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Abstract
BACKGROUND: Diagnostic error in pathology is a significant problem. Studying the

reasons for error is difficult because of a lack of data on the diagnostic process - virtual

slides allow unsupervised study of diagnosis and error.

METHODS: Software was developed to produce visualisations of the diagnostic track

followed by pathologists as they viewed virtual slides. These showed the diagnostic path

in 4 dimensions (x, y, time and zoom), areas studied for >1000ms, and included

pathologists comments about the areas viewed. The system was used to study 2 trainee

and 2 expert pathologists diagnosing 60 Barrett’s oesophagus biopsies. Comparisons of

the diagnostic tracks showed the reason for errors.

RESULTS: 46 cases had an expert consensus diagnosis. The trainees made errors in 21

and 15 cases respectively, of which 11 and 9 were clinically significant. Errors were made

across the whole spectrum of diagnoses from negative to intramucosal carcinoma.

Detailed examination of the tracks showed that in all errors there was incorrect

interpretation of information; in 3 errors there was an additional failure to identify

diagnostic features.

CONCLUSIONS: Tracking with virtual slides is a useful tool in studying diagnosis and

error which has the potential for use in training and assessment.
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Introduction
Diagnosis in surgical histopathology is a highly subjective process which is prone to

error. The underlying reasons for error in pathology have not been extensively studied.

This paper describes the use of a new technology – tracking with virtual slides – to study

diagnostic error in histopathology.

Pathologists in training are taught to search tissue for diagnostic features. They then

combine and interpret the features identified in light of their knowledge to come to a

diagnosis. There is considerable scope for error during both the information gathering

and interpretation stages.

In the diagnosis of dysplasia in the gastrointestinal tract, for example, even with expert

observers only moderate agreement has been reported (kappa values of 0.4)1-3. When

non-experts are included kappa values as low as 0.24 (fair agreement) have been reported

4. An incorrect diagnosis of high grade dysplasia or cancer could lead to unneccesary

oesophagectomy.

Error in histopathology diagnosis is a complex problem with multifactorial causes, some

of which can be minimised with quality assurance and management strategies 5. Error in

the diagnostic process itself is more difficult to address.

Error can be categorised as being due to a failure to see a feature on the slide (e.g. failing

to see an area of malignant cells in a biopsy) or to a failure to correctly interpret it.

Whereas most trainers would recognise these categories, establishing the relative

contribution of each is more difficult. Self-reported analysis of diagnostic error

(“debriefing”) can be misleading as subjects often do not subsequently recall the entire

diagnostic reasoning process. Tools to formally examine diagnostic error in a controlled

setting are rarely used.

Tracking with modified microscopes has previously been used to train cytoscreeners in

proper screening technique for cervical smears 6. Usually these systems are used simply to

ensure that there has been 100% coverage of the slide with screening, rather than

interpreting the diagnostic process itself. What was actually examined on the slide was

not recorded.

Eyetracking has long been used in psychology to study the cognitive processes

undertaken during visual tasks. Eyetracking devices consist of an infrared camera

mounted above a display screen. The subject views visual stimuli on the screen, and their

eye movements can be recorded with the camera and then superimposed on the original

image. Using eyetracking and static histopathological images Tiersma et al. compared

diagnostic patterns of pathologists examining 2 cases of cervical intraepithelial neoplasia
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7, and Krupinski et al. studied the evaluation at low magnification of breast cancer 8. But

eyetracking cannot be used to accurately study diagnostic pathology fully as it requires

specialised equipment not easily available in pathology laboratories and, crucially,

removes the ability of the subject to use the microscope in a normal way (i.e. with

panning and zooming).

