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Approximate Carleman theorems and a
Denjoy—Carleman maximum principle

I. Chalendar’ L. Habsieger! J. R. Partington?
and T. J. Ransford®

Abstract

We give an extension of the Denjoy—Carleman theorem, which
leads to a generalization of Carleman’s theorem on the unique de-
termination of probability measures by their moments. We also give
complex versions of Carleman’s theorem extending Theorem 4.1 of [2].

MATHEMATICS SUBJECT CLASSIFICATION (2000): 26E10, 44A60.

1 Introduction

Given a subinterval I (bounded or unbounded) of R, and a sequence (M,,),>0
of positive numbers, write C;(M,,) for the family of all C*°-functions f : I —
C satistying

[f" (@) < cpppMa (z €1, n20), (1)

where ¢y and py are constants depending on f. Recall the Denjoy—Carleman
theorem ([3], p. 97).
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Theorem A. Let (M,),>0 be a positive sequence satisfying

My=1, M?<M, My (n>1) and Y M;'"=oc.

n=1
Let f € C;(M,), where I is an interval containing 0, and suppose that
F™(0) =0 for all n > 0.
Then f is identically equal to 0 on I.

In this paper we extend the Denjoy—Carleman theorem (when I = R) by
proving that f is constant when the condition £ (0) = 0 for all n is replaced
by the weaker condition lim,, .. |f™(0)|*/" = 0. More generally, we prove
that if limsup,,___ |f™(0)]*™ < C, then (1) automatically implies a stronger
form of itself, with p; = C' and M,, = 1.

We subsequently use these ideas to obtain a generalization of Carleman’s
theorem on the unique determination of probability measures by their mo-
ments. In the last section we also discuss complex versions of Carleman’s
theorem, generalizing Theorem 4.1 of [2].

2 A Denjoy—Carleman maximum principle
The following theorem is our main result.

Theorem 2.1 Let (M,),>o be positive sequence satisfying
My=1, M}< M, My (n>1) and Y M;/"=o0. (2)
n=1
Let f € Cr(M,,), and suppose that

lim sup | ™ (0)|'" < C. (3)

n—~o0

Then, for all integers m,n > 0,

sup | f"™ ()| < C"sup | f7) ()]
zeR z€R



As a special case of this result, we obtain a generalization of the Denjoy—
Carleman theorem (for I = R).

Corollary 2.2 Let (M,) be as in the theorem, let f € Cr(M,), and suppose
that lim,, . | f™(0)|Y/" = 0. Then f is constant.

Proof Applying the theorem with C' = 0, we find that f/ = 0.
O

In the course of the proof of Theorem 2.1, we shall need a result about
entire functions. Recall that an entire function A is said to be of exponential

type T if
1
lim sup og | f(2)]

|z]—00 ‘Z

The following result is well known; the second part is often called Bernstein’s
theorem.

Theorem B. ([1], Theorems 2.4.1 and 11.1.2) Let h be an entire function
of exponential type 7. Then h' is also of exponential type 7. If, further, h is
bounded on R, then so is h', and

sup |1/ ()] < 7sup |h(x)].
zeR zeR

Proof of Theorem 2.1 Define h: C — C by
f(
Z -

From (3), given € > 0, there exists a constant A, such that

1FB0)] < A(C+e)F (k>0).

Therefore

Z\fkl =2 AL o = 2l (2 )

It follows that h is an entire function of exponential type at most C. We
shall show that f = h|g. Assuming this, and noting also that f is bounded
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on R (by definition of Cg(M,)), the result follows upon repeated application
of Theorem B.
It remains to prove that f = h\R. Observe that, for n > 0 and z € C,

A (2 ‘Z font ‘ < (O + €)n+k|z\k = A(C + eIl

k!
k>0 k>0 ’

In particular, given R > 0,

sup \ ( )| < A(C + €)% (Ct+o)R (n>0).
z€[—R,R)]

Now, using the fact that My = 1 and M? < M, 1M, (n > 1), we have
M, > M7 for all n > 1. Hence

C+e\n

sup \h(”)(x)|§AEe(C+E)R< = )Mn (n>0).
1

z€[—R,R)]

This shows that h|_g g € Cj_g r(M,). Define g = f|_rr — h|[-r,r- Then
g € Ci_r.r(M,), and further, by the construction of h, we have g™ (0) = 0
for all n > 0. Applying Theorem A, we get ¢ = 0 on [—R, R]. As this holds
for each R > 0, we deduce that f = hl|g, as desired.

[

3 An extension of Carleman’s theorem

Let us first state Carleman’s theorem ([3], p.126).

