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Abstract   

This chapter reviews the present state of knowledge on the activity of enzymes that 

function with the RNA exosome in the nucleus.  In this compartment, the exosome 

interacts physically and functionally with the exoribonuclease Rrp6 and several co-

factors, most prominently Rrp47 and the TRAMP complex.  These interactions decide the 

fate of RNA precursors from transcription through the formation of mature 

ribonucleoprotein particles (RNPs) and the export of the RNPs to the cytoplasm.  The 

nuclear exosome catalyzes the formation of the mature 3’ ends of many of these RNAs, 

but in other cases degrades the RNAs to mononucleotides.  Co-factors such as Mpp6, 

TRAMP and the Nrd1/Nab3 complex play important roles in determining the outcome of 

the interaction of RNPs with the nuclear exosome.  The details that govern the specificity 

of these decisions remain a rich source for future investigation. 
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Introduction 

The RNA exosome plays an essential role in the processing and degradation of RNAs in 

eukaryotic organisms.  In the nucleus and the cytoplasm the nine-subunit exosome core, 

Exo9, and the ribonuclease Dis3/Rrp44 function as a unit, designated Exo10.  In 

Saccharomyces cerevisiae this complex interacts physically and functionally with a 

nucleus specific enzyme, Rrp6, to form the nuclear exosome, Exo11.  While the majority 

of Rrp6 resides in the nucleus in S. cerevisiae, evidence suggests its presence in the 

cytoplasm in humans, T. brucei and A. thaliana.1-3  In S. cerevisiae, where Rrp6 has been 

studied most extensively, deletion of the sole copy of its gene (RRP6) causes a slow 

growth phenotype at 30oC and extremely poor growth at 37oC.4  Nevertheless, the fact 

that deletion of any of the other exosome genes causes lethality has made the use of rrp6-

∆ strains a valuable tool for the study of exosome defects in nuclear RNA processing.  

These studies revealed a critical role for Rrp6 in maturation and degradation pathways 

that include all known classes of RNA.  The targeting of Rrp6 and Exo10 to these 

different RNA processing pathways is specified by interactions with protein co-factors 

such as Rrp47, Mpp6 and the TRAMP complex.  Moreover, studies in rrp6 mutants, or 

cells depleted of Rrp6, uncovered the existence of RNA polymerase II transcripts from 

virtually every part of the genomes of organisms as divergent as yeast, plants and 

humans.  These revelations along with evidence that Rrp6 regulates the levels of specific 

mRNAs indicate that the nuclear exosome and it co-factors may have key functions in the 

control of gene expression and organismal development.   
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Structure and activity of Rrp6 

Rrp6 belongs to the RNaseD family of the DEDD superfamily of exoribonucleases, 

which use a two-metal ion mechanism for RNA hydrolysis (Figure 1).5  Structure-

function studies of Rrp6 proteins with point mutations in the exonuclease domain 

confirmed the two-metal ion mechanism and suggested that, like the exonuclease 

domains of DNA polymerases, Rrp6 utilizes a phenylalanine to stabilize the hydroxyl 

anion intermediate activated for phosphodiester bond cleavage.6, 7  Unlike Dis3/Rrp44, 

whose activity is attenuated by interaction with Exo9, Rrp6 retains its characteristic 

properties in the Exo11 complex.8  Rrp6 contains two HRDC (Helicase RNaseD C-

terminal) domains, only one of which was predicated by sequence homology.  The Rrp6 

HRDC1 domain folds into a characteristic 5-helix structure nearly identical to the 

homologous portion of E. coli RNaseD (Figure 1).7, 9  Surprisingly, a second HRDC 

domain appears directly after this in the RNaseD structure, despite a paucity of sequence 

similarity to HRDC1 or other HRDC domains.  Although the polypeptide used for crystal 

structure analysis of S. cerevisiae Rrp6 did not carry HRDC2, it seems reasonable to 

believe that this region folds to create a similar structure in eukaryotes.  Comparison of 

the activities of S. cerevisiae Rrp6 derivatives deleted for either HRDC1 or HRDC2 

indicated that HRDC2 plays a critical role in the ability of the protein to interact with 

