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Membrane Systems and Hypercomputation

Mike Stannett⋆

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello, Sheffield S1 4DP, United Kingdom

Abstract. We present a brief analysis of hypercomputation and its rela-
tionship to membrane systems theory, including a re-evaluation of Tur-
ing’s analysis of computation and the importance of timing structure,
and suggest a ‘cosmological’ variant of tissue P systems that is capable
of super-Turing behaviour. No prior technical background in hypercom-
putation theory is assumed.

1 Re-evaluating Turing’s Analysis

In his seminal paper [Tur36], Turing gave a careful and powerfully intuitive ana-
lysis of what it means for a human being to compute something, and described
how the processes involved could be captured mechanistically via the machine
model that now bears his name. By analysing the behaviour of his model, Tur-
ing was then able to show that certain problems could not be solved computa-
tionally. Against this, hypercomputation theorists, myself included, claim that
certain physical forms of computation may in fact be more powerful than Turing
envisaged. It is incumbent on us, therefore, to explain why and where Turing’s
analysis is incomplete, and why computation might indeed be capable of solving
problems that appear on first analysis to be formally undecidable.

1.1 The Halting Problem revisited

Let us begin by recalling the reasons underpinning the insolubility of the Halt-
ing Problem (essentially a recasting of Richard’s Paradox [Ric05], see also [vH77,
pp. 142–144]). Our goal in doing so is to not to re-establish the standard under-
lying paradox, but to investigate its possible sources. For ease of argument, we
will express things in terms of modern computers and programming languages.
Our focus is the set of programs that accept a single natural number as input.

Preliminaries

A standard (Western) computer keyboard allows users to express roughly 105
distinct characters. Think of the characters on the keyboard as distinct digits in
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this base. Since computer programs can be expressed as finite strings typed on
such a keyboard, each program can be regarded as a natural number (written in
base 105). We can therefore arrange the set of all programs, acting on a single
natural number input, in some definite order: P0, P1, P2, . . ..

Step 1. Suppose HP can be built

We would like someone to build us a labour saving tool (HP). Given two natural
numbers m and n, HP should output yes if Pm(n) eventually halts, and no if
it doesn’t. Let us assume that HP can indeed be built.

Step 2. Use HP to build Diag

The clerk can use HP to build a program, Diag, that halts if Pn(n) runs forever,
and loops forever if Pn(n) will eventually halt (Fig. 1(a)).

(a) Diag(n) (b) Diag(d)

(c) Paradox

Fig. 1. Behaviour of Diag(n), Diag(d) and Paradox.

Step 3. Apply Diag to its own code

Because Diag takes a single natural number input, it must occur somewhere in
the list P0, P1, P2, . . .. Suppose then that Diag is Pd, and consider what happens
when we compute Diag(d). Because Pd is just Diag, the subroutine HP(d, d)
resolves the question “Does Diag(d) halt?”, indicated “Diag(d)?” in Fig. 1(b).

Step 4. Establish a paradox

The value d is simply a fixed natural number. We can therefore consider it
to be ‘hard-wired’ as Diag(d)’s input, and re-interpret Diag(d) as a program,
Paradox, taking no inputs. In informal terms, Paradox asks itself the question
‘Do I halt? ’, and behaves paradoxically in the sense that it apparently halts if
and only if it runs forever (Fig. 1(c)).



Step 5. Resolve the contradiction

Since a paradox appears to have been generated, one of our assumptions must
be wrong. However, the only assumption we seem to have made is that HP can
be built, since the other steps presumably follow automatically. Therefore, HP

cannot in fact be built.

2 Towards hypercomputation

Given the paradoxical behaviour established in Step 4, Turing’s argument relies
on the judgment (Step 5) that the only questionable assumption is that HP

can be built (Step 1). However, there are at least three other key assumptions
built into this argument, any of which can also be used to provide an alternative
resolution of the paradox:

– Can HP be implemented via a physical system (an oracle [Tur39, BCLT08])
that is not itself computational?