This latter problem means that the “serial search” approach adopted during

histopathological diagnosis cannot be studied without recording the entire diagnostic

process on a whole slide. Crowley et al. addressed this problem using glass slides, by

taking a video recording of what the subject viewed down the microscope and correlating

it with the subject’s running commentary.9

Virtual slides address this issue in a more flexible way. A virtual slide is produced by

scanning a glass slide at high resolution (up to 0.23 microns per pixel 10). It can be viewed

on a standard personal computer with panning and zooming controlled by mouse and

keyboard. By recording the co-ordinates being viewed together with a timestamp, a

diagnostic track can be obtained which shows exactly what parts of a slide were viewed.

Additionally, virtual slides allow unsupervised tracking of trainees (i.e. a trainer can set

several training tasks and review the tracks at a later time), even over the internet, and

allow systematic study of diagnosis using structured tasks.

The diagnostic track obtained can be useful for training when replayed as a video 11, but

detailed analysis of the data in the track allows comparisons to be made between

pathologists and conclusions about the diagnostic process to be drawn. While this may

be achieved by painstaking video analysis, virtual slides allow automatic generation of

simple tracking visualisations which may be analysed far more quickly.

Software was developed to automatically record and visualise diagnostic tracks using

virtual slides for the first time. This software was used in an experiment comparing 2

trainee and 2 expert pathologists examining 60 slides of Barrett’s oesophagus in order to

study the diagnostic process in detail.

Methods
60 cases of Barrett's oesophagus biopsies were selected from the archives of Leeds

General Infirmary. Cases were selected to represent a spectrum of diagnoses from

negative for dysplasia to intramucosal carcinoma with a significant number of biopsies

showing no dysplasia, in order to more accurately represent the daily practice of a

pathologist.
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The slides were reviewed for technical quality by a consultant pathologist (DT) prior to

scanning. A single representative slide was chosen for each case. They were scanned with

an Aperio T3 10 using a 40x objective lens lens to produce a final resolution image of 0.23

microns per pixel. All of the virtual slide images used are freely available to view online at

http://www.virtualpathology.leeds.ac.uk/research/barretts.

4 subjects viewed the slides – 2 trainee and 2 expert pathologists as shown in table 1.

Both experts were specialists at a national level in gastrointestinal pathology.

Custom-built software was written to track the trainees and experts (figure 1). The

software provided a pannable and zoomable virtual slide image to the subject, and

recorded a diagnostic track which included a timestamp, x and y co-ordinates, zoom level

(magnification), and the specific pan or zoom action taken every time a pan or zoom

action was performed. Subjects were aware that their actions were being recorded and

timed, but were asked to view the slides in the same way and at the same speed as they

would normally examine a diagnostic case.

In order to record the decision making processes being used by the subjects alongside

the track taken, the software prompted the subject to mark one or more diagnostic areas

on the slide and add an annotated comment explaining what they thought of that area.

Subjects were not permitted to progress to the next case until they had marked at least

one area and made a comment on it.

When the subject finished viewing the case they were prompted to choose one of 6

diagnostic categories to apply to the case (see table 2).

To decide whether a diagnostic error had been made, a consensus expert diagnosis was

determined for every slide. This was the diagnosis when both experts agreed, or the

range of diagnoses when they were within 1 diagnostic category of each other. A decision

to exclude cases without a consensus diagnosis was made prior to statistical analysis.

A trainee was judged to have made a “correct” diagnosis if their diagnosis was the same

as the single consensus expert diagnosis, or within the range of expert diagnoses when

they were within 1 diagnostic category of each other; otherwise they were judged to have

made an error. When a diagnostic error was detected it was classified as an undercall or

overcall (of dysplasia) and as major or minor (if it would or would not alter treatment

respectively). For the purposes of analysis, and based on local practice at our institution,

hypothetical treatment categories based on the trainees diagnosis were as follows:

diagnosis 1-2 = routine follow up; 3-4 intensive follow up; 5-6 surgical or endoscopic

intervention.
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The diagnostic track taken was analysed with custom-written software in Matlab 12 to

produce a visualisation of the track combined with other information about the diagnosis

(such as comments made, number of pauses, and total time taken). For the purposes of

analysis a significant pause was considered to be one where the subject viewed the area

for 1 second or more at 10x or higher magnification. Figure 2 shows an example of the

visualisation produced.

