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In this paper we report on the influence of different geometric and boundary constraints on nonlocal

!spatially inhomogeneous" effects in wormlike micellar systems. In a previous paper, nonlocal effects were

observable by measuring the local rheological flow curves of micelles flowing in a microchannel under

different pressure drops, which appeared to differ from the flow curve measured using conventional rheometry.

Here we show that both the confinement and the boundary conditions can influence those nonlocal effects. The

role of the nature of the surface is analyzed in detail using a simple scalar model that incorporates inhomo-

geneities, which captures the flow behavior in both wide and confined geometries. This leads to an estimate for

the nonlocal “diffusion” coefficient !i.e., the shear curvature viscosity" which corresponds to a characteristic

length from 1 to 10 µm.

DOI: 10.1103/PhysRevE.81.021502 PACS number!s": 83.80.Qr, 83.60.Fg, 83.85.Ei

I. INTRODUCTION

Complex fluids such as polymers, liquid crystals and sur-

factant solutions have a mesoscopic structure that is readily

perturbed by flow #1$. For example, wormlike micelles,

which are long and cylindrical aggregates of self-assembled

surfactants, can be strongly modified by a shear flow. Indeed,

shear can stretch or break the micelles, entangle and disen-

tangle the micellar network, or even increase their length #2$.
Those systems thus display highly non-Newtonian behavior,

and often exhibit a characteristic flow curve #measured shear

stress as a function of shear rate !!"̇"$ with a stress plateau

!! separating two branches of high and low viscosity, corre-

sponding to different structures #3$. This is characteristic of

shear banding. During the last decade, studies on such sys-

tems have led to a consistent picture of the flow behavior on

the stress plateau: for applied shear rates in the plateau re-

gion, macroscopic bands of different "̇ and different micellar

orientations can coexist along the stress plateau. A viscously

thicker !nascent" fluid and a thinner !shear-induced" fluid

flow side-by-side, and the proportion of the shear-induced

structure grows as a function of "̇ on the stress plateau. In a

classical Couette or cone-and-plate geometry !with gap sizes

of order a millimeter" and for a given system, the position of

the interface between the two structures lies at a fixed value

of the shear stress, corresponding to the stress plateau !!;

this has been shown both experimentally #4–6$ and theoreti-

cally #7–9$.
We recently showed that this stress selection appears to

break down in confined geometries with much smaller gap

sizes #10$. Upon measuring the velocity profiles of micelles

flowing under a drop of pressure in a straight microchannel

of width %100 #m, we found that the shear stress value at

the interface between the two shear bands increases as a

function of the applied pressure drop; correspondingly, the
relation linking the local shear rate to the local shear stress
broke down such that the apparent measured flow curve dis-
agreed with that obtained form conventional rheometry ge-

ometries. This suggests that nonlocal and finite size effects

are important at such small channel widths. This is in line

with recent theoretical developments about shear-banded

flows #7$. In the past decades, much theoretical work has

been devoted shear banding. In order to account for the ex-

istence of two structures, Spenley et al. #11$ used a reptation-

reaction model that generalized Doi-Edwards theory for en-

tangled polymers, and proposed a constitutive law. They

calculated a multivalued flow curve exhibiting two stable

branches separated by an unstable zone where ! decreases as

a function of "̇. Those early models did not select a precise

value of the shear stress !! at which shear banding occurs.

Subsequently, various criteria such as the minimization of an

effective free energy under flow #12$, boundary conditions

on the normal stress in a pipe geometry #13$, or local maxi-

mum on the flow curve, were proposed to capture stress se-

lection.

A major improvement was achieved by taking into ac-

count diffusion terms in the constitutive equations

#7,9,14–18$. The introduction of spatial derivatives of the

shear stress can be justified rigorously using the Fokker-

Planck equation for simplified microscopic models such as

the dumbbell model #19$. In this case, the stress flux arises

from Brownian motion of the polymer chains to-and-fro

across the interface. Although this movement does not pro-

duce a net matter flux, it produces a nonzero net stress flux as

the chains on the low shear-rate side of the interface carry

more shear stress than the chains on the high shear-rate side

of the interface. Another mechanism for such a stress transfer

across the interface could be the propagation of the interac-

tions between the chains, such as short range van der Waals

or hard core interactions, long range Coulombic or hydrody-

namic interactions, and polymer stiffness #7,20$.*annie.colin-exterieur@eu.rhodia.com
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In all these models, the resulting equation governing the