Theorem C. Let u,v be Borel probability measures on R, all of whose mo-
ments are finite. Suppose that, for each n > 0,

S, = /_ " () = /_ " ),

o0 o0

and further that
Z S—1/2n .
Then = v.

As an application of the ideas of the previous section, we obtain the
following approximate version of Carleman’s theorem.
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Theorem 3.1 Let p,v be positive Borel measures on R, all of whose mo-
ments are finite. Suppose that, for each n > 0, one has

/_ " () = /_ ) + e, (4)

oo oo

where limsup,,_ . |c,|"" < C. Suppose further that S, := [~ _t"du(t) sat-
isfies

D85, = o0 (5)
n=1

Then = v + o, where o is a signed measure supported on [—C,C].
As a corollary, we obtain a generalization of Carleman’s theorem.

Corollary 3.2 Let pu,v be positive Borel measures on R, all of whose mo-
ments are finite. Suppose that, for each n > 0, one has

+oo +o0
/ du(t) = / v (t) + cn,

[e.e] [e.e]

where lim, o |c,|'/™ = 0. Suppose further that S, = [~ t"du(t) satisfies
(5). Then there exists ¢ € R such that u = v + ¢dy. If, in addition, p and v
are probability measures, then p = v.

Proof: By the theorem, y = v + o, where o is supported on {0}. Thus
o = coy for some ¢ € R. If both p and v are probability measures, then
necessarily ¢ = 0, and so p = v.
O
For the proof of Theorem 3.1, we shall need the following version of the
Paley—Wiener theorem.

Theorem D. ([5], Theorem 7.23) Let h be an entire function such that
h(z)] < A€ (e ), (6)

where A and C' are constants. Then h is the Fourier—Laplace transform of a
distribution supported on [—C, C].



Proof of Theorem 3.1: For n > 0, define

1 [t
M, = — t|"d t),
e
where my = p(R) + v(R). We claim that the sequence (M,,),>o satisfies the
condition (2). Indeed, that My = 1 is clear, and M? < M,, 1M, forn > 1
follows from Holder’s inequality. The verification of the remaining condition
Zn21 M;"™ = 00 is a bit more technical, and is postponed at the end of the
proof.
Assuming this for the moment, define f : R — C by

f@) = [ T ) (z€R). (7)

mo J_co

Then f € C*°(R) and, for each n > 0,
1 oo -
@) = [ et au- v @eR),
0 J—-o00

In particular,

If™ (@) <M, (z€R,n>0)
So, f € Cr(M,,). Also,

my - O[T
7o) =S8 [ - v,
mo —00

so from (4) we have limsup, . |f™(0)]*/® < C. As in the proof of Theo-
rem 2.1, f = h|g, where h is an entire function of exponential type at most
C. A simple application of the Phragmén—Lindelof principle shows that A
satisfies the estimate (6) (see e.g. [3, p.28]). Hence, using Theorem D, we
see that h is the Fourier-Laplace transform of a distribution u supported on
[—C, C]. Thus f is just the Fourier transform of u. But f was defined as the
Fourier transform of (4 — v)/myg. So, by the uniqueness theorem for Fourier
transforms of tempered distributions, u = (u — v)/my. In particular, p — v
is supported on [—C, C], as required.

It remains to justify the claim that ) ., Mn_l/n = 0. Set ay, = Ski1/Sk
for & > 0. By Hélder’s inequality, we have S? < S,_1S,41 for n > 1.
Therefore (ay)r>0 is an increasing sequence and S,, > Skaz_k for n > k. Let
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Qoo = lim,,_, a,. Also note that there exists a positive constant A\ such that
Mgn S mLOSQ” + )\, since Mgn = %052” + 0(1)

If a, = 00, fix k such that o, > 1. Now, since Sy, > Skai"_k for 2n > k,
we get:

2
M2n S _S2n+)\
mo
k
« _ k
= Son + ALy, 7 o2
o TS, ok
2 k
< Sh (—+A%)
mo Sk

It follows that

- . - . 2 k —1/2n
MM > g 12 (—+A%)

myo Sk
_ 2 AN
> Sy min [ 1, [ — 4+ A2k
> Sy, " min p_ S,
for all n > 1, which clearly implies that ) -, M;nl/ ** — 50 whenever

—1/2n
anl S =00

If aee < 00, we have o < ay for every k > 0. It follows that
Sn = Soag -+ - a1 < Spary,

for all n > 0. We get in this way
2 2
Ma, < —Spa" + X < (—So + A) (oo + 1)
mo mo

2 —1/2n
: . -1/2 . ~1/2 (7=So+A)
In particular, we have lim,_ My, /*" # 0 since My, /*" > S

Therefore, we also obtain 3 o, M,,"/*" = oo

O
4 Complex versions of Carleman’s theorem

Corollary 3.2 provides conditions for the uniqueness of probability measures
whose moments do not differ too much. In this section we will present com-
plex versions of Carleman’s theorem, as initiated in [2], Theorem 4.1.
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To that end, we first recall the following complex analysis result ([2],
Theorem 1.1 and [4], Theorem 1.7).