These visualisations were qualitatively analysed by a consultant pathologist (DT) to

determine the reason for any diagnostic error. Where necessary, the original virtual slide

was consulted to clarify decisions about the track. Errors were classified as being of

feature identification or feature interpretation. Errors of identification included

examination of the tissue at too low magnification, missing a piece of tissue with

diagnostic information, or failure to examine all of the levels adequately (based on

examination of the heatmaps or tracks produced) - provided that the experts had

examined that area of tissue at an appropriate magnification or had annotated it as

important. Errors of interpretation were apparent when the subject had adequately

examined all of the relevant tissue or correctly annotated a diagnostic area correctly – but

failed to interpret the diagnostic meaning of the area. Statistical analysis was performed

using SPSS 13. Comparison of time taken was performed with nonparametric (Mann

Whitney) tests and agreement was measured with Cohen’s kappa.

Results
Of the 60 slides included in the study, 14 (23%) were excluded because of a lack of

consensus diagnosis – the remaining 46 cases had consensus diagnoses as shown in table

3. Agreement between the 2 experts was 53% (kappa 0.38 +/- 0.07 S.E.) before removal

of cases without consensus and 70% (kappa 0.57 +/- 0.09 S.E.) after.

Kappa values comparing trainees with experts are shown in table 4. Trainee G’s

performance was closer to the experts than trainee D, obtaining fair and moderate

agreement (kappa values 0.29 and 0.46) with the two experts overall.

Calculating Kappa values for trainee diagnosis versus the consensus diagnosis was not

possible as the consensus diagnosis had more categories than the original 6 categories.

Table 5 shows the number of errors made by each trainee. The trainees made errors in

46% and 33% of cases respectively. Although trainee D made more errors than trainee

G, the number of major errors (i.e. one which could be clinically significant) was similar

in both (errors in 24% and 20% of cases respectively). Major (clinically significant)

undercalls were more common than major overcalls (15% vs. 6% respectively).
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Errors were made relatively equally in all diagnostic categories from negative to

intramucosal carcinoma (see table 7 below). There was evidence that a subset of 12 cases

were more difficult to interpret as both trainees made an error in them (see table 6

below).

Visualisations of the tracks produced revealed the reasons for diagnostic error. For

example in figure 2 comparing tracks from both trainees with the 2 experts clearly shows

the trainees drawing the incorrect conclusion despite correctly identifying and examining

the same abnormal tissue as the experts. Such errors of interpretation were made in all

36 diagnostic errors made – in 3 there was an additional component of failure to identify

features on the slide.

Trainees spent longer looking at the slides than experts (Figure 3, median 158s vs. 123s,

P < 0.05). Although the amount of time spent looking at a slide did not significantly vary

depending on the diagnostic category applied, when an error was made, the time spent

looking at the slide by the trainees was significantly longer (median 243s vs. 155s, P <

0.05). Trainees also spent significantly longer than experts looking at cases which were

diagnosed by the experts as negative for dysplasia (median 150s vs. 111s, P < 0.05).

Trainees spent longer examining the slide at high magnification (greater than 10x

magnification) than experts (25% vs. 12% of total time (P < 0.05)), though both groups

spent a similar amount of time at low magnification (less than 5x) (17% and 13%

respectively, P = N.S.) – indicating that experts were more able to make a rapid diagnosis

at medium magnification (5 -10x magnification)1. Trainees did not spend more time at

high magnification when they made an error compared to when they made the correct

diagnosis (23s vs. 29s, P = N.S.)

Discussion
The aim of this study was to develop a tool to examine the reasons for diagnostic error

and to apply it to study the biopsy diagnosis of Barrett’s dysplasia. Novel software was

developed using virtual slides to track diagnostic behaviour, visualise diagnostic tracks,

and compare them. The study explicitly did not seek to compare the diagnosis on glass

slides with that on virtual slides.

