This is an author produced version of *Cascade Canonical Form for linear Multivariable Systems*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/75817/

Monograph:
CASCADE CANONICAL FORM FOR LINEAR
MULTIVARIABLE SYSTEMS

by

D. H. OWENS, B.Sc., A.R.C.S., Ph.D.

Lecturer in the Department of Control Engineering
University of Sheffield
Mappin Street
Sheffield S1 3JD

Research Report No. 34

July 1975
Abstract

A canonical form is derived for systems described by an \(m \times n \) transfer function matrix \(G(s) \) and applied to the calculation of system transmission zeros, the feedback control of multivariable second-order type systems and pole allocation using output feedback.
List of Symbols

A^+ conjugate transpose of the matrix A

$\dim N$ dimension of a linear subspace N

$\text{span}\{x_j\}_{1\leq j \leq n}$ subspace generated by linear combinations of the vectors x_1, \ldots, x_n

A^T transpose of the matrix A

$|A|$ determinant of the matrix A

δ_{ij} Kronecker delta function

$\{e_j\}_{1 \leq j \leq n}$ natural basis in \mathbb{R}^n
List of Figures

1. First Order System Decomposition of $G(s)$
2. Cascade Decomposition of $G(s)$
1. Introduction

In a recent paper (Owens, 1975) the concept of the classical first
order lag has been extended to the multivariable case by defining an mxm
multivariable first order system of the form

\[G(s) = \sum_{j=1}^{m} \frac{b_j}{s+b_j} \alpha_j \beta_j^+ \quad , \quad |G(s)| \neq 0 \quad \ldots (1) \]

where \(\{\alpha_j \beta_j^+\}_{1 \leq j \leq m} \) is a set of dyads satisfying the constraint that
\(\overline{\alpha_j} = \overline{\alpha_k} \) implies \(\overline{\beta_j} = \overline{\beta_k} \). Closed-form solutions have been derived
(Owens, 1975) for proportional and proportional plus integral unity
negative feedback controllers which are direct multivariable generalizations
of the equivalent classical controllers. The proposed controllers are
capable of producing a feedback system with arbitrarily fast response
speeds and small interaction effects.

In classical theory, first order lags can be regarded as fundamental
building blocks for the construction of the system dynamic behaviour.
For example, if \(g(s) \) is a non-zero scalar transfer function with pole
set \(\{p_j\}_{1 \leq j \leq n} \) and zeros \(\{z_j\}_{1 \leq j \leq m} \) \((m<n) \), then if \(k = n-m \),

\[g_\infty^{(k)} = \lim_{s \to \infty} s^k g(s) \neq 0 \quad \ldots (2) \]

and,

\[g(s) = \sum_{j=1}^{k} (s-p_j)^{-1} \{g_\infty^{(k)} + h(s)\} \quad \ldots (3) \]

where \(h(s) \) is a strictly proper transfer function with pole set \(\{p_j\}_{k<j\leq n} \).
Quite obviously the decomposition can be extended by application of the
same approach to \(h(s) \). Such decompositions are useful in the classifica-
tion of linear systems according to rank and type, the characterization of
zeros as due to parallel branches in the system, and in many cases can be
used as the basis of a simple model reduction procedure.