Exo10 in vivo.10  Rrp6 deleted for HRDC2, but not HRDC1, carries out RNA 3’ end 

processing of pre-snoRNAs and pre-5.8S rRNA (see below), but fails to degrade certain 

rRNA intermediates that require co-operation between the activities of Rrp6 and 

Dis3/Rrp44.  Thus, the HRDC2 domain appears to facilitate protein-protein interaction 

between Rrp6 and Exo10.  Rrp6 and its eukaryotic homologues carry an N-terminal 
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region (PMC2NT) not found in bacteria.  This region is dispensable for interaction with 

Exo10, but is necessary and sufficient for binding to the Rrp6 co-factor Rrp47/Lrp1 (C1D 

in humans; see below).11  Thus, for RNA 3’ end maturation reactions the interaction of 

Rrp6 with Rrp47 appears more important than the ability of Rrp6 to bind Exo10. 

 

The role of Rrp6 in the maturation of non-coding RNAs 

Early studies showed that Rrp6 plays a critical role in the maturation of 5.8S pre-RNA.4  

Rrp6 catalyzes the 3’ end trimming of 5.8S pre-rRNA from its 5.8S+30 form to the 6S 

form, whose end is trimmed to the mature 5.8S rRNA by cytoplasmic Ngl2.4, 12  Rrp6 

requires Rrp47/Lrp1 in budding yeast, or its homologue C1D in humans, for efficient 

trimming of 3’ extended 5.8S precursors.11, 13, 14  The 5.8S+30 pre-RNA substrate results 

from 3’-5’ processing by Exo10 of a longer precursor, 7S pre-rRNA, generated by 

cleavage at the C2 site with the pre-rRNA internal transcribed spacer.15  Thus, generation 

of 6S pre-rRNA in the nucleus requires the concerted 3’-5’ exoribonuclease activities of 

Dis3/Rrp44 (in the context of Exo10) and Rrp6, suggesting that the Exo11 complex 

converts 7S to 6S pre-rRNA.  However, a mutation that disrupts the interaction between 

Rrp6 and Exo10 in vivo has no apparent effect on the conversion of 5.8S+30 pre-RNA to 

6S pre-rRNA, indicating physical independence of Rrp6 and Exo10 in this step.10 

 

Likewise, Rrp6 and Exo10 carry out stepwise 3’ end formation of sno-RNAs and sn-

RNAs precursors.16, 17  The independently transcribed sno-RNAs and some of the sn-

RNAs are synthesized as 3’ extended precursors that are trimmed in the 3’-5’ direction by 

Exo10, followed by removal of the last few nucleotides by Rrp6.  Like the processing of 
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7S pre-rRNA to 6S pre-rRNA, the last step, catalyzed by Rrp6, occurs efficiently in an 

Rrp6 mutant defective for interaction with Exo10, but requires interaction with Rrp47 via 

the Rrp6 PMC2NT domain.11, 18  Several studies suggest that some portion of mature 

snoRNAs results from the 3’ trimming of extended, polyadenylated forms of snoRNAs 

precursors, as opposed to their total degradation by an exosome catalyzed surveillance 

mechanism.19-21  This raises a longstanding question of how Rrp6 and Exo10 recognize 

which RNA substrates should be destroyed and which should be trimmed to their normal 

3’ ends.  Presumably, the answer depends on whether the RNAs have the combined RNA 

and protein structural information to keep the RNPs in a productive biogenesis pathway. 

 

The role of Rrp6 in mRNA surveillance 

Rrp6 was discovered by virtue of the fact that loss of function mutations suppress the 

temperature sensitive growth phenotype of a S. cerevisiae strain carrying a mutation 

