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Approximate Carleman theorems and a

Denjoy–Carleman maximum principle

I. Chalendar∗, L. Habsieger†, J. R. Partington‡

and T. J. Ransford§

Abstract

We give an extension of the Denjoy–Carleman theorem, which
leads to a generalization of Carleman’s theorem on the unique de-
termination of probability measures by their moments. We also give
complex versions of Carleman’s theorem extending Theorem 4.1 of [2].

Mathematics Subject Classification (2000): 26E10, 44A60.

1 Introduction

Given a subinterval I (bounded or unbounded) of R, and a sequence (Mn)n≥0

of positive numbers, write CI(Mn) for the family of all C∞-functions f : I →
C satisfying

|f (n)(x)| ≤ cfρ
n
f Mn (x ∈ I, n ≥ 0), (1)

where cf and ρf are constants depending on f . Recall the Denjoy–Carleman
theorem ([3], p. 97).
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Theorem A. Let (Mn)n≥0 be a positive sequence satisfying

M0 = 1, M2
n ≤ Mn−1Mn+1 (n ≥ 1) and

∞
∑

n=1

M−1/n
n = ∞.

Let f ∈ CI(Mn), where I is an interval containing 0, and suppose that

f (n)(0) = 0 for all n ≥ 0.

Then f is identically equal to 0 on I.

In this paper we extend the Denjoy–Carleman theorem (when I = R) by
proving that f is constant when the condition f (n)(0) = 0 for all n is replaced
by the weaker condition limn→∞ |f (n)(0)|1/n = 0. More generally, we prove
that if lim supn→∞ |f (n)(0)|1/n ≤ C, then (1) automatically implies a stronger
form of itself, with ρf = C and Mn ≡ 1.

We subsequently use these ideas to obtain a generalization of Carleman’s
theorem on the unique determination of probability measures by their mo-
ments. In the last section we also discuss complex versions of Carleman’s
theorem, generalizing Theorem 4.1 of [2].

2 A Denjoy–Carleman maximum principle

The following theorem is our main result.

Theorem 2.1 Let (Mn)n≥0 be positive sequence satisfying

M0 = 1, M2
n ≤ Mn−1Mn+1 (n ≥ 1) and

∞
∑

n=1

M−1/n
n = ∞. (2)

Let f ∈ CR(Mn), and suppose that

lim sup
n→∞

|f (n)(0)|1/n ≤ C. (3)

Then, for all integers m, n ≥ 0,

sup
x∈R

|f (n+m)(x)| ≤ Cn sup
x∈R

|f (m)(x)|.
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As a special case of this result, we obtain a generalization of the Denjoy–
Carleman theorem (for I = R).

Corollary 2.2 Let (Mn) be as in the theorem, let f ∈ CR(Mn), and suppose
that limn→∞ |f (n)(0)|1/n = 0. Then f is constant.

Proof Applying the theorem with C = 0, we find that f ′ ≡ 0.
�

In the course of the proof of Theorem 2.1, we shall need a result about
entire functions. Recall that an entire function h is said to be of exponential
type τ if

lim sup
|z|→∞

log |f(z)|

|z|
= τ.

The following result is well known; the second part is often called Bernstein’s
theorem.

Theorem B. ([1], Theorems 2.4.1 and 11.1.2) Let h be an entire function
of exponential type τ . Then h′ is also of exponential type τ . If, further, h is
bounded on R, then so is h′, and

sup
x∈R

|h′(x)| ≤ τ sup
x∈R

|h(x)|.

Proof of Theorem 2.1 Define h : C → C by

h(z) =
∑

k≥0

f (k)(0)

k!
zk.

From (3), given ǫ > 0, there exists a constant Aǫ such that

|f (k)(0)| ≤ Aǫ(C + ǫ)k (k ≥ 0).

Therefore

∑

k≥0

∣

∣

∣

f (k)(0)

k!
zk
∣

∣

∣
≤
∑

k≥0

Aǫ(C + ǫ)k

k!
|z|k = Aǫe

(C+ǫ)|z| (z ∈ C).