– Is the ability to use tools as components in the construction of larger systems
reflected only in those systems’ structure, or does it also affect what can be
computed? If so, it need not be HP’s existence that should be called into
question, but the way in which it has been used as a component in the larger
system, Diag.

– The argument tacitly assumes that computational systems can be built that
behave deterministically, since we are using our definite knowledge of what
Diag’s output ought to be in order to derive the paradox. While the uncer-
tainties of quantum theory obviously throw this assumption into question,
we will see below that mechanistic determinism cannot be achieved even in
the setting of classical Newtonian dynamics.

The first of these caveats needs careful analysis. The existence of a physical HP

solver would not prevent the construction of Diag, and one can still envisage a
situation where Diag must be one of the programs P0, P1, P2, . . ., because there
is nothing to stop us using a language whose commands include statements of
the form “Feed the values into the black box on the table, and use its subsequent

output in what follows”. It is important to remember, however, that the problem
HP depends on the computational system under analysis. If we add the ability
to use HP as a basic instruction type, Turing’s proof then shows that the halting
problem for this extended system cannot be solved by a (Turing+HP)-machine.
In other words, we may well be able to find a physical oracle that solvesHP in the
context of standard digital computing, but there will always be other problems
that remain undecidable no matter how powerful the components we allow. The
existence of a physical HP solver cannot be answered definitively given our
present knowledge of physics, but the evidence (reviewed below) is encouraging;
it appears, in particular, that relativistic phenomena could be exploited to solve
problems like HP that are insoluble via Turing machine.



Addressing the third issue leads to somewhat more surprising results. Under-
pinning all our discussions of computation so far is the notion that the physics
of computation is essentially deterministic. We are used to the idea that quan-
tum theory introduces inherent uncertainties, but as we now explain, even such
classical systems as Newtonian dynamics must be non-deterministic. This is
quite surprising, since the Newtonian model has traditionally been seen as an
archetype of deterministic physics: as Laplace puts it [Lap51, p. 4]

An intellect [Laplace’s demon] which at a certain moment would know
all forces that set nature in motion, and all positions of all items of which
nature is composed, if this intellect were also vast enough to submit these
data to analysis, it would embrace in a single formula the movements of
the greatest bodies of the universe and those of the tiniest atom; for such
an intellect nothing would be uncertain and the future just like the past
would be present before its eyes.

The failure of this claim follows from a remarkable result of Zhihong Xia,
published some 20 years ago [Xia92], demonstrating that the Newtonian n-body
problem possesses ‘non-collision singularities.’ That is, we can have a system
of objects interacting gravitationally, one or more of which are propelled to
infinity in finite time. The key point here is that the laws of Newtonian physics
are unaffected if we mentally reverse the direction of time. If we do so in the
context of Xia’s result, this tells us that objects can appear from infinity in finite
time, and indeed there is no limit to how quickly they can do so. Consequently,
even if Laplace’s demon were equipped with complete knowledge of the current
state of the universe, it would not be able to determine the subsequent state
even one second later, because the spontaneous arrival of new material during
the intervening period would inevitably introduce gravitational forces, or even
collisions, that could not have been forecast in advance.

2.1 The significance of interaction

In Step 2 the clerk uses HP as a component in the construction of Diag. For the
sake of argument we will assume that HP is implemented as a separate agent
(i.e., on a separate machine) with which the clerk and Diag can interact; fur-
thermore, to avoid circular reasoning, we will assume throughout that the agent
is essentially just a digital computer, with no hypercomputational capabilities
of its own. Using agents in this way is permitted under Turing’s analysis, as he
explains in another of his landmark papers [Tur50, emphasis added]:

The human computer is supposed to be following fixed rules; he has no
authority to deviate from them in any detail. We may suppose that these
rules are supplied in a book, which is altered whenever he is put on to
a new job. He has also an unlimited supply of paper on which he does
his calculations. He may also do his multiplications and additions on a

“desk machine,” but this is not important.