flow is a spatial differential equation !mathematically, a non-

linear reaction-diffusion equation" for the microstructure

!such as a nematic order parameter, the polymer deformation

or polymeric contribution to the stress", which requires

boundary conditions. The introduction of diffusion terms in

the constitutive equation allows the selection of a unique

value for the shear stress plateau in a wide geometry

#16,18,21$. However, it also induces a breakdown of the lo-

cal flow curve, since flow at any position in the sample is

influenced by its neighborhood. If the interfacial width is

much smaller than the distance between walls, then the local

flow curve should be followed except for in the vicinity of

the interface #21,22$. For small gaps one expects the stress to

deviate slightly from the wide gap limit #9$. Finally, we note

that the physically relevant or correct choice of boundary

condition has not yet been settled upon, despite some study

of this #20,23,24$.
In our previous work, we used a simple scalar model !see

below for details" to account for the velocity profiles of mi-

celles flowing in a straight microchannel. This model con-

tained a nonlocal !“diffusive”" term whose coefficient de-

fined a characteristic length scale $. We were able to fit the

velocity profiles and account for the increase in the shear

stress plateau value as a function of the drop of pressure

across the microchannel. The length scale for $ deduced

from these experiments, of order a few µm, agrees with re-

cent indirect measurements #25$ on the same wormlike mi-

cellar solution. This is much larger than the mesh size $mesh

which may be estimated from the elastic modulus by $mesh

= !
kbT

G
"1/3. For our system, we get G=70 Pa and $mesh

=39 nm. The origin of this large length scale is still un-

known: candidate mechanisms include concentration, or lo-

cal changes in micelle length or branching.

In this work, we perform experiments in a confined ge-

ometry, and address the question of both the nature of bound-

ary conditions and the degree of confinement #20$. This ar-

ticle is organized as follows. Section II is devoted to the

description of the experimental procedure. First, classical

rheology experiments performed in a wide Couette cell are

described, followed by experiments performed in confined

geometries. We report on the preparation of channels with

various surfaces: rough glass, smooth glass, and polydimeth-

ylsiloxane !PDMS". We describe the particle image velocim-

etry !PIV" device that allowed us to measure velocity profiles

in microchannels, and we recall how local rheological mea-

surements are extracted from these data. Section III describes

the wormlike micellar system under study, including the lin-

ear response of the system and the flow curve measured in a

wide cone-and-plate cell geometry. Section IV deals with the

measurements in the different kinds of microchannels, in

which the degree of confinement and the nature of the sur-

faces are varied. In Sec. V we summarize some of the main

predictions of nonlocal models with various boundary con-

ditions, and then we analyze our data within this framework

in Sec. VI. The final section is devoted to discussion and

conclusion, and an Appendix contains details of the calcula-

tions.

II. EXPERIMENTAL PROCEDURE AND SETUP

A. Global rheological experiments in cone-and-plate cell

To study the effect of shear flow on the complex fluid

under study, we used a TA Instruments ARG2 rheometer and

a sanded cone-and-plate cell. The radius of the cone is R

=2 cm and the cone angle is %=2°, so that the maximum

gap was 2emax&1400 #m. The rheometer imposes a torque

& on the axis of the Couette cell which thus induces a shear

stress ! in the fluid. The rotation speed ' of the cone-and-

plate cell is continuously recorded, from which the shear rate

"̇ can be deduced. A computer-controlled feedback loop on

the applied torque & can also be used to apply a constant

shear rate without any significant temporal fluctuations

!("̇ / "̇&1%". In a cone-and-plate geometry, and in the limit

of low inertia, i.e., for low rotation speeds, the shear stress is

homogeneous and constant in the whole geometry. The shear

stress ! and the shear rate "̇ indicated by the rheometer are

related to & and ' by the following relations:

! =
3&

2)R3
, !1"

"̇ =
'

tan %
. !2"

At this stage, it is important to note that the shear rate "̇
given by the rheometer may differ from the true shear rate in

the sample when wall slip, inhomogeneous or unstable flows

are present. A sanded geometry reduces the effects of wall

slip. We measured the linear response of the sample as a

function of frequency, and the flow curve !obtained from the

measured torque as a function of applied rotation rate". For

this purpose, we apply increasing rotation !average shear"
rates for 2000 s/step, in intervals ("̇=0.5 s−1 for "̇*1 s−1

and ("̇=1 s−1 for "̇+1 s−1. These conditions ensured

steady state. To compute the equilibrium value, we average

the stress measurement over the last 600 s. These experi-

ments allow us to probe the rheological properties of the

fluid in a wide geometry. In the following, we describe the

experimental procedure that we used to study the flow of the

micellar system in a confined geometry.