It follows that h is an entire function of exponential type at most C. We
shall show that f = h|R. Assuming this, and noting also that f is bounded
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on R (by definition of CR(Mn)), the result follows upon repeated application
of Theorem B.

It remains to prove that f = h|R. Observe that, for n ≥ 0 and z ∈ C,

|h(n)(z)| =
∣

∣

∣

∑

k≥0

f (n+k)(0)

k!
zk
∣

∣

∣
≤
∑

k≥0

Aǫ(C + ǫ)n+k

k!
|z|k = Aǫ(C + ǫ)ne(C+ǫ)|z|.

In particular, given R > 0,

sup
x∈[−R,R]

|h(n)(x)| ≤ Aǫ(C + ǫ)ne(C+ǫ)R (n ≥ 0).

Now, using the fact that M0 = 1 and M2
n ≤ Mn−1Mn+1 (n ≥ 1), we have

Mn ≥ Mn
1 for all n ≥ 1. Hence

sup
x∈[−R,R]

|h(n)(x)| ≤ Aǫe
(C+ǫ)R

(C + ǫ

M1

)n

Mn (n ≥ 0).

This shows that h|[−R,R] ∈ C[−R,R](Mn). Define g = f |[−R,R] − h|[−R,R]. Then
g ∈ C[−R,R](Mn), and further, by the construction of h, we have g(n)(0) = 0
for all n ≥ 0. Applying Theorem A, we get g ≡ 0 on [−R, R]. As this holds
for each R > 0, we deduce that f = h|R, as desired.

�

3 An extension of Carleman’s theorem

Let us first state Carleman’s theorem ([3], p.126).

Theorem C. Let µ, ν be Borel probability measures on R, all of whose mo-
ments are finite. Suppose that, for each n ≥ 0,

Sn :=

∫ +∞

−∞
tndµ(t) =

∫ +∞

−∞
tndν(t),

and further that
∞
∑

n=1

S
−1/2n
2n = ∞.

Then µ = ν.

As an application of the ideas of the previous section, we obtain the
following approximate version of Carleman’s theorem.
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Theorem 3.1 Let µ, ν be positive Borel measures on R, all of whose mo-
ments are finite. Suppose that, for each n ≥ 0, one has

∫ +∞

−∞
tndµ(t) =

∫ +∞

−∞
tndν(t) + cn, (4)

where lim supn→∞ |cn|
1/n ≤ C. Suppose further that Sn :=

∫∞
−∞ tn dµ(t) sat-

isfies
∞
∑

n=1

S
−1/2n
2n = ∞. (5)

Then µ = ν + σ, where σ is a signed measure supported on [−C, C].

As a corollary, we obtain a generalization of Carleman’s theorem.

Corollary 3.2 Let µ, ν be positive Borel measures on R, all of whose mo-
ments are finite. Suppose that, for each n ≥ 0, one has

∫ +∞

−∞
tndµ(t) =

∫ +∞

−∞
tndν(t) + cn,

where limn→∞ |cn|
1/n = 0. Suppose further that Sn :=

∫∞
−∞ tn dµ(t) satisfies

(5). Then there exists c ∈ R such that µ = ν + cδ0. If, in addition, µ and ν
are probability measures, then µ = ν.

Proof: By the theorem, µ = ν + σ, where σ is supported on {0}. Thus
σ = cδ0 for some c ∈ R. If both µ and ν are probability measures, then
necessarily c = 0, and so µ = ν.

�

For the proof of Theorem 3.1, we shall need the following version of the
Paley–Wiener theorem.

