existing data 

from the Main Ethiopian Rift, allow us to produce seismic tomographic 

inversions with lateral resolution of ~50 km. For the fi rst time we can 

address how upwelling material interacts with the shallow mantle beneath 

Afar, and how melt production in the mantle supplies the incipient spread-

ing center segments at the surface.

RELATIVE TRAVELTIME TOMOGRAPHY

We use data from 244 seismic stations across Ethiopia, Eritrea, Dji-

bouti, Yemen, and Kenya (Fig. 1; Table DR1 in the GSA Data Reposi-

tory1). We pick P-wave and S-wave traveltimes from teleseismic arrivals 

recorded by fi ve new seismic experiments in northern Ethiopia (Ebinger 

et al., 2008; Belachew et al., 2011; Hammond et al., 2011) and Eritrea 

(Fig. 1) and have repicked all available legacy data (Benoit et al., 2006; 

Bastow et al., 2008; Montagner et al., 2007) (Fig. 1). In total, 1088 earth-

quakes were analyzed (Fig. 1; Table DR2), resulting in 10,999 P/PKP-

wave and 13,161 S/SKS-wave traveltime picks. This allows us to produce 

a seismic model for the top 400 km beneath Afar with unprecedented reso-

lution (~50 km). The data are inverted using a standard regularized, linear 

least squares inversion method (VanDecar et al., 1995), jointly inverting 

for slowness, near-surface corrections, and earthquake corrections (see the 

Data Repository). 

SEISMIC VELOCITY MODELS

Previous studies have found low velocities (−1.5% for P-waves, 

−2.5% for S-waves) beneath the Main Ethiopian Rift (Bastow et al., 

2008). With our increased seismic network coverage, we show that com-

parable low velocities are found in the upper mantle beneath Afar (Fig. 2). 

The S-wave model shows a striking low-velocity feature beneath almost 

the total length of the rift axis (Fig. 2), mimicking the abrupt changes in 

rift axis orientation at the surface, whereas the P-wave models show a 

more discontinuous structure, particularly in northern Afar, where focused 

(~50 km width) low-velocity material is offset by ~70 km to the east and 

~20 km to the west of the rift axis and is close to sharp gradients in topog-

raphy at the lithosphere-asthenosphere boundary (Hammond et al., 2011; 

Rychert et al., 2012) (Fig. 2). Synthetic checkerboard tests (Fig. DR2 

in the Data Repository) show that we can resolve features of ~50 km 

scale well with our inversion scheme. The strong low velocities extend 

to depths of 200 km where the magnitude of the low-velocity anomalies 

decreases (−1.0% for P-waves, −2.0% for S-waves) and the wavelength of 

the anomaly increases (Fig. 2). This change in mantle structure is not an 

artifact of resolution, as we can resolve features ~50 km in size at these 

depths (Fig. DR2). The western Ethiopia plateau region, characterized by 

chains of recent eruptive centers, is underlain by low velocities, whereas 

1GSA Data Repository item 2013175, Tables DR1 and DR2, Figures DR1–
DR4 and description of methods, is available online at www.geosociety.org/pubs
/ft2013.htm, or on request from editing@geosociety.org or Documents Secretary, 
GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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faster velocities are seen away from the recent eruptive centers beneath 

the northernmost Ethiopian Highlands, and on the southeastern Somalian 

plateau (Fig. 2).

DISCUSSION

The strong low velocities in the uppermost 200 km have previously 

been linked to melt that feeds volcanism beneath the Main Ethiopian Rift 

(Bastow et al., 2008). Our images support this idea with the lowest veloci-

ties underlying young magmatic segments and regions of thinned crust 

with high bulk crustal V
p
/V

s
 indicative of melt in the lower crust (Ham-

mond et al., 2011) (Fig. 2). Petrology (Rooney et al., 2005), receiver func-

tion studies (Rychert et al., 2012), and seismic anisotropy (Kendall et al., 

2006) suggest that the melting zone is in the top 75–90 km beneath the 

rift. Our tomographic images, in contrast, show low velocities down to 

~200 km. However, synthetic modeling resolves the apparent discrepancy, 

showing that a model containing just low-velocity material beneath the 

rift in the top 90 km would be smeared to depths of 150–200 km, with a 

reduction in the anomaly strength from −10% to ~−3% and ~−2.5% for 

P-waves and S-waves, respectively (Figs. DR3 and DR4).