B. Preparation of the microdevices

The aim of this work is to study the influence of both

confinement and boundary conditions on the flow of worm-

like micelles. For this purpose, straight microchannels made

of three different materials were prepared. Those microchan-

nels are straight with rectangular cross sections or “canyons”

!Fig. 1", with aspect ratios !height divided by width" from

&5–10, so that the flow in these channels can be safely

assumed to be that of flow between two infinite parallel

planes #26$. The length of the microchannel varies between 7

and 14 cm.

In order to influence the boundary conditions of the flow,

either the nature of the surface or its roughness are varied.

!i" S1 !glass"—Smooth glass surfaces were obtained using

commercial rectangular capillary tubes !composite metal ser-

vice" of inner dimensions 0.2,4 mm2. Typical electronic
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microscopy pictures of the internal glass surfaces of such

capillaries #Fig. 2!d"$ demonstrate that the surfaces are

smooth and optically flat. The wormlike micellar solutions

wet the glass. The capillary is connected to the syringe as

follows: tubing runs from the sample syringe needle tip to

another needle tip. A hole is then made in the other end of

this second tip !which would usually insert into a syringe",
and the capillary tube is inserted into this hole. To enhance

the seal the tube and the syringe needle are glued together on

a glass slide, which forms a perfect connection.

!ii" R1, R2 !rough"—Rough boundary conditions were

obtained by following the experimental procedure described

in Ref. #27$. Two glass slides !1 mm thick" are glued to a first

glass slide with an optical adhesive !NOA 81, Norland Prod-

ucts" to form a channel of controlled width with a spacer of

size 2e. The roughness of the side walls of the channel is due

to the roughness of the edges of the 1 mm thick glass slides

#see Fig. 2!c"$. Access holes are made in a second glass slide

with sand blasting. The channel is then sealed to this glass

slide using the same optical adhesive. An optical adhesive is

then used to block the holes that appear on the edge. The

distance between the two glass walls is measured under a

microscope to get the real dimension of the channel. Nan-

oport connections are glued on the access holes and allow to

connect the sample syringe to the channel.

!iii" S2 !PDMS"—We first tried to prepare PDMS micro-

fluidic devices using standard lithography procedures #28$.
However, PDMS is very weak and deforms easily under the

flow of viscous fluids. Hence we used the same procedure as

for R1 and R2, with PDMS coated on the edges of the 1 mm

thick glass slides. The PDMS layer is 20 µm thick. The

wormlike micellar solution does not wet the PDMS surface.

This allowed us to prepared microchannels with PDMS on

the lateral walls, but that can also sustain high pressure drops

because it is made of glass.

All the above devices are confined “canyon” geometries,

with dimensions 100–220 #m,1 mm.

C. Local rheological measurements in a confined geometry

The geometry of the flow in the microfluidic devices is

shown in Fig. 1. Since all geometries have aspect ratios

!height divided by width" larger than 5, the flow at the

middle height of these channels can be approximated as be-

tween two infinite plates. A syringe filled with a given

sample is directly connected to the inlet of the straight chan-

nel and connected to a pressure controller !Fluigent" that can

impose controlled pressure drops in the -P

=50–2000 mbar range. The velocity profiles in the micro-

channels are then classically measured using PIV #29$. The

fluid is seeded with small fluorescent tracers !Invitrogen

Fluorospheres, 1 #m diameter and concentration of

0.001 wt %". In the canyon geometry images of the flowing

tracers are acquired using an inverted fluorescent microscope

at the middle height of the channel using a 40, magnifica-

tion objective. With this objective the entire width 2e of the

channel in the x-z plane can be captured in one single view,

and with a small depth of field of '1 #m. This was not

possible for the commercial capillary tube !i.e., the S1 sur-

faces", since the round shape in the x-y plane disrupts optical

imaging. We thus have to image the flow by looking through

the flat side in the x-y plane. To that aim, a high numerical

aperture objective was used !60,, N.A. 1.2, oil immersion",
to access slices of the flow with a small depth of field of

about 0.5 #m, mounted on a piezoactuator !Polytech PI,

PIFOC" to scan the z direction of the flow. In this geometry,

each plane of imaging therefore corresponds to a unique ve-

locity.

A charge-coupled device !CCD" camera coupled to an

intensifier !Hamamatsu and R&D vision" allows us to record

pairs of images with well-defined acquisition times ta

&100 ns=1 ms !see Fig. 1". Pairs of images are taken at a

tδt ta

x
z

y

t t+δt

2e

L P0

P0 + ∆P

FIG. 1. Schematic view of the canyon geometry, L is the length

of the microchannel and 2e its width. Bottom: schematic temporal

acquisition of the images using the PIV device, where ta is the

acquisition time of each image and (t the time interval between two

frames. Above are shown two schematic frames with tracers in the

x-z plane and the corresponding velocity vectors dx estimated using

standard cross-correlation algorithms.