(pap1-1) in the gene encoding the canonical mRNA poly(A)-polymerase Pap1.4  

Interestingly, loss of Rrp6 activity allowed the accumulation of poly(A)+ mRNAs under 

conditions where partial inactivation of Pap1 otherwise resulted in the disappearance of 

most mRNAs.22  Localization of Rrp6 to the nucleus, demonstration of its hydrolytic 

exoribonuclease activity and the fact that loss of its activity allowed accumulation of 

poly(A)+ mRNAs in pap1-1 strains without changing the rate limiting step in mRNA 

decay lead to the proposal that the enzyme plays a role in a nuclear mRNA surveillance 

pathway.22  Indeed, loss of Rrp6 activity reverses the disappearance of mRNAs caused by 

defects in other components of the mRNA 3’ end formation pathway, as well as cis-

acting defects that inhibit polyadenylation.23-25 
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The role of Rrp6 in nuclear mRNA surveillance includes an interesting, but poorly 

understood function in the accumulation of incompletely processed mRNAs at, or near, 

their site of transcription.26  Retention of specific transcripts in single nuclear foci in 

budding yeast occurs as a result of defects in 3’ end processing, or defects in the 

formation of export competent RNPs.27  Strains lacking Rrp6 fail to form these foci and 

the transcripts exit the nucleus.  These observations suggest that, in addition to its role in 

degrading aberrant transcripts, the presence of Rrp6 slows the transition of pre-mRNAs 

to export competent RNPs.  Indeed, defects in components of the THO/Sub2 complex, 

which bridges posttranscriptional events with mRNA export, result in mRNA degradation 

and Rrp6-dependent retention of pre-mRNAs in nuclear foci.27-29  The mechanistic details 

of the connection between the THO/Sub2 complex and the nuclear exosome remain 

unclear, but recent evidence suggests that THO/Sub2 defects inhibit the activity of the 

mRNA 3’ end processing machinery.29, 30  One interpretation of these findings is that 

disruption of the transition from pre-mRNA to an export competent RNP may feedback 

to down regulate mRNA 3’ end processing, thereby exposing transcripts to degradation 

by Exo11. 

 

Defects in Rrp6 and other exosome components render yeast and human cells 

hypersensitive to the chemotherapeutic drug 5-fluorouracil (5FU).31-33  This effect; (i) 

results from incorporation of the base analogue into RNA, (ii) is abolished by a mutation 

in Rrp6 that inhibits its degradation, but not by one that inhibits its 3’ end maturation 

function, (iii) correlates with the accumulation of poly(A)+ RNA degradation 
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intermediates and (iv) is independent of the transcription-coupled DNA repair pathway.32, 

34  Moreover, hypersensitivity of rrp6-∆ strains to 5FU requires a catalytically active 

pseudouridine synthetase, Cbf5.35  Some pseudouridine synthetases cannot convert 5FU 

into psuedouridine and the incomplete enzymatic reaction results in covalent adducts 

between the enzyme and 5FU-RNA.  These findings suggest that a significant component 

of 5FU cytotoxicity in S. cerevisiae may result from the inability of Rrp6 to degrade 

RNA molecules trapped in complexes with Cbf5. 

 

The role of Rrp6 in the regulation of mRNA levels 

Rrp6 controls the levels of normal mRNAs as exemplified by the autoregulation of the 

nuclear poly(A)-binding protein Nab2 activity in budding yeast.36  The interaction of 

Nab2 with an oligoadenylate sequence in the 3’ UTR of its own mRNA destabilizes the 

transcript in a manner dependent on Rrp6 activity.  Interestingly, NAB2 mRNA 3’ end 

formation occurs by a non-canonical mechanism that requires Exo10 and the Trf4 

component of the TRAMP complex.37  A similar mechanism forms the mature end of the 

CTH2 mRNA and, possibly other mRNAs.38  Rrp6 and the TRAMP complex regulate the 

levels of histone mRNAs by degrading the transcripts and contributing to their removal at 

the end of the S-phase of the cell cycle.  The requirement for Rrp6 suggests that the 

negative effect of histone synthesis beyond the end of S-phase requires the rapid 

destruction of their mRNAs in the nucleus as well as in the cytoplasm.39, 40  In Drosophila 

melanogaster, depletion of Rrp6 leads to mitotic defects that may reflect altered 

accumulation of mitotic mRNAs.41  Similarly, loss of Rrp6 activity causes meiotic 

defects in Schizosaccharomyces pombe, and evidence suggests that the Mmi protein 
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targets meiosis-specific pre-mRNAs for degradation by Rrp6.42, 43  Rrp6 also participates 

in a pathway that degrades mRNAs that exit the nucleus slowly; either due to defects in 

nuclear export, or naturally slow, mRNA-specific export rates.44  In this pathway, called 