1 Strictly speaking, magnification is not the correct term to use with virtual slides, as the size of the image

depends on both the resolution of the image and the properties of the monitor used. For simplicity here

we refer to “5x” and “10x” magnification respectively. In reality the correct description is 12.5% and 25%

zoom respectively, relative to the resolution at which the virtual slides were scanned (100%, using a 40x

lens).



8

The difficulty of this area of diagnostic pathology was underlined by the finding of only

fair agreement between two expert pathologists (53% agreement for 60 cases, kappa

0.38).

Trainees made clinically significant errors in 22% of cases. Detailed analysis of tracking

information revealed that most errors were due to incorrect interpretation, and none

were solely due to failure to identify abnormalities on the slide. This contrasts with

cervical screening cytology where it is believed that failure to identify or find features on

the slide has a significant contribution to error, and laboratory processes have been

developed to rescreen slides in order to minimise this problem 14. Other studies (using

conventional microscopes) have also found so-called errors of search to be a minority

cause of error 9.

Both trainees were able to correctly identify areas of concern, but their interpretation of

the changes seen was frequently incorrect. For example in figure 2 they were aware of the

significance of hyperchromasia and nuclear crowding but failed to realise the severity of

these histological changes and their significance – Trainee G comments that it “looks

degenerative”.

Further information about error can be obtained from timing data. Trainees spent a

median of 35 seconds (28%) longer looking at cases than experts (P < 0.05). In other

studies trainees have been reported to take longer overall to make a diagnosis, be slower

to generate hypotheses than experts 9, scan slides more slowly than experts (7.1s v. 4.5s)

and examine diagnostic areas for less time 8. In radiology too, experts have been found to

make decisions more quickly (a single eye fixation is enough for experienced radiologists

to detect and identify major pathological features with 70% accuracy 15).

When an error was made, trainees spent 70% longer (103s) looking at the slide than

experts– indicating either that there was more diagnostic information to absorb or that

they had realised the difficulty of the case and were spending longer examining it.

Despite this longer study time, an incorrect conclusion was made. A similar trend has

been reported in radiology, where prolonging search beyond a certain time (labelled the

“global recognition phase” – i.e. the early impressions of the image) was associated with

error. 16

Differences between trainees and experts may be due to difficulties with information

processing. In this study pathologists made an average of 271 pan and 11 zoom actions

in the course of examining each slide; Krupinski et al documented expert pathologists

making saccadic eye movements 14.5 times during the 4.5 seconds they took to decide
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which areas were important in one low magnification image 8. So large amounts of image

information must be processed when viewing slides.

When examining complex image data, experts tend to ignore features that are not

relevant to the interpretation. Compared to trainees, experienced radiologists have worse

memory of normal radiographs but better memory of abnormal ones– indicating that

experts learn to selectively detect abnormalities and ignore normal features in order to

reduce the processing burden during image interpretation 17.

Similarly Lesgold hypothesised that perceiving features may interfere with interpretation

and diagnosis during training 9– trainees have not yet learned to ignore irrelevant data so

the task of information processing is harder for them.

LIMITATIONS OF THE EXPERIMENT
This study is limited by the small sample size, the possibility that the observation will

have altered subjects behaviour, and its use of virtual slides rather than glass slides to

examine diagnosis. Given these limitations, however, we believe that tracking with virtual

slides is a useful tool in studying diagnostic error and the acquisition of expertise in

pathology.

IMPLICATIONS OF THE FINDINGS
Microscopy remains the most cost-effective and accurate way to diagnose many diseases

– even in Barrett’s oesophagus where there is clear variation in diagnostic performance 18.

We have confirmed that trainees make mistakes due to incorrect interpretation, and

surmise that this may be due to an inability to process the information on the slide

efficiently. Training strategies could take advantage of this finding to improve diagnosis.

