SUFFICIENT CONDITIONS FOR NONCONTROLLABILITY
OF HOMOGENEOUS BILINEAR SYSTEMS

by

D. H. Owens, BSc, ARCS, PhD, APIMA, CEng, MIEE

Department of Control Engineering
University of Sheffield
Mappin Street, Sheffield S1 3JD

Research Report No. 137

January 1981
Abstract

A simple condition for the noncontrollability of homogeneous bilinear systems is derived in terms of the impulse response of the associated linear feedback system. The result can frequently be checked simply by inspection of the transfer function poles and zeros.

The last decade has seen considerable progress in the understanding of the structure and properties of nonlinear systems (see, for example, references (1)-(6)) with particular interest being focussed in the study of internally bilinear systems (see, for example references (3), (4) and (6)) with emphasis on the important problems of controllability and characterizations of the reachable set from a given point in finite time (see, for example, references (2), (3), (4), (6) and (7)) in terms of Lie algebraic properties of the defining state equations. It is unfortunately true however that we are still at the stage when the available analytic results are difficult to check computationally and it is consequently of great importance in practice to obtain 'easily checkable' (necessary or sufficient) conditions that can be investigated to provide some indication of the possibility of controllability or its absence. It is the second problem that is of interest here.

In this note we derive conditions for the homogeneous (in the state) \(l \)-input bilinear system

\[
\dot{x}(t) = (A + B(u(t)))x(t)
\]

\[
B(u) = \sum_{i=1}^{\ell} u_i B_i C_i
\]

\(\text{not to be controllable in } \mathbb{R}^n \setminus \{0\} \) in terms of the properties of the
impulse response matrix

\[H(t,k) = C e^{(A-kBC)t} B \quad \ldots (2) \]

of the linear system \(S(A,B,C) \) with

\[B = \begin{bmatrix} B_1, B_2, \ldots, B_k \end{bmatrix}, \quad C = \begin{bmatrix} C_1 \\ C_2 \\ \vdots \\ C_k \end{bmatrix} \quad \ldots (3) \]

and subjected to unit negative feedback with scalar gain \(k \). In certain special cases, the required properties can also be identified in terms of the pole-zero structure of the associated 'open-loop' transfer function matrix

\[G(s) = C(sI_n - A)^{-1} B \quad \ldots (4) \]

The system will be termed controllable in \(\mathbb{R}^n - \{0\} \) if, and only if, for each pair of points \(x_o \) and \(x_f \) in \(\mathbb{R}^n - \{0\} \), there exists a finite time \(t_f > 0 \) and piecewise continuous control inputs \(u_i(t) \), \(1 \leq i \leq l \), defined on \([0, t_f]\) such that the unique solution of (1) originating at \(x_o \) at time \(t = 0 \) is driven to the state \(x_f \) at \(t = t_f \). All matrices \(A, B_i, C_i \) \((1 \leq i \leq l) \) are assumed to be real and constant of dimensions \(n x n, n x r \) and \(r x n \) \((1 \leq i \leq l) \) respectively and, without loss of generality, we will take \(\text{rank } B_i = \text{rank } C_i = r \), \(1 \leq i \leq l \). We will also require the partial ordering in \(\mathbb{L}(\mathbb{R}^p, \mathbb{R}^q) \) defined by the relation

\[D \geq 0 \quad \text{iff} \quad D_{ij} \geq 0 \quad \text{for} \quad l \leq i \leq q \quad l \leq j \leq p \quad \ldots (5a) \]

\[D \geq 0 \quad \text{if} \quad D \geq 0 \quad \text{and} \quad D_{ij} > 0 \quad \text{for some} \ i \text{ and } j \quad \ldots (5b) \]

Our main result can now be stated:
Theorem: If there exists $k^* \in \mathbb{R}$ such that $H(t,k)$ satisfies the relation

$$H(t,k) \geq 0 \quad \forall \ t > 0 \quad \forall \ k \in \left[k^*, \infty \right)$$

then the bilinear system (1) is not controllable in $\mathbb{R}^n(0)$. Moreover, under these conditions, all trajectories originating at time $t = 0$ in the cone $P_B \triangleq \{ x \in \mathbb{R}^n : x = Ba \text{ for some } a > 0 \}$ generated by taking positive linear combinations of the columns of the matrix B lie in the cone $P_C \triangleq \{ x \in \mathbb{R}^n : Cx \geq 0 \}$.

Proof: Write the model (1) in the form

$$\dot{x}(t) = (A + B(u_0)) + B(u(t)-u_0))x(t)$$

where $u_0^T = (-k, -k, \ldots, -k) \in \mathbb{R}^k$ and k is arbitrary. The solution of this equation is also the solution of the integral equation

$$x(t) = e^{(A+B(u_0))t} x(0) + \int_0^t e^{(A+B(u_0))(t-s)} B(u(s)-u_0)x(s)ds$$

Noting that $B(u_0) = \sum_{i=1}^k (-k)B_{1i}C_i = -kBC$ and that $B(u(s)-u_0) = \sum_{i=1}^k (u_1(s)+k)B_{1i}C_i = B \text{ block diag}((u_1(s)+k)I_{r_i} \quad 1 \leq i \leq k}$, it is seen that, after multiplying by C and choosing the initial condition $x(0) = B\alpha \neq 0$ with $\alpha > 0$, we obtain

$$Cx(t) = H(t,k)\alpha + \int_0^t H(t-s,k)\text{ block diag}((u_1(s)+k)I_{r_i} \quad 1 \leq i \leq k) Cx(s)ds$$

Consider now control on the time interval $[0, t_f]$ with t_f arbitrary and choose $k > \max\{k^*, \sup_{0 < t < t_f} \max_{1 \leq i \leq k} |u_1(t)|\}$. Clearly $H(t,k)\alpha > 0$, $0 < t < t_f \quad 1 \leq i \leq k$.
\(0 < t < t_f \), and \(H(t-s,k) \) block diag\(\{ (u_i(s)+k)I_{l_i} \}_{1 \leq i \leq r_i} \) \(> 0 \), \(0 < s < t < t_f \).
Noting also that \(C \alpha(s) \bigg|_{s=0} = CB = H(0) \alpha > 0 \), a simple argument using (9) indicates that \(C \alpha(t) > 0 \) for all \(t \in [0, t_f] \), and hence that the state trajectory does not leave \(P_c \). The result follows as both control input and \(t_f \) were arbitrary.