DRN (Degradation of RNA in the Nucleus), Rrp6 acts in concert with the nuclear RNA 

cap-binding complex to accelerate the degradation of slowly exported mRNAs.25  These 

findings indicate that cells utilize the nuclear mRNA surveillance function of Rrp6 and 

perhaps Exo11 to regulate the concentration of a number of mRNAs for the purposes of 

simple feedback control and more complex regulation of cell cycle events.  It seems 

likely that the list of mRNAs whose levels are subject to regulation by Rrp6 and the 

exosome will continue to grow.  

 

Rrp6 and the TRAMP complex 

The surprising discovery of polyadenylated non-coding RNAs and the existence of non-

canonical poly(A)-polymerases revealed a role for Rrp6 and Exo10 in a polyadenylation 

dependent pathway for the degradation of aberrant RNA processing intermediates and 

transcripts arising from pervasive transcription of the genome.  The first clues to the 

existence of this pathway came from experiments that demonstrated the accumulation of 

polyadenylated sn- and snoRNAs, and pre-rRNAs in budding yeast strains lacking 

Rrp6.16, 17, 45  A key experiment also revealed that the degradation of hypomodified pre-

tRNAi
Met requires the activity of Dis3/Rrp44 and Rrp6.46  Importantly, these studies 

identified a requirement for the activity of the non-canonical poly(A)-polymerase Trf4 in 

destruction of the aberrant pre-tRNAi
Met.  Later studies showed that Trf4 and another 

non-canonical poly(A)-polymerase, Trf5, exist in complexes with putative RNA-binding 
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proteins Air1 and Air2, as well as with the RNA helicase Mtr4.47, 48  These complexes, 

called TRAMP4 and TRAMP5 respectively, play an essential role in the degradation of 

non-coding RNAs in eukaryotes.49-51  In some cases, these transcripts may arise from 

pervasive transcription of the genome that produces a surprising array of sense, antisense 

and intergenic transcripts, in addition to gene-encoding RNAs.52-54  Many of these RNAs, 

as well as intermediates in the biogenesis pathways producing sn-/snRNAs and rRNAs, 

are polyadenylated by the TRAMP complexes, which facilitates their hydrolysis by Rrp6 

and Exo10.   

 

This surveillance mechanism ensures the destruction of aberrant RNA processing 

intermediates and disposes of transcripts that result from pervasive bi-directional 

transcription initiation by RNA polymerase II.55, 56  While some of the RNAs generated in 

this manner appear to lack any function, evidence from budding yeast and Arabidopsis 

thaliana suggests that some influence gene regulation, development and gene silencing.57-

60  Experiments in S. pombe revealed a requirement for TRAMP and Rrp6 in the 

degradation of transcripts arising from silenced heterochromatin and in 

posttranscriptional control of RNAi-dependent gene silencing.61-63  TRAMP complexes 

likely play a critical role in determining the levels of these regulatory transcripts, since 

polyadenylation by TRAMP enhances RNA degradation by the nuclear exosome.  

However, how TRAMP distinguishes between RNAs destined for rapid turnover and 

other stable RNAs remains a major unanswered question. 
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The exosome cofactor Rrp47 

The yeast protein Rrp47 (also known as Lrp1 or yC1D) and its mammalian homologue 

C1D are eukaryotic, nuclear proteins that bind both RNA and DNA.11, 14, 64, 65 Research 

on Rrp47 has focussed on its physical association with the exosome nuclease complex.13, 

66, 67 and the role of this complex in RNA processing and degradation pathways (for 

recent reviews of exosome structure and function, see 52, 68-71), while C1D was initially 

characterised as a DNA-binding protein that functions in transcription and DNA repair.64, 

72, 73 Nevertheless, there is strong evidence of functional conservation of Rrp47/C1D; 

both proteins interact directly with the catalytic exosome component Rrp6 (known as 

PM-Scl100 in humans),11, 14 yeast rrp47-∆ mutants show defects in DNA repair74, 75 and 

similar defects on 5.8S rRNA maturation are observed in yeast rrp47-∆ and rrp6-∆ 

mutants and upon depletion of C1D in mammalian cells.4, 13, 14 

 