In general, the lowest velocities are directly below the segmented 

and irregular rift axis, indicating that along-axis segmentation is in part 

maintained by shallow passive mantle upwelling. The most likely cause 

of partial melt is decompression melting beneath the progressively widen-

ing zones of thinned lithosphere. The low velocities are most pronounced 

in the S-wave models, which show larger amplitude anomalies (~−2.5%) 

compared to the P-wave models (~−1.5%). This difference in ampli-

tudes is not due to resolution, where we can resolve amplitudes at these 

depths better for P-waves than S-waves (Figs. DR2–DR4). S-wave veloci-

ties are more sensitive to melt than P-waves. The lower crust and upper 

mantle beneath Afar contain appreciable amounts of melt, giving rise to 

high V
p
/V

s
 (>2.0) deduced from receiver function studies (Hammond et 

al., 2011), and low S-wave velocities derived from surface-wave studies 

(Guidarelli et al., 2011). The differences in P-wave and S-wave anomalies 
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Figure 2. A: Depth slice at 75 km for P-wave model. B: Depth slice at 75 km for S-wave model. C: Depth slice at 300 km for P-wave model. 
D: Depth slice at 300 km for S-wave model. (Inverted blue triangles and red squares show the station terms.)  E–J: Cross sections related 
to the profi les shown in C and D. Cross sections also show topography and crustal thickness profi les. Colors in crustal thickness profi les 
relate to bulk crustal velocity, V

P
/V

S
 (Hammond et al., 2011). Regions shaded gray mask out areas with <10 rays in each node. FLVZ—focused 

low-velocity zones. E, G, and I are cross sections for P-waves; F, H, and J are cross sections for S-waves. K: Simplifi ed geological map of 
Afar and surrounding regions, and locations of velocity decrease at 75 km (lithosphere-asthenosphere boundary, LAB; blue) and regions 
of velocity increase at 75 km (depth of melting, pink) (Rychert et al., 2012). Regions not shaded pink or blue show absence of signal related 
to either LAB or depth of melting. Blue triangles show volcanoes older than Quaternary, red triangles show signifi cant off-axis Quaternary 
volcanoes, and green triangles show Quaternary volcanoes close to rift axis.

Figure 1. Map showing earthquakes and seismic stations used in the 
tomographic inversion. Solid white lines show major faults bounding 
Afar Depression, gray fi lled regions show Quaternary volcanic seg-
ments, and black lines show political borders. MER—Main Ethiopian 
Rift, GOA—Gulf of Aden, RSR—Red Sea Rift, TJ—triple junction, EA-
GLE—Ethiopia Afar Geoscientifi c Lithospheric Experiment, EKBSE—
Ethiopia Kenya Broadband Seismic Experiment. Red symbols show 
data used in tomography for fi rst time, white symbols show stations 
used in previous studies (Benoit et al., 2006; Bastow et al., 2008). 
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in the presence of melt are even more pronounced when melt retains a 

preferential orientation, as has been proposed to explain mantle seismic 

anisotropy beneath the Main Ethiopian Rift and Red Sea Rift (Kendall et 

al., 2006; Gao et al., 2010).

S-wave receiver functions show a strong velocity increase with 

depth across most of Afar at ~75 km depth (Rychert et al., 2012). This is 

inferred to show the base of the melting column, which is at a depth simi-

lar to that of mid-oceanic ridge basalt–generation zones worldwide, and 

does not require a large thermal anomaly. Petrological estimates of mantle 

temperatures in Afar are sparse, but samples from the last 10 m.y. show 

a range of temperature estimates (1370–1494 °C); the higher values sug-

gest a hotter mantle beneath Afar, yet are considerably lower than other 

plume-affected mantle worldwide (Rooney et al., 2012). Our upper mantle 

models show some along-axis variability, consistent with passive upwell-

ing beneath the broad Afar Rift zone spreading centers, modulated by rela-

tively small temperature fl uctuations.

There are three regions in Afar where strong low velocities exist in 

the P-wave models that are not present in the S-wave models. These are 

close to the western margin (12.5°N, 40°E), Nabro volcano in the vicin-

ity of the Danakil microplate (13°N, 42°E), and the triple junction region 

(11.5°N, 42°E) (labeled FLVZ, focused low-velocity zones, in Fig. 2). 

These low-velocity zones are adjacent to relatively unrifted crust com-

pared to most of the Afar Depression (Hammond et al., 2011), and regions 

of steep gradients in lithosphere-asthenosphere boundary depth (Rychert 

et al., 2012) (Fig. 2), where some models predict enhanced melt pro-

duction (Holtzman and Kendall, 2010). In addition, the correlation with 

off-axis volcanoes is consistent with enhanced melt generation (Fig. 2). 

However, the presence of enhanced melt should cause stronger S-wave 

anomalies relative to P-wave anomalies. We suggest that the P-wave mod-

els resolve localized thermal anomalies, whereas the S-wave models are 

dominated by melt-related anomalies so that thermal anomalies are not 

resolvable in Afar. While steep gradients in lithosphere-asthenosphere 

boundary topography may enhance melt at these locations, focused dia-

piric thermal upwellings from the upper mantle may be present, causing 

localized deeper melt zones. This may explain the presence of elevated 

mantle temperatures seen in the petrology (Rooney et al., 2012), while 

satisfying the seismic constraint for a regional depth of melting consistent 

with little thermal anomaly (Rychert et al., 2012). This is supported by 

the absence of a velocity increase with depth at 75 km seen in the S-wave 

receiver functions (Rychert et al., 2012) (Fig. 2).