One approach has been to formulate heuristics for diagnosis. For example “where there

is nuclear pleomorphism and crowding ensure there is no acute inflammation before

diagnosing dysplasia”. Tracking with virtual slides could be used to objectively identify

the diagnostic entities and specific histological appearances which cause error in all areas

of pathology.

More complex strategies may take advantage of the fact that much diagnostic reasoning

is Bayesian – systems which enforce systematic Bayesian reasoning have had success in

improving pathology diagnosis 19-21. In our study there were more clinically significant

undercalls than overcalls, so training strategies which emphasised the importance of

features indicating dysplasia could help with diagnosis. The effect of encouraging

Bayesian reasoning may be in clarifying cognitive processes and encouraging trainees to

filter extraneous data from the problem.
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Medical educationalists now believe that simply teaching generalised heuristic (problem

solving) skills to trainees is not enough to develop expertise, as much knowledge is

content specific22. Indeed, emulating experts can be difficult as they do not use one

strategy: “Clinicians often unconsciously use multiple, combined strategies to solve

clinical problems, suggesting a high degree of mental flexibility and adaptability in clinical

reasoning”.23

With virtual slides experts could be tracked while making diagnoses and the information

presented in training material (for example as summarised strategies, narrated videos, or

interactive tutorials using virtual slides).

The inability of trainees to filter diagnostically relevant information appropriately leads to

error. Therefore providing annotated and classified reference images, to compensate for

the lack of mental images of diagnostic categories may be helpful. Almost all pathologists

currently refer to images in books to assist with diagnosis – online databases of virtual

slides or diagnostic images may assist in diagnosis by providing large datasets for

comparison with index cases 24, 25.

Experts progress from interpreting features to pattern matching based on previous

experience. If this is true then strategies to train pathologists should also expose trainees

to high volumes of material as well as train them to recognise and interpret features - “a

critical element of becoming an expert is accruing the vast experience that enables

experts to recognize patterns effortlessly most of the time — and to recognize, as well,

when the signs and symptoms do not fit a pattern at all”26. Again, virtual slides can assist

in this by providing easily accessible libraries of cases categorised by diagnostic category

27.

Furthermore, tracking of the trainees prospectively could then be used in e-learning

systems to provide feedback and compare with expert tracks. By combining robust

reasoning strategies with exposure to many cases, trainees may then progress towards the

intuitive and rapid strategies that experts use in pathology diagnosis.
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Tables

Subject Age Experience of

pathology

Number of virtual

slides seen before

study

Expert B 50-60 25 years < 5

Expert E 60-70 30 years 100

Trainee D 20-30 3 years < 5

Trainee G 20-30 3 years < 5

Table 1 Characteristics of pathologists in the study. Both trainees had 3 years experience of

pathology and had passed MRCPath part 1 examination. Both experts were senior pathologists

specialising in gastrointestinal pathology.

Category Description

1 Negative

2 Indefinite (Probably negative)

3 Indefinite (Probably dysplastic)

4 Low grade dysplasia

5 High grade dysplasia

6 Intramucosal carcinoma

Table 2 Diagnostic categories used in the study, modified from BSG guidelines for diagnosis of

dysplasia in Barrett’s oesophagus 18
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Consensus diagnosis Frequency Percent
1 18 39

1 to 2 8 17

2 1 2

2 to 3 3 7

3 to 4 1 2

4 5 11

5 4 9

5 to 6 2 4

6 4 9

Total 46 100

Table 3 Frequency of consensus diagnoses amongst the 46 cases where a consensus diagnosis

was reached. The consensus diagnosis of 1 to 6 refers to the six categories in table 2. Cases

represented the full spectrum of dysplasia with significant numbers of cases negative for dysplasia

in order to better replicate daily practice.

