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It is shown that the orders of the infinite zeros of optimal linear regulators

Abstract

*
are simply twice the integer structural invariants of the C transformation

group. This indicates that a conjecture due to Kouvaritakis is 'almost

always' wvalid.

It is well-known [i] that the stabilizable and detectable system |

S(a,B,C) in R defined by

Ax(t) + Bu(t) , x(t) &= R®

x(t)

. B
cx(t) , y® &R, ult) ERr (1)

y(t)
with state feedback controller minimizing the performance criterion

oo

J = f {YT(t) Qv (t) + p_l uT(t) R u(t)}dt (2)
(6]

(where both Q and R are symmetric and positive definite and p > 0) has closed-

loop poles equal to the left-half plane solutions of the equation

|1, +p c'(-s) G(s)] =0 (3)
where
G(s) = 0° c(s1_ - m) ' B R (4)
Without loss of generality we will take Q = Im and R = %' when G is simply
the transfer function matrix of S(&,B,C).
The basic analysis of [l] has been extended to provide a number of

computation techniques [i} - [ﬁ] which have yielded several important results

covering the structure of the root-locus as p+ + = More precisely [4]:

Theorem 1: If S(A,B,C) is left-invertible, there exists integers g 5 1y

{d,} and k., < k_, < .. <k _ such that its optimal root-locus has unbounded
< 1 2 q
lsiga
branches as p + » of the form
l/Zk-

s (B) = J ta, *te. (P
5592 P p Nygr T ¥4y ¥ B4, (P



lime, (p) =0, 1 g2 gk, ,1grgd, ,157]¢£4g (5)
Jex

e each < is pure im ina and th 1 £ 2 ¢ k. take the form v =
wher o P aginary an e nli ’ e ‘0

. . where ) . is real and strictl ositive and the yu, 1 <2 gk, are
A H 9 91 Y P 0’ ’

the distinct left-half-plane 2k§h roots of (-1) J -

As noted in [4], it is seen that the optimal root-locus has kidi infinite
zeros of (even) order 2ki , 1< 1ig g, and, moreover, the spatial arrange-
ment of the asymptotes of order 2r are the left-half-plane solutions of x2r=
+1 if r is odd or xzr = - 1 if r is even. These observations clearly indi-
cate that the conjectures 4.1 and 4.3 in [2] are correct! The purpose of

this paper is to show that conjecture 4.2 in LZ], which states that, in the

case of m = §, the unbounded solutions of

I+ G(s = 6

L tpGs) =0 (6)
as p + = have orders kl'k2""’kq with 'multiplicities'dl,dz,-f.qu respec-—
tively, is also true in a certain generic sense. 1In effect, we will show that

the orders of the infinite zeros of the optimal root-loci are, almost always,

equal to twice the orders of the infinite zeros of the system G and that, when
y : ; th . ,

this situation holds, there are exactly as many 2g order optimal system

TR th R

infinite zeros as there are g order infinite zeros of G.

The basic idea behind the analysis lies in the use of the results in [5}
in a form similar to that used in [6]. We consider only the case of m = &
(i.e. the same number of inputs and outputs) as it is only in this particular
case that problem (6) makes sense and assume that s(a,B,C) is invertible.

The basic structural representation of G required is given in (6J (equation
(24)), namely, for any choice of F and K,

G(s) = {1 + H_(s)} C(sI_ - A - BF - KC)_lB {1 + H (s)} (7)
m 2 n m 1

where Hl and Hz are strictly proper. It is noted [6} (equation (17)) that we

can find F and K and nonsingular mxm matrices M and N such that



SR
-1 ak 1L A
N C(sI - A - BF - KC) = B M = diag{—,..., —} = D_(s)... (8)
n n n 1
il m
S s
*
where nl,nz,...,n are the integer structural invariants of the C trans-
m
formation group introducéd'in[S]. The following important result is proved

in [6]:

Theorem 2: Under mild (generic) assumptions on I' = NM, and if the ordered

!
feb i &€ b & «wos € 0 has distinct entries m. < m.< .... € m of
3 1* B m 4 c 1 2 o
/

1 ;
multiplicity di P < g, then the system S(A,B,C) has mid; infinite zeros

I7

of order mi, 1 < i q

Remark: The assumptions on I' can be found in [QJ. They are not always
satisfied (indeed [7], the orders of the infinite zeros need not be equal to
the mi, 1l g 1i¢g qS but the introduction of a forward path controller will
always remedy this situation, and this controller can be chosen on a random

basis with probability one of success.

We now state the main result of this paper:

/A

Theorem 3: g=9g ,d, =d, (1 £1i < g) and ki = m, (1 £ 1 a)

Remark: Combining ~this result with theorem 2 and its following remark, it

is clear that the conjecture due to Kouvaritakis is generically valid but not
L -

always valid. More generally, interpreting Q° and R as constant pre-and

past-multipliers in (4) we see that his conjecture is valid for ‘'almost all’

choices of weighting matrices Q and R.