(c) (d)

(a) (b)

FIG. 2. Electronic microscopy pictures of the surfaces. !a"
Rough glass surface R1; !b" rough glass surface R2; !c" smooth

coated film of PDMS on glass !S2"; and !d" smooth glass S1 from a

capillary tube !composite metal service". The size of bar is 20 #m.
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fixed time interval (t&3 #s−1 s. A classical algorithm of

cross-correlation !developed using MATLAB" between two

images of a pair determines the translation dx along the flow,

and thus the velocity dx /(t. In the canyon geometry and the

commercial glass capillary several pairs of images are

needed to accurately estimate the velocity profile using sta-

tistical averaging !'200 for the canyon and '200 pairs per

slice for the commercial capillary". In our experiments dx is

a scalar since the flow is unidirectional, but it depends on z.

Local velocities can be resolved up to 1 m/s with a spatial

resolution dz&1 #m in the plane of the flow.

For all the microdevices, the images are acquired far

enough from the inlet of the channel to measure fully devel-

oped profiles and eliminate entrance effects #30$. From these

profiles, the local rheological flow curves are extracted fol-

lowing Ref. #31$. In our geometry with a high aspect ratio

the stress distribution is well-approximated by

!!z" =
!P

!X
z !3"

at a given position z from the centerline of the microchannel.

In the limit of wide aspect ratios and an infinite length chan-

nel a simple force balance leads to the following expression

for the wall shear stress,

!w =
-Pe

L
, !4"

where -P is pressure difference between the two ends of the

channel of length L and thickness 2e. Rough estimates of the

entrance and exit lengths for shear thinning fluids #30$ are

less than 70 #m, which is at least a hundred times smaller

than the length of the channel !at least 50 mm". Moreover,

because the local shear rate "̇ is simply given by the local

slope of the velocity profile v!z", each position z in the chan-

nel corresponds to a pair !! , "̇". Hence from a single profile

v!z", we can access the whole constitutive curve, shear stress

! as a function of shear rate "̇.

III. EXPERIMENTAL SYSTEM: 6% CPCL-SAL IN BRINE

The system under scrutiny is a solution of cetylpyridium

chloride and sodium salicilate at a molar ratio

#Sal$ / #CPCl$=0.5, in salted water at 0.5 M of NaCl !abbre-

viated CPCl-Sal in the following". We focus on a concentra-

tion .=6% and a temperature of 22 °C, which is in the

semidilute regime and at a concentration far from the

isotropic-nematic transition, has been widely studied. To per-

form PIV experiments we seed the solution with small fluo-

rescent latex particules !Invitrogen Fluorospheres 1 #m di-

ameter, concentration 0.001 wt. %". Rheological

measurements !Fig. 3" demonstrate that the sample is a true

Maxwell fluid, with the relaxation time /r&4 s and elastic

modulus G0&70 Pa extracted from the fit to the Maxwell

model. The beads probably modify the rheological properties

of this system, since Berret et al. #32$ found the values /r

=990 ms and G0=62 Pa in the absence of tracers.

The steady state non linear flow curve measured as de-

scribed above is shown in Fig. 4. The flow curve has two

branches: at low shear rate, the fluid is Newtonian with a

viscosity 01=20.6 Pa s, while at high shear rates Bingham

behavior is observed, of the form !=A+02"̇ #6$. These two

branches are separated by a stress plateau at !!=54 Pa,

which extends from "̇1=8 s−1 to "̇2=24 s−1. As for the lin-

ear rheological data, these values differ slightly from those

reported by Berret et al. #32$ !!!=52 Pa" or Salmon et al.

#6$ !!!=65 Pa, "̇1=2.5 s−1 , "̇2=26 s−1". We believe that

the introduction of latex spheres, some impurities, and/or the

slight difference in temperature are responsible for these dis-

crepancies.

We now study the flow behavior in the confined geom-

etries described above. Following the classical picture, in the

low shear stress region !i.e., in the center of the microchan-

nel" one should observe only the nascent viscous fluid only.

Above a critical pressure gradient the low viscosity shear-

induced structure is expected to appear near the two lateral

walls. One also expects that the interface between the two

10
!2

10
0

10
!2

10
0

10
2

f (Hz)

G
’
G
’’
(P
a
)

FIG. 3. Real !G!" and imaginary !G"" linear rheological re-

sponse as a function of the frequency f , for a 6% CPCl-Sal mixture

in brine solution. The sample is seeded with 0.001 wt % latex

beads. The lines correspond to the Maxwell model. The relaxation

time /r=4 s and the elastic modulus G0=70 Pa are extracted from

the fit of the data to this model.