Expert B Expert E

Agreement (%) Kappa Agreement (%) Kappa

Trainee D 41 0.17

(0.02 – 0.32)

50 0.27

(0.12 – 0.42)

Trainee G 50 0.29

(0.11– 0.47)

63 0.46

(0.28 -0.65)

Table 4 Interobserver agreement between experts and trainees for the 46 cases where there was

consensus diagnosis. Trainee G had better agreement with both experts than trainee D, but even

so the best agreement achieved (between trainee G and expert E) was only 63%.
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Number of errors (%) Trainee D Trainee G

Overcall Major 3 (7%) 3 (7%)

Overcall Minor 9 (20%) 2 (4%)

Undercall Major 8 (17%) 6 (13%)

Undercall Minor 1 (2%) 4 (9%)

Total errors made 21 (46%) 15 (33%)

Correct diagnosis made 25 (54%) 31 (67%)

Total cases 46 (100%) 46 (100%)

Table 5 Frequency of errors made by trainees. Overcalls and undercalls refer to whether the

trainee over or underdiagnosed dysplasia or cancer. Major errors were those which would be

clinically significant; minor errors would not generally be clinically significant.

Error made by G

TotalNo Yes

Error made by
D

No 22 3 25

Yes 9 12 21

Total 31 15 46

Table 6 Table comparing incidence of errors between the two trainees. A subset of 12 cases were

incorrectly interpreted by both trainees; in an additional 12 cases errors were made by only one of

the trainees.

Error made Consensus diagnosis

1

1
to

2

2

2
to

3

3
to

4

4 5

5
to

6

6

T
o

ta
l

Major overcall
3 1 1 5

Minor overcall
3 2 1 1 1 3 11

Major undercall
1 5 3 2 4 15

Minor undercall
1 2 2 5

No error made
3 13 2 1 4 2 2 2 56

Total
36 16 2 6 2 1 8 4 8 92

Table 7 Frequency of errors made by consensus diagnosis. Errors were made across all
groups of consensus diagnosis with higher frequency extremes of diagnoses as
would be expected.



16

Figure 1
Virtual slide viewing software. The virtual slide is displayed in the centre. The user

navigates using the arrow buttons on the left of the screen, keyboard and mouse.
They can drag the image to pan around the slide. Pressing one of the numbered
buttons zooms to that magnification. A thumbnail of the virtual slide is present
in the top right corner of the screen. Clicking on the thumbnail pans the view to
the selected part of the slide.

Participants must annotate a diagnostic area of the slide by drawing a box with the
mouse. They are prompted to provide a comment or explanation for the area
they have annotated. They must annotate at least one area of the slide before they
can make a diagnosis and proceed to the next case. The annotated area is marked
with a green box. Participants choose one of six diagnoses, and provide
comments on the reason for their diagnosis.
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Figure 2
Example of visualisation produced by analysing tracking data for 4 pathologists viewing

one slide. 3 graphical representations of the track for each pathologist are present
from left to right as follows: (a) a track superimposed on the image to indicate
the path followed, (b) a heatmap generated by adding all pauses greater than
1000ms for each x and y pixel of the slide (where colour visualisations of time
spent at each point were obtained by multiplying the magnification of the view by
the time in seconds), (c) a 3-dimensional plot of the path in x, y, and z (zoom)
dimensions.

In this case the consensus expert diagnosis is high grade dysplasia-intramucosal
carcinoma. 3 subjects examined all pieces of tissue, but expert E made a rapid
decision after examining just 2 pieces of tissue. Both trainees correctly identified
the topmost biopsy as being abnormal, but both underestimated the seriousness
of the histological changes and erroneously failed to diagnose dysplasia.
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Figure 3
Boxplot of time taken to reach a diagnosis for the 4 pathologist subjects. Boxes show

25th - 75th centiles, error bars show 95% confidence intervals, lines show
median. In general the trainees took longer to make a diagnosis than experts
(mean 188 seconds vs. 141 seconds, P < 0.05)