Theorem D. ([5], Theorem 7.23) Let h be an entire function such that

|h(z)| ≤ AeC| Im z| (z ∈ C), (6)

where A and C are constants. Then h is the Fourier–Laplace transform of a
distribution supported on [−C, C].
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Proof of Theorem 3.1: For n ≥ 0, define

Mn =
1

m0

∫ +∞

−∞
|t|nd(µ + ν)(t),

where m0 = µ(R) + ν(R). We claim that the sequence (Mn)n≥0 satisfies the
condition (2). Indeed, that M0 = 1 is clear, and M2

n ≤ Mn−1Mn+1 for n ≥ 1
follows from Hölder’s inequality. The verification of the remaining condition
∑

n≥1 M
−1/n
n = ∞ is a bit more technical, and is postponed at the end of the

proof.
Assuming this for the moment, define f : R → C by

f(x) =
1

m0

∫ +∞

−∞
e−itxd(µ − ν)(t) (x ∈ R). (7)

Then f ∈ C∞(R) and, for each n ≥ 0,

f (n)(x) =
1

m0

∫ +∞

−∞
(−it)ne−itxd(µ − ν)(t) (x ∈ R).

In particular,
|f (n)(x)| ≤ Mn (x ∈ R, n ≥ 0).

So, f ∈ CR(Mn). Also,

f (n)(0) =
(−i)n

m0

∫ +∞

−∞
tnd(µ − ν)(t),

so from (4) we have lim supn→∞ |f (n)(0)|1/n ≤ C. As in the proof of Theo-
rem 2.1, f = h|R, where h is an entire function of exponential type at most
C. A simple application of the Phragmén–Lindelöf principle shows that h
satisfies the estimate (6) (see e.g. [3, p.28]). Hence, using Theorem D, we
see that h is the Fourier–Laplace transform of a distribution u supported on
[−C, C]. Thus f is just the Fourier transform of u. But f was defined as the
Fourier transform of (µ − ν)/m0. So, by the uniqueness theorem for Fourier
transforms of tempered distributions, u = (µ − ν)/m0. In particular, µ − ν
is supported on [−C, C], as required.

It remains to justify the claim that
∑

n≥1 M
−1/n
n = ∞. Set αk = Sk+1/Sk

for k ≥ 0. By Hölder’s inequality, we have S2
n ≤ Sn−1Sn+1 for n ≥ 1.

Therefore (αk)k≥0 is an increasing sequence and Sn ≥ Skα
n−k
k for n ≥ k. Let

6



α∞ = limn→∞ αn. Also note that there exists a positive constant λ such that
M2n ≤ 2

m0

S2n + λ, since M2n = 2
m0

S2n + O(1).

If α∞ = ∞, fix k such that αk ≥ 1. Now, since S2n ≥ Skα
2n−k
k for 2n ≥ k,

we get:

M2n ≤
2

m0
S2n + λ

=
2

m0
S2n + λ

αk
k

Sk
αk

−2n Sk

αk
k

α2n
k

≤ S2n

(

2

m0

+ λ
αk

k

Sk

)

.

It follows that

M
−1/2n
2n ≥ S

−1/2n
2n

(

2

m0

+ λ
αk

k

Sk

)−1/2n

≥ S
−1/2n
2n min

(

1,

(

2

m0

+ λ
αk

k

Sk

)−1/2
)

for all n ≥ 1, which clearly implies that
∑

n≥1 M
−1/2n
2n = ∞ whenever

∑

n≥1 S
−1/2n
2n = ∞.

If α∞ < ∞, we have αk ≤ α∞ for every k ≥ 0. It follows that

Sn = S0α0 · · ·αn−1 ≤ S0α
n
∞

for all n ≥ 0. We get in this way

M2n ≤
2

m0
S0α

2n
∞ + λ ≤

(

2

m0
S0 + λ

)

(α∞ + 1)2n.

In particular, we have limn→∞ M
−1/2n
2n 6= 0 since M

−1/2n
2n ≥

( 2

m0
S0+λ)−1/2n

α∞+1
.

Therefore, we also obtain
∑

n≥1 M
−1/2n
2n = ∞.

�

4 Complex versions of Carleman’s theorem

Corollary 3.2 provides conditions for the uniqueness of probability measures
whose moments do not differ too much. In this section we will present com-
plex versions of Carleman’s theorem, as initiated in [2], Theorem 4.1.
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To that end, we first recall the following complex analysis result ([2],
Theorem 1.1 and [4], Theorem 1.7).