Proof of Theorem 3: Using (7) and (8) in (3) and introducing the notation

e

T

ﬁ(s) E™ (-s) yields the equivalent relation



~ - op-l. T -l - T
0 = |I_+p(I_+H) (M) "D, (N) (T_+1,) (I_+H,)N DM (Im+Hl)|
~ - T -1 T . -1 -
= [ (x +H)) (MM7) (T 4H)) Jwt(r ) (I 4R M
~ T -1 = ~1
+p D (N) (I 4H) (T 41N Dli (9)

or, noting that H ,Hz(and hence ﬁl,ﬁz) are strictly proper and defining the

4 l

symmetric, positive-definite matrices Ml = MTM, Nl = NNT and ﬁl = Nl , we can

replace (9) by

-1 ~ e -1
0 = + 4 +
|M, + O(s™) +p DN +0O(s ™)) D, | (10)
' . - (k+1)
on the unbounded branches of the root-locus. Here the notation O(s )
: ; . ; - (k+1)
is used to describe any mapping such that lim s O(s ) = O on some
| 5]+
domain.
Write, without loss of generality,
-m,
D. (s) = block diag {s TI.!}
1 d, ;
i lgigqg’
-m
A
= |s ! Id ; 0 (11}
1
0 D2(S)
and also
N N M
1t 12 11 12
N, = a M = 12
1 and M, (12)
N N M M
21 22 t 3| 2 )
where &ll and Mll are of dimension dixdi. Note that &11' Mll'ﬁ22 and M2 are
all symmetric and positive-definite and hence nonsingular. Alsc note that
-2m
ps 1 cannot have a zero cluster point on any unbounded branch of the optimal
root—locus otherwise (10) would then reduce to O = lMl‘ which is impossible.
-2m '
We conclude therefore that ps can only have finite or infinite cluster

-2m
points. Let ) be a finite cluster point of ps and use Schurs formula



on (10) and the observation that p D2(S) (and hence p 52(5)) are O(s_l)
in such circumstances to obtain a relation of the form
m
=1 = 1 p 2 =],
— -+ o -
0= |M, + O(s )!.lMll +0(s ) + (-1) © 50— (N, + 0(s 7))
5 1
=1 =l o =, =1
- (M, +0(s )M, +O(s 1)) (M, +0(s ) (13)

Letting both ls[ and p tend to infinite in the defined sense, we obtain a

relation of the form

|
m,.
$ -3y Tl s mL Mom (14)

| -] Miq 17 18 21|

2

and hence (by the nonsingularity of M2 and Nll) that there are precisely di

possible non-zero values of A obtained by solving (14) or, equivalently,

A )
N O
m 11
6 = |Ml £ (=13 % | (15)

O O

. th
Clearly the optimal system root-locus has di my 2ml under infinite zeros

exactly and we must hence have dl = di and kl =m, .

Consider now those unbounded branches of the optimal root-locus where
-2m ,
ps B is unbounded. Using (11) and (12) in (10) and using Schurs formula

yields
-2m m
=k 1 T o -1
Mll+0(s ) + ps (=1) (Nll+O(S ?}.
m =m
-1 1 1 = =3
M12+o(s )+(-1) "p s (N12+O(s ))DZ(S)
=m
-1 1 - -1
M2l+0(s ) + ps D2(S)(N2l+0(s 1
M_+0(s ) + D_(s) (N +O(s—l))D (s)
! P 23 2
-2m m
_ =1 P W -1
= | M, +o0(s) +ps (-1) ", +Ofs D u, +

- ~ ¢ -1
O(s ) + p Dy(s) (N, + O(s 7))D,(s) - p(s) | (16)



where {(s) has the form

-1 ™1 .
+ 0(s ") + ps D,(s) (N

ple) = (M 2 21

=]
01 + O(s )}(Mll +

-1 —2ml m, g
O(s ") + ps (-1) (Nll + O(s

l))_l(ml2 + o(s™h
s i =]
+(-1) "ps (le + O(s ))Dz(s))

which has an obvious decomposition of the form

U(s) =y (s,p) +p 52(5) ¥, (s/p)D, (s) l

-1 m. . -1 =1
= , =(- + b h
where wl(s,p) O(s 7) and wz(s p) =(-1) NZlNll le O(s ") on all branches
-2m
of the root-locus where ps # is unbounded. The first determinant in (16) is
~ mlr- ~ -l.«
clearly non-zero on these branches so, writing N2 = N22 =(=1) N2lNll le

(which is symmetric and positive definite due to the symmetry and positivity

of ﬁl), we can write (16) in the form

M.+ o(s Yy 4 52(5) (ﬁz + O(s—l))D2(5)|= 0 (19)

-2m
whenever ps is unbounded. This relation has a clear similarity to (10)

and hence we can use an induction argument to verify that the optimal root-

: th . ;
locus has precisely di m, 2mi order infinite zeros, 1 € i £ g'. Theorem

3 follows by comparing this result with theorem 2.

Remark: The proof of the theoremcan cbviously be converted into a computational
technique but it is not clear how N and M can easily be computed in preckice:.
It is probably better to approach the computational problem more directly

(e.g. as in [4]).

Finally we state the following theorem based on the observation that,
during the proof of theorem 3, the orders multiplicities and asymptotic direc-
tions of the optimal root-locus depended only on N and M (and matrices derived

from them) and hence are independent of F and X.




Theorem 4: The orders, multiplicities and asymptotic directions of the
infinite zeros of the optimal root-locus of S(A,B,C) generated by the per-
formance index (2) are identical to those of S(A_BFJ-KO C,B,C) with the same

performance index and FO and KO arbitrary state frediback and output injection maps.

Remark: This result has clear connections with the corollary to theorem

1 in [63 and suggests that careful choice of FO and KO could be used to sim-

plify theoretical or numerical computations. For example, if v is an {a,B} -

invariant subspace in the kernel of C, the choice of FO such that v is

(3 - BFO)- invariant enables us to replace S by a system S in the gquotient

space Rp/v.
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Fig. 2. Plant G with feedback perturbation H