As we shall see, the problem with this analysis lies not in the description of the
human computer’s (i.e., the clerk’s) behaviour, but in the ‘throw-away’ claim
that allowing the clerk to interact with another agent – in this case a desk
machine – is “not important.” We stress again that we are not assuming that
the agent itself has ‘super-Turing’ capabilities of any kind; indeed, the agent
in question might simply be another clerk. The important feature of agent-
assisted computation is, rather, the physical separation between clerk and agent,
since this implies that they can be in motion relative to one another, subject
to different forces and accelerations – and as Einstein has taught us, this means
that their perceptions of space and time need not agree with one another [Ein20].

2.2 Accelerating machines

Suppose the agent is based high above the Earth’s surface, while the clerk op-
erates at sea level. The difference in gravitational potential between the two
locations will ensure that time for the agent appears to run faster than for the
clerk.1 While there are limits to the speed-up that can be achieved in this way,
the scenario naturally raises the question whether accelerating machines can be
implemented. In its simplest form, an accelerating machine is one in which each
instruction takes half as long to execute as its predecessor, so that if the first
instruction takes 1 sec, even a non-terminating computation will have run to
completion after 2 sec – for example, if we placed the agent on board a rocket so
that it moves ever further away from us and with ever increasing acceleration,
this could result in each instruction taking less time to run (from our point of
view) than its predecessor. Such a simple scheme is fraught with physical and
logical difficulties [Tho54], but it is nonetheless instructive to consider how it
might be used to solve HP, and what the difficulties would be in doing so. We
will then be in a position to relate our findings to the (arguably more realistic)
hypercomputational potential of, e.g., tissue P systems [BG10].

Accelerating machines have been discussed in the context of P systems by
Calude and Pǎun [CP04], based on the observation that reactions tend to run
faster in smaller volumes (assuming that concentration increases accordingly).
By recursively constructing ever smaller subregions and having them compute
subroutines ever faster, one can achieve exactly the speed-up required to solve
HP and its kindred problems. More recently, Gheorghe and Stannett [GS12] have
extended this principle to solve problems at all levels of the arithmetical hierarchy

(and beyond) [AK00]. Taking P0 to be the class of ‘standard’ P systems, we can
define a hierarchy of systems P1,P2,P3, . . ., where a Pn+1 system is a Calude-
Pǎun accelerating P system in which the systems replicated at each stage are
Pn systems. For example, the original Calude-Pǎun accelerating P system model
generates a P1 system under this scheme, since the replicated components are
all standard P0 systems. As shown in [GS12], each Pn is strictly more powerful
than its predecessor, and together they exhaust the entire hierarchy.

1 See, e.g., [CHRW10] for experimental confirmation of this long-standing claim.



How might an accelerating machine be implemented physically? Notice first
that neither the agent nor the clerk can solve HP on their own, because their
separate behaviours are still susceptible to the limitations identified by Turing’s
analysis; solving HP requires the agent and clerk to cooperate with one another.
Provided they agree to do so, deciding whether or not some computation Pm(n)
eventually terminates is simple.

1. The clerk transmits the values m and n to the accelerating agent.

2. The accelerating agent executes Pm(n), and has agreed that in the event of
the computation halting, a message will be sent back to the clerk saying so.

3. The clerk waits two seconds to allow the agent sufficient time to run the
program, adds a further delay corresponding to the maximum transit time
of the potential signals involved, and then checks to see whether a message
has been received from the agent. If so, the computation halted, and the
clerk reports yes. If not, the clerk reports no.

Fig. 2. The underlying timing structure
involved in the cooperative solution of
HP is that of Malament-Hogarth space-
time.