Theorem E. Let (an)n≥0 be a sequence of complex numbers.
1. If, for some r ≥ 0,

n
∑

k=0
k even

(

n

k

)

ak = O(nr) and
n
∑

k=0
k odd

(

n

k

)

ak = O(nr) as n → ∞,

then an = 0 for all n > r.
2. If, for some β > 1,

n
∑

k=0
k even

(

n

k

)

ak = O(βn) and
n
∑

k=0
k odd

(

n

k

)

ak = O(βn) as n → ∞,

then an = O(αn), where α =
√

β2 − 1.

Let us now state our first result.

Theorem 4.1 Let µ, ν be positive Borel measures on R, all of whose mo-
ments are finite. Suppose that

∫ +∞

−∞
(1 + it)ndµ(t) =

∫ +∞

−∞
(1 + it)ndν(t) + dn

where lim supn→∞ |dn|
1/n ≤ 1. Suppose further that Zn :=

∫ +∞
−∞ (1 + it)ndµ(t)

satisfies
∞
∑

n=1

|Z2n|
−1/2n = ∞. (8)

Then there exists c ∈ R such that µ = ν + cδ0. If, in addition, µ and ν are
probability measures, then µ = ν.

Proof: First observe that, for each n ≥ 0,

∫ +∞

−∞
(1 + it)nd(µ − ν)(t) =

n
∑

k=0

(

n

k

)

ik
∫ +∞

−∞
tkd(µ − ν)(t).
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By hypothesis, the left-hand side is O(βn) as n → ∞ for each β > 1. Hence,
taking real and imaginary parts of the right-hand side and applying the
second assertion of Theorem E, it follows that

∫ +∞
−∞ tnd(µ− ν)(t) = O(αn) as

n → ∞, for each α > 0. In other words,
∫ ∞

−∞
tn dµ(t) =

∫ ∞

−∞
tn dν(t) + cn (n ≥ 0)

where limn→∞ |cn|
1/n = 0. Moreover, it has been proved in [2] that (8) implies

(5). Applying Corollary 3.2, we get the desired result.
�

The above theorem includes examples such as dn = e
√

n with a faster
increase than the polynomial growth required in Theorem 4.1 of [2].

Our second result is a variant that does not require a growth condition
of type (8).

Theorem 4.2 Let µ, ν be positive Borel measures on R, all of whose mo-
ments are finite. Suppose that there exists a constant r ≥ 0 such that

∫ +∞

−∞
(1 + it)nd|µ − ν|(t) = O(nr) as n → ∞. (9)

Then there exists c ∈ R such that µ = ν + cδ0. If, in addition, µ and ν are
probability measures, then µ = ν.

Proof: As before, for each n ≥ 0,
∫ +∞

−∞
(1 + it)nd|µ − ν|(t) =

n
∑

k=0

(

n

k

)

ik
∫ +∞

−∞
tkd|µ − ν|(t).

By hypothesis, the left-hand side is O(nr) as n → ∞. Hence, taking real
and imaginary parts of the right-hand side and applying the first assertion of
Theorem E, it follows that

∫ +∞
−∞ tnd|µ− ν|(t) = 0 for all n > r. In particular,

if n0 > r is even, we get
∫ +∞
−∞ tn0d|µ− ν|(t) = 0, and thus µ− ν is supported

on {0}. The result follows.
�

We finish by remarking that there is no hope of replacing |µ−ν| by µ−ν
in (9). Indeed, by Theorem E, we see that
∫ +∞

−∞
(1 + it)nd(µ − ν)(t) = O(nr) ⇐⇒

∫ +∞

−∞
tnd(µ − ν)(t) = 0, n > r,
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and it is a well-known fact (cf. [3], pp. 128–129) that two probability mea-
sures on R whose moments are finite and equal are not necessarily the same.
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