Structure of Rrp47 

Rrp47 and C1D are small, basic proteins of 21kDa and 16kDa, respectively. There is no 

detailed structural data currently available for these proteins but sequence homology and 

secondary structure prediction programmes76 suggest that the first ~120 amino acid 

residues of Rrp47 comprise a conserved N-terminal -helical domain, while the C-

terminal region is less structured and more variable. The C-terminus of Rrp47 and 

homologous proteins is rich in basic residues and presumably contributes to RNA 

binding.11, 77 Rrp47 and C1D can both be phosphorylated in vitro73, 78 but the functional 

relevance of this is not clear. In contrast to other exosome proteins including Rrp6, Rrp47 
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has not been observed as a phosphoprotein in mass spectrometric analyses of exosome 

complexes79, 80 or in orthophosphate in vivo labeling experiments (our unpublished data). 

 

The conserved N-terminal region of Rrp47/C1D spans the bioinformatically defined 

Sas10/C1D domain (residues 10-89 of Rrp47) 81 also present in Sas10 (also known as 

Utp3) and Lcp5, two U3 small nucleolar RNA (snoRNA)-associated proteins that are 

components of the small subunit processosome or pre-90S subunit.82-86 Overexpression of 

Sas10 partially suppressed silencing of transcriptionally repressed chromatin in a Sir-

independent manner,87 an effect that has also been reported for mutants in the exosome 

and TRAMP complexes.88, 89 One possibility is that overexpression of Sas10 may 

(partially) titrate out the complex between Rrp47 and Rrp6. A Sas10/C1D domain is also 

found in the protein neuroguidin, an eIF4E-binding protein that is required for 

cytoplasmic polyadenylation-dependent translational control in neuronal cells.90 Sas10, 

Lcp5 and neuroguidin also have basic regions at their C-termini that may contribute to 

RNA binding but whether the Sas10/C1D domain represents an RNA-binding domain 

requires further experimentation. 

 

Biochemical activities of Rrp47 

Rrp47 and C1D are associated with Rrp6-containing exosome complexes13, 67 and interact 

directly with Rrp6 in vitro.11, 14 Binding occurs via the N-terminal PMC2NT domain of 

Rrp691 and the N-terminal -helical region of Rrp47 (our unpublished observations). 

Westerns of epitope-tagged proteins show that Rrp47 and Rrp6 are expressed at 

comparable levels in yeast,11 Rrp6 being present at approximately 2,000 molecules per 
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cell.92 Normal expression levels of Rrp47 in yeast are dependent upon this interaction 

with Rrp6.11 Therefore, the interpretation of data from experiments using rrp6-∆ null 

alleles should take into account that Rrp47 expression levels are also significantly 

affected. 

 

Rrp47 and C1D show specificity for structured RNA in vitro.11, 14 Consistent with an 

important role for Rrp47 RNA binding activity in vivo, RNAs that accumulate in rrp47-∆ 

mutants, such as the 3’ extended 5.8S rRNA precursor, are predicted to have double 

stranded regions at their 3’ termini.93 The dissociation constant of yeast Rrp47 for RNA 

and DNA is approximately 1M (calculating the protein concentration based on the 

predicted molecular weight of the monomeric protein).11 C1D is reported to have 

“exceptional DNA affinity”64 but the dissociation constant for DNA or RNA has not been 

reported and it is not clear whether the native protein has a preference for DNA or RNA 

substrates. Assuming there are approximately 2,000 molecules of Rrp47 per yeast cell 

and the protein is distributed evenly throughout the nucleus, which has a volume of 

approximately 3m,94 the intracellular concentration of Rrp47 is close to its dissociation 

constant. Therefore, small regulatory changes in the effective concentration of Rrp47 

would impact strongly on the efficiency with which this protein would bind its target 

substrates. Notably, overexpression of C1D is toxic.95 

 

The Role of Rrp47 in RNA Processing and Degradation 

Yeast strains lacking Rrp47 or Rrp6 accumulate a common set of cellular RNAs that, in 

wild-type cells, are normally efficiently processed to mature RNAs or rapidly degraded. 
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Rrp47 is not required for normal Rrp6 expression levels or the association of Rrp6 with 

exosome complexes.13 Since a trimeric complex can be formed between Rrp47, Rrp6 and 