Theorem E. Let (a,)n>0 be a sequence of complex numbers.
1. If, for some r >0,

n

> (Z) aw=0() and Y (Z) 6= O()  asn — oo,

k=0 =
k even kodd

then a, =0 for alln >r.
2. If, for some 3 > 1,

n n

3 (Z) ar=0(8") and > (Z) ar, = O(B")  asn — oo,

k=0 k=0
k even kodd

then a, = O(a™), where oo = /3> — 1.

Let us now state our first result.

Theorem 4.1 Let p,v be positive Borel measures on R, all of whose mo-
ments are finite. Suppose that

/_ "t i) = / 0t () + d,

oo —00

where limsup,, . |d,|"/" < 1. Suppose further that Z,, := [*=°(1+it)"dpu(t)
satisfies

> | Zon| TV = 0. (8)
n=1

Then there exists ¢ € R such that p = v + c¢dg. If, in addition, p and v are
probability measures, then = v.

Proof: First observe that, for each n > 0,

/_ +00(1 Fit)d(p — v)(t) = Xn: (Z) it /_ o thd(u — v)(1).



By hypothesis, the left-hand side is O(5") as n — oo for each 5 > 1. Hence,
taking real and imaginary parts of the right-hand side and applying the
second assertion of Theorem E, it follows that fj;o t"d(p—v)(t) = O(a™) as
n — oo, for each a > 0. In other words,

/OO o dp(t) :/OO Pdv(t) e (n>0)

—0o0 — 00

where lim,, ., |¢,|"/" = 0. Moreover, it has been proved in [2] that (8) implies

(5). Applying Corollary 3.2, we get the desired result.
[
The above theorem includes examples such as d,, = eV™ with a faster
increase than the polynomial growth required in Theorem 4.1 of [2].

Our second result is a variant that does not require a growth condition
of type (8).

Theorem 4.2 Let p,v be positive Borel measures on R, all of whose mo-
ments are finite. Suppose that there exists a constant r > 0 such that

/_ T i)l — (1) = O(n) asn— oo, (9)

o0

Then there exists ¢ € R such that p = v + c¢dg. If, in addition, p and v are
probability measures, then = v.

Proof:  As before, for each n > 0,

n

“+oo “+oo
/_Oo (L+it)dlp—v|(t) =) <Z>2k /_OO t*d|p — v|(t).
k=0
By hypothesis, the left-hand side is O(n") as n — oo. Hence, taking real
and imaginary parts of the right-hand side and applying the first assertion of
Theorem E, it follows that fj;o t"d|p—v|(t) = 0 for all n > r. In particular,
if ng > r is even, we get fj;o t"d|p —v|(t) = 0, and thus g — v is supported

on {0}. The result follows.
O
We finish by remarking that there is no hope of replacing |u —v| by p—v
in (9). Indeed, by Theorem E, we see that

/_+O°(1 ity d(— v)() = O(n") = /_+°° (i — V) (t) = 0, n > 7,

oo
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and it is a well-known fact (cf. [3], pp. 128-129) that two probability mea-
sures on R whose moments are finite and equal are not necessarily the same.

Acknowledgements. IC and JRP gratefully acknowledge financial sup-
port from the European Research Training Network in Analysis and Opera-
tors. The research of TJR was partially supported by grants from NSERC
(Canada), FQRNT (Québec) and the Canada research chairs program.

References

[1] R. P. Boas. Entire Functions. Academic Press, New York, 1954.

[2] 1. Chalendar, K. Kellay, and T. Ransford. Binomial sums, moments and
invariant subspaces. Israel J. Math., 115:303-320, 2000.

[3] P. Koosis. The logarithmic integral I. Cambridge University Press, Cam-
bridge, 1988.

[4] J. Mashreghi and T. Ransford. Binomial sums and functions of exponen-
tial type. Preprint.

[5] W. Rudin. Functional Analysis. McGraw-Hill, Inc., New York, 1991.
Second edition.

10