Let us analyse the timing struc-
ture of this system in more detail,
since it is the same for any system in
which (a) the clerk uses an agent to
execute Pm(n); and (b) the clerk has
to determine in finite time whether
or not the agent’s execution of Pm(n)
terminated.

– The clerk (A) and the agent (B)
communicate at the start of the
procedure;

– The agent may need to run the
program forever, but even in this
case the clerk has to perceive
the computation as requiring only
finite time relative to her own
clock.

– There must come a point later in
the clerk’s life where the termi-
nation or otherwise of the agent’s
program execution can be identi-
fied.

In relativistic language, we are saying (Fig. 2) that

1. the agent’s worldline should allow the agent infinite proper time;

2. there is a point, p, on the clerk’s worldline such that: at any point x on the
agent’s worldline it is possible for the agent (eventually) to send an agreed
signal s from x to the clerk, so that s is received by the clerk earlier than p.



Cosmological spacetimes that include timing structures of this nature are
called Malament-Hogarth (MH) spacetimes [EN93], and schemes have been pro-
posed showing that the existence of stable MH-spacetimes is sufficient to allow
cosmological hypercomputation to be implemented [EN02]. The analysis above
suggests that the use of MH timing structures is also necessary if problems like
HP are to be solved cooperatively by standard computational systems.

While MH structures seem exotic at first sight, they are associated with large
slowly-rotating (slow Kerr) blackholes of the kind thought to exist at the centre
of many galaxies (including our own [GET+09]), and this makes them usable
by the clerk for computational purposes. It might be argued, of course, that
using the Galactic centre in this way is of only technical interest but has no
practical relevance due to the vast distances involved. However, this neglects
another important aspect of Turing’s analysis. In proposing his model of human
computation, Turing placed no limitations on how long a task might take to
complete; and indeed complexity theory has shown that even fairly simple tasks
may take longer than the current age of the Universe to run to completion on
a standard PC. In contrast, a rocket travelling at 11 km s−1 (escape velocity
at the Earth’s surface) towards the Galactic centre (roughly 28,000 light years
away [GET+09, Maj10]) would require only around 763 million years to arrive
there. While this is certainly a long time, it nonetheless compares well with the
expected runtime of certain computations; it is therefore hard to see why the
use of the Galactic centre should be considered any less reasonable than the use
of arbitrarily long-lived Turing machines when determining what can and can’t
be computed.

The use of slowly rotating massive blackholes for hypercomputational pur-
poses2 is discussed in detail by Etesi and Németi [EN02]. As one falls into the
blackhole one is inexorably drawn through a region linking an outer to an inner
event horizon, but thereafter things return to ‘normal’ in the sense that one
can move freely, and in particular one can avoid hitting the singularity. In their
scenario the clerk chooses to fall into the blackhole, leaving the agent orbiting
outside. Due to time dilation effects the agent’s time appears to run ever faster
the nearer the clerk gets to the horizon, thereby implementing the required MH
timing structure. After crossing the horizon, the clerk knows whether or not
a signal has been received from the agent, and then continues into the inner
‘safe zone’ where she makes use of the information. This scheme is not without
its problems, however, since there are clear indications that the blackholes in
question may exhibit inherent instabilities [Pen68, Hod12]. An important open
question, therefore, is whether other cosmological examples of MH timing struc-
tures can be identified for which these instabilities are provably absent.

2.3 Cosmological P systems

One can easily adapt the MH-spacetime model of (hyper)computation to produce
a new hypercomputational tissue-based model, which we will refer to as a cos-

2 Other cosmological approaches also exist e.g., the exploitation of closed timelike
curves (CTCs) and wormholes [ANS12, Sta13].



mological P system. Looking again at Fig. 2, we begin by envisaging a contiguous
population of membrane systems (“cells”) which begins as a small population
based where A and B first diverge. This population replicates, spreading at the
same, constant, average speed in all directions. It is not the cells which generate
the hypercomputational speed-up, but the geometry of the spacetime in which
they are replicating, for by the time a new cell has been created at p, it will
‘perceive’ infinitely many cells to have been generated along B. From the view-
point of any cell on B, however, there is nothing unusual happening locally – the
regeneration time remains unchanged from its own point of view.