RNA, it has been suggested that Rrp47 promotes substrate binding to Rrp6.11 Purified 

Rrp6 degrades unstructured RNA efficiently but is blocked by stem loop structures,8, 22 

suggesting that Rrp47 may facilitate degradation of structured RNA. Rrp47/C1D does not 

have any sequence homology to RNA helicases. Rrp47 might simply increase the 

retention time of Rrp6 on structured substrates or it may function sterically by positioning 

the 3’ end of structured RNA close to the catalytic centre of Rrp6, as has been proposed 

for the C’-terminal HRDC domain of RNase D.9 Notably, while the pattern of stable 

RNA precursors observed in rrp47-∆ and rrp6-∆ strains by northern blot analyses are 

largely indistinguishable,13 distinct effects are seen in these mutants upon analysis of 

global mRNA profiles.75, 96 This suggests that Rrp6 can function independently of Rrp47 

on some substrates. 

 

Rrp47 might also function in substrate recognition, either through interaction with RNA 

or other processing factors (Figure 2). Interactions between the Nrd1 termination 

complex and the exosome and TRAMP complexes are thought to recruit the 

degradation/processing machinery to some of its RNA substrates97 and Rrp47 is present 

in such large RNA processing/degradation complexes.98 Nrd1 and the associated protein 

Nab3 are RNA-binding proteins that bind cooperatively to multiple copies of tetrameric 

recognition sequences present in the terminator regions of target transcripts.99 The rrp47-

∆ mutation is synthetic lethal with the RNA-binding defective nrd1-102 mutation,100 

suggesting that the RNA-binding activity of Rrp47 may play an important role in the 
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recruitment of the exosome to the termination complex. It has also been suggested that 

the interaction between Rrp47 and DNA may help position exosome complexes at 

transcriptionally active sites.101 

 

Rrp47/C1D is well annotated as a DNA repair factor. Yeast strains lacking Rrp47 or Rrp6 

are defective in the degradation of specific mRNA transcripts upon exposure to UV 

irradiation and in the repair of UV irradiation-induced cyclobutane dimers, and rrp6-∆ 

mutants are synergistically sick in combination with rad26-∆ mutants.75 The sensitivity 

of rrp6-∆ and rrp47-∆ mutants to UV irradiation may reflect a quality control function of 

the exosome to eliminate aberrant transcripts that arise as a result of DNA damage in 

transcription-coupled DNA repair.102 

 

The exosome cofactor Mpp6 

Mpp6 (MPP6 in humans) shares a number of similarities with Rrp47, both being 

exosome-associated RNA-binding proteins that are small and basic in nature. The 

proteins have distinct substrate specificities, however, Rrp47 recognising structured RNA 

while Mpp6 binds pyrimidine-rich sequences.11, 14, 98, 103 While Rrp47 is functionally 

linked to the activity of Rrp6, the role of Mpp6 in exosome function is less clear. 

 

MPP6 was first identified as a nuclear protein that is phosphorylated and distributed 

throughout the cell during mitosis.104 MPP6 copurifies with exosome complexes that 

contain the Rrp6 homologue PM-Scl100 and hMtr4 but which lack the Rrp44/Dis3 

homologue.105 Thus, the interaction between MPP6 and the exosome is independent of 
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Rrp44. Interactions between MPP6 and PM-Scl100 or hMtr4 were first suggested by two-

hybrid interaction106 and subsequently shown to be direct by pull-down experiments 

using recombinant and in vitro translated proteins.14 The binding sites within Rrp6 for 

MPP6 and C1D apparently do not overlap, since a stable trimeric complex could be 

assembled. 