Remark 1: The identification of (6) with the monotonicity of the system step response matrix immediately yields a simple corollary to this result. This is omitted.

Remark 2: The factorization of \(B(u) \) defined by (1) is non-unique as can be seen by the identity \(B \alpha C_1 = (B_1 N_1^{-1}) (N_1 C_1) \) valid for any real nonsingular \(r_1 \) by matrix \(N_1 \). Suitable choice of the \(N_1 \) may possibly help in satisfying (6). Also transformation of the control variable to the new input vector \(v(t) = Tu(t) \) could help.

The sufficient conditions for noncontrollability have the advantage of being expressed in terms of a quantity (the 'impulse response') familiar to practicing control engineers. The natural engineering approach to checking the validity of (6) is to use Laplace transforms and the identity
\[
H(t,k) = \mathcal{L}^{-1}\{C(sI_n - A + kBC)^{-1}B\}
= \mathcal{L}^{-1}\{(I_m + kG(s))^{-1}G(s)\} \ldots (10)
\]
(where \(m = r_1 + r_2 + \ldots + r_k \)) to compute \(H(t,k) \). For example, consider the two-input system
\[
\dot{x}(t) = \begin{pmatrix} -1 + u_1(t) & 1 \\ 1 & -1 + u_2(t) \end{pmatrix} x(t) \ldots (11)
\]
with the data \(l = 2, r_1 = r_2 = 1 \)

\[
A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}, \quad B_1 = C_1^T = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad B_2 = C_2^T = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \ldots (12)
\]

and hence \(B = C = I_2 \). Using (10) it is easily verified that

\[
H(t,k) = \left(\frac{1}{(s+k)(s+k+2)} \right)^{\frac{1}{2}} \begin{pmatrix} s+1+k & 1 \\ 1 & s+1+k \end{pmatrix}
\]

\[
= \frac{1}{2} \begin{pmatrix} e^{-kt}e^{-(k+2)t} & e^{-kt}e^{-(k+2)t} \\ e^{-kt}e^{-(k+2)t} & e^{-kt}e^{-(k+2)t} \end{pmatrix}
\]

\[
\geq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad \forall \ t \geq 0 \quad \forall \ k \in \mathbb{R} \quad \ldots (13)
\]

and hence that the system (11) is not controllable.

To conclude, the following proposition identifies one particular situation when condition (6) can be easily investigated by 'visual' inspection of \(G(s) \) only:

Proposition: Condition (6) holds if \(l = 1, r_1 = 1 \) and the transfer function \(G(s) \) has the form

\[
G(s) = \frac{q_\infty (s-z_1)(s-z_2) \ldots (s-z_{n-1})}{(s-p_1)(s-p_2) \ldots \ldots (s-p_n)} \quad \ldots (14)
\]

where the poles \(\{p_j\}_{1 \leq j \leq n} \) and zeros \(\{z_j\}_{1 \leq j \leq n-1} \) are all real and satisfy the 'interlacing condition'

\[
p_1 < z_1 < p_2 < z_2 \quad \ldots \ldots \quad z_{n-1} < p_n \quad \ldots (15)
\]

and the gain \(q_\infty > 0 \).
Proof: The interlacing property ensures that the transfer function

\[G(s) = \sum_{j=1}^{n} \frac{R_j}{(s-P_j)} \] \hspace{1cm} \ldots(16)\]

where the residues \(\{R_j\} \) are either all positive or all negative.

In fact \(R_j > 0, 1 \leq j \leq n, \) as \(\lim_{|s| \to \infty} sG(s) = \sum_{j=1}^{n} R_j = g_{\infty} > 0 \) by assumption and hence

\[H(t,0) = \mathcal{L}^{-1}\{G(s)\} = \sum_{j=1}^{n} R_j e^{P_j t} > 0 \quad \forall \ t > 0 \] \hspace{1cm} \ldots(17)\]

The result now follows by applying a similar argument to \((1+kG(s))^{-1}G(s)\) noting, from elementary root-locus arguments, that this transfer function has real, interlaced poles and zeros and gain equal to \(g_{\infty} \) for all choices of \(k \).

Remark 2: The conditions \(\ell = 1 \) and \(r_1 = 1 \) indicate that the system has only one input and that rank \(B(u) = 1 \). Equivalently the bilinear system is generated from the single-input/single-output system \(y(t) = Cx(t) \), \(\dot{x}(t) = Ax(t) + Be(t) \) with input \(e(t) \) defined by the parametric feedback law \(e(t) = u(t)y(t) \). Clearly controllability is impossible if the linear system is 'interlaced' (the gain condition is irrelevant here as, if \(g_{\infty} < 0 \), introduce the new control variable \(v(t) = -u(t) \)). This is a nontrivial point as many physical systems possess the interlacing property.

Remark 3: The computational problems arising in the verification of the conditions of the proposition are relatively minor, even for high order systems.
REFERENCES