To see how the computation proceeds, we observe that the original model
involves three distinct entities: the clerk, the agent, and the spacetime through
which signals are propagated. Accordingly, we need the cells that form along A
and B to differentiate themselves both from each other and from those which fill
the rest of space at any given moment. We therefore assume that the cell strain
is initially spacetime – this cell type simply propagates signals in straight lines
(in other words, it includes rewrite rules of the form “if signal is present in the

cell, place a copy of signal in all neighbouring cells”, thereby ensuring recursive
re-transmission of incoming signals). In contrast, we assume that as the clerk
and agent move along their respective trajectories, they emit promoters into the
cells’ environment which trigger the conversion of spacetime cells into A-type or
B-type cells, respectively. This ensures the generation of two filaments within
the general population, one composed of A-type cells, the other of B-types (Fig.
3).

Fig. 3. Building a tissue P system with
hypercomputational power.

The behaviour of A- and B-type
cells is essentially straightforward.

– A-type cells respond to the pres-
ence of a signal compound by
converting it into a yes, which
is then replicated in all de-
scendants. At all times, an A-
type cell responds to the clerk’s
chemical promoter by extending
the filament along A’s trajectory,
while replicating standard space-

time cells in all other directions.
If at any point a signal or a yes

is present in the cell, it includes
yes in the ‘genome’ of its immedi-
ate descendants.

– B-type cells perform the actual
computation of Pm(n). We encode
the program counter and regis-
ters as chemical species in the cell,
along with the program itself. Each cell simulates the execution of one in-
struction, and then generates the next cell along the B-trajectory so that it



contains a full copy of the program, together with the coded versions of the
updated program counter and registers. If at any point the cell determines
that the program counter and registers remain unchanged (i.e., the program
halts), the cell emits a signal in all directions.

In this way, Pm(n) is executed by the growing B-filament, and a signal is
received at p if and only if the program eventually terminates – thereby solving
HP. This is, of course, unsurprising, since neither the clerk nor the agent need
be entities with continuous existence. All that matters is the information they
carry with them as they travel along their respective trajectories. By replicating
these information flows, we automatically replicate the associated computational
power.

3 Summary and Further Research

In this paper we have revisited Turing’s analysis of computation, and considered
how it can be subverted by taking into account the physical separation between
cooperative agents. This in turn leads to analysis of cosmological models of
hypercomputation based on Malament-Hogarth spacetimes, and their simulation
via tissue P systems. This suggests a number of avenues for further research, for
example:

– The behaviour of a ‘cosmological’ P system can clearly be replicated instead
using a cellular automaton. The advantage of the P system approach lies in
the system’s self-generation – instead of presupposing a pre-existing infinite
population of communicating automata, the cells of the tissue simply repli-
cate as time goes by, filling spacetime as they do so. However, the model
relies on interactions between the three component cell strains and two ‘ex-
ternal’ entities (the clerk and the agent) which move through the underlying
spacetime scattering promoter molecules. Can these be modelled directly
within the P system paradigm, or is their autonomous nature necessary for
the model to work?

– We have only discussed one approach to hypercomputation, namely the use
of slow-Kerr black holes. However, the wider literature discusses numerous
computational models of super-Turing computation (analogue recursive neu-
ral networks, trial-and-error machines, and the like [Sta06]). To what extent
can each of these models be extended or re-interpreted in the context of
membrane systems?

– Can the models in question be formalised, and their properties verified mech-
anistically via a theorem prover or proof assistant? Providing concrete formal
analyses can be expected to add support to our claims that hypercomputa-
tion in the context of P systems is physically meaningful. My colleagues and
I have recently started investigating this area, but much work remains to be
done.
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