 

Depletion of MPP6 caused an accumulation of 3’ extended forms of 5.8S rRNA similar 

to that seen upon loss of exosome function.103 Notably, the 3’ extended 5.8S pre-rRNA 

that accumulates upon depletion of MPP6 contains a pyrimidine-rich sequence at its 3’ 

end, suggesting that MPP6 might target the exosome to this substrate. Consistent with a 

role in pre-rRNA processing, both the mammalian and yeast proteins are found 

associated with large ribosome-containing complexes.103, 107 

 

The yeast protein Mpp6 was first demonstrated to be associated with the exosome 

complex in a global proteomics study86 and subsequently shown to be required for 

viability of rrp47-∆ mutants.98 In common with other exosome mutants, mpp6-∆ strains 

showed defects in 5.8S rRNA maturation, accumulated the IGS1-R rDNA intergenic 

transcript and suppressed the loss of mRNA observed in rna14-1 and prp2-1 strains.23, 88, 

89, 98, 108 Notably, the accumulation of the NEL025C CUT upon loss of both Mpp6 and 

Rrp47 was significantly greater than each single mutant,98 suggesting that an exacerbated 

accumulation of regulatory RNA transcripts might contribute to the synthetic lethality of 

rrp47-∆ mpp6-∆ strains. 
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The mpp6-∆ mutation is also synthetic lethal with the rrp6-∆ mutation.98 This implies 

that Mpp6 and Rrp47 do not function in a functionally redundant manner to target 

substrates to Rrp6. It has been proposed that Mpp6 might promote the activity of the 

other exosome catalytic subunit, Rrp44.98 Given that human MPP6 protein physically 

interacts with PM-Scl100 and hMtr4,14 that it is associated with the exosome in the 

absence of Rrp44105 and that the yeast mpp6-∆ mutation shows strong genetic interactions 

with air1-∆ mutations,98, 109 another possibility is that Mpp6 promotes the functional 

coupling between Rrp6 and the TRAMP complex. 

 

Conclusion 

The recent discovery of diverse noncoding RNAs that are stabilised in the absence of 

Rrp655, 56, 110 has dramatically increased the number of substrates known to be processed 

or degraded by the nuclear exosome. The molecular mechanisms by which the exosome 

is targeted to its substrate molecules and how RNA processing substrates are 

distinguished from those targeted to complete degradation, however, remain largely 

unresolved. These outstanding questions address fundamental issues concerning the links 

between transcription termination, RNA processing and RNP particle assembly, and the 

distinction between RNA processing events and RNA surveillance. A general point 

appears to be the redundancy seen for nucleolytic, polymerase and RNA-binding 

activities in exosome-mediated RNA 3’ processing that presumably facilitate efficient 

processing and provide a system that is well buffered against genetic modulation. 
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Legends to Figures 

Figure 1.  Structure of Rrp6. 

The top diagram illustrates the polypeptide structure of Rrp6.  The bottom panels 

compare the crystal structures of E. coli RNaseD and a N-terminal and C-terminal 

truncated version of Rrp6 from S. cerevisiae.  The molecules in the panels were derived 

from the Protein Data Base using PyMol. 

 

Figure 2.  Substrate recognition and degradation by the nuclear exosome. 

The schematic depicts the general pathway of exosome recruitment and substrate 

digestion/processing by the nuclear exosome complex. The exosome is recruited to its 

RNA substrates (either polymerase-engaged transcription termination complexes or RNP 

particles with accessible 3’ ends) through a poorly understood set of interactions that, in 

most cases, will involve both RNA binding with undetermined sequences or structures 

and protein recognition with poorly characterised partner proteins (labelled “X”). The 

DNA binding activity of Rrp47 may also promote recruitment of the exosome to 

termination regions. Degradation/processing of the RNA can be promoted by Trf4- or 

Trf5-mediated oligoadenylation and by the RNA helicase activity of Mtr4, all of which 

are components of the TRAMP complex, while Rrp47, Mpp6 and the Air proteins 

contribute to RNA binding. RNA hydrolysis by the Rrp6 and Rrp44 exonucleases 

progresses until enzyme activity is blocked by the preassembled RNP particle, allowing 

3’ end maturation. In the absence of correct RNP particle assembly, the RNA is degraded 

completely by the exosome and TRAMP complexes. Other substrates are generated by 

endonucleolytic cleavage or arise through delayed transcription/processing events. For 
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some substrates, Rrp6 can function together with Rrp47 and TRAMP, independently of 

the core exosome complex. 
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