Below 200 km to at least depths of 400 km, we show P-wave and 

S-wave anomalies that are generally weaker (−1.0% for P-waves, −2.0% 

for S-waves), and have a longer dominant wavelength (Fig. 2). The com-

plex structures present in the top 100–200 km are absent below 200 km.

Given the 40 m.y. history of fl ood basalt magmatism in Ethiopia 

(Hofmann et al., 1997), a broad plume head would likely have dissipated, 

and the scales of the low-velocity zones are too broad and complex for a 

plume stem predicted by classical models (Griffi ths and Campbell, 1990). 

This broad feature with little coherent structure below 200 km has previ-

ously been linked to the African superplume (Benoit et al., 2006; Bastow 

et al., 2008; Hansen et al., 2012). This is further supported by measure-

ments of seismic anisotropy (Kendall et al., 2006; Gao et al., 2010) that 

are consistent with fl ow from the southwest. However, the easternmost 

Afar–Red Sea region shows some structure at deeper depths with larger 

low-velocity S-wave anomalies below 200 km. These low velocities are 

located close to lower mantle upwellings seen in regional tomographic 

models (Montagner et al., 2007; Chang and Van der Lee, 2011), and close 

to the region of hottest temperatures determined petrologically (Rooney 

et al., 2012). While it is likely that the African superswell dominates fl ow 

in the mantle, a further upwelling impinging beneath Arabia and arriving 

from the northeast cannot be ruled out (Chang and Van der Lee, 2011).

Regardless of where the deeper material is sourced, it is clear that 

as mantle material rises beneath Afar, it is focused into smaller features 

on the scale of 50–100 km that may signal the onset of centrally fed, 

along-axis mantle upwellings maintaining second-order mid-ocean ridge 

segmentation (Keir et al., 2009). Similar regularly spaced, focused, low-

velocity zones, interpreted as upwellings, are seen beneath the youthful 

Gulf of California (Mexico) plate boundary (Wang et al., 2009). These 

may correspond to zones of increased melt production or reduced den-

sity of depleted mantle beneath the spreading center. Plate reconstructions 

and petrological and geophysical studies indicate high degrees of plate 

thinning within the central Afar Depression, and the long-lived magmatic 

intrusions produce a crustal composition transitional between continen-

tal and oceanic (Hammond et al., 2011). Yet, intense periods of multiple 

dike injections sourced from crustal magma reservoirs at the centers of 

~50-km-long faulted zones that mark the narrow zone of active exten-

sion show dimensions and processes nearly identical to those observed 

at spreading ridges (Hayward and Ebinger, 1996; Belachew et al., 2011; 

Wright et al., 2012), and paired magnetic anomalies in Afar (Courtillot 

et al., 1980; Bridges et al., 2012) that may indicate the earliest stage of 

seafl oor spreading.

We interpret the broad zone of low-velocity upper mantle beneath the 

Main Ethiopian Rift, Afar, and the western Ethiopian plateau as evidence 

for buoyant upwelling from the deeper mantle, which contributes several 

hundred meters of relief to the observed topography (Ebinger and Sleep, 

1998; Lithgow-Bertelloni and Silver, 1998). In Afar, the strong correla-

tion between the narrow low S-wave velocity zones and the active rift 

segments, the absence of continental lithosphere (Rychert et al., 2012), 

as well as the magnitude of the velocity anomalies suggest that these 

are zones of localized asthenospheric upwelling supplying centrally fed 

magmatic segments. Additional localized low-velocity zones exist in the 

P-wave models, and are marked at the surface by relatively unfaulted large 

volcanoes, increased temperatures, and enhanced melt extraction zones 

in three regions with steep lithosphere-asthenosphere boundary gradients 

along the trailing edges of the relatively thick continental lithosphere 

(Rooney et al., 2012; Rychert et al., 2012) (Fig. 3).

IMPLICATIONS

Our tomographic models show that a classical plume with a narrow 

stem and broad head does not currently exist beneath Afar. The upper-

most mantle (<100 km) is dominated by passive upwelling beneath the 
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narrow active rift segments, overprinted by focused diapiric upwellings. 

These localized features cause enhanced melting beneath the triple junc-

tion, western margin, and Nabro volcano; this, when superimposed with 

the incipient passive upwellings beneath the new oceanic lithosphere, can 

explain the range of geochemical signatures (Pik et al., 2006; Rooney et 

al., 2012) and the broad distribution of active eruptive centers. The narrow 

low-velocity zones, showing passive upwelling beneath magmatic seg-

ments with persistent crustal magma reservoirs near their centers, signal 

the initiation of buoyancy-driven fl ow driving along-axis segmentation 

(Phipps Morgan and Chen, 1993) as Afar approaches seafl oor spreading.
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