0 20 40 60 80
0

20

40

60

80

! (s
!1
)

.

"
(P
a
)

....

FIG. 4. Global flow curve from a rheometer using a cone-and-

plate cell, with shear stress ! and the shear rate "̇ defined by Eqs.

!1" and !2". The stress plateau occurs at !!=54 Pa. The sample is

seeded with 0.001 wt % latex beads. The line corresponds to the

flow curve predicted in wide plate geometry by the nonlocal model

!see Sec. IV".
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structures lies at a position zint where the local stress is equal

to the shear stress plateau !!,

zint =
!!L

-P
. !5"

IV. FLOW IN MICROCHANNELS

A. Influence of the confinement—rough surface R2

Figure 5 shows velocity profiles at different -P as a func-

tion of the normalized coordinate z /e for the rough surface

R2, with channel width 2e=120 #m. Significant slippage is

observed at every value of the wall shear stress !w. The slip

velocities Vs are determined by linear fits of the last points of

the velocity profiles near the walls !Fig. 6". The slip veloci-

ties increase with the applied shear stress at the wall !Vs

=A!w
% with %=3.5", yet their contributions to the maximal

velocity Vm remain almost constant !Vs*0.15 Vm". Let us
now consider the flow inside the cell. For the smallest ap-
plied !w, the velocity profiles correspond to Poiseuille-like

flow. For applied shear stress at the wall !w=53.8 Pa, thin

highly sheared bands nucleate at the two lateral walls. This

value of shear stress is slightly smaller than the plateau shear

stress measured in cone and plate geometry. We will com-

ment this point below. For higher !w, the width of these

bands increases, and the profiles display a plug flow shape,

with low viscosity bands near the walls.

We deduce the local rheological behavior from the veloc-

ity profiles using the procedure outline above #31$, leading to

the local flow curves depicted in Fig. 7. There is some agree-

ment with the flow curve measured in the shear-rate con-

trolled mode of a rheometer, using a sanded cone-and-plate

geometry that is similar to the rough surface R2. However,

the two measurements only agree for "̇*4 s−1, correspond-

ing to the highly viscous branch of the nascent fluid. For

higher shear rates significant discrepancies are observed, and

the rheological behavior of the highly sheared branch in the

microchannel varies as a function of the applied pressure

drop.

We now focus on the values of the stress !int at the inter-

face between the two bands. The position of the interface zint

can easily be determined from the sharp change in the slope

of the velocity profiles. The corresponding stress !int is com-

puted using Eq. !5" and reported on Fig. 8 as a function of !w

!see the darkest points". Clearly, !int varies considerably with

the applied shear stress at the wall, and is less than !! mea-

sured in the wider cone and plate geometry. In other words,

the shear-induced band occupies a larger fraction !smaller

zint" with increasing shear stress at the wall, than it would if

the stress at the interface remained constant. Note that local

velocimetry experiments were performed on the same system

in a Couette cell !with a shear stress gradient ten times less

!1 !0.5 0 0.5 1
0

500

1000

1500

2000

z/e

V
(µ
m
s!
1
)

FIG. 5. Velocity profiles at different -P !wall stresses !w

=46,65,74,78,83,87 Pa from bottom to top" for channel width

2e=120 #m and rough surface R2. Solid lines are calculated using

the nonlocal model described Sec. V with the same fitting param-

eters 01=20.6 Pa s, 02=0.35 Pa s, A=44 Pa, "1=5.6 s−1, 1

=10−10 Pa s m2.

0 20 40 60 80
0

100

200

300

!
w
(Pa)

V
s
(µ
m
s!
1
)

FIG. 6. Slip velocity Vs as a function of the wall shear stress !w

for R2 surfaces for two microchannels with different widths !" to

R2 2e=200 #m, # to R2 2e=120 #m". The line corresponds to

the equation Vs=0.000045!w
3.5.

! "! #! $! %!
!

"!

#!

$!

%!

! &'
()
*

.

"
&+
,
*

FIG. 7. Solid line: global flow curve from a rheometer using a

cone-and-plate cell, with shear stress ! and the shear rate "̇ defined

by Eqs. !1" and !2". Points !#": local flow curve deduced from the

velocity profiles for different wall shear stress !!w

=46,65,74,78,83,87 Pa". The local shear rate is the derivative of

the velocity profile and the local shear stress is calculated using Eq.

!3". The velocity profiles are measured in a 2e=120 #m thick mi-

crochannel made with rough R2 surfaces.
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than here" #6$ and in large pipes !of 20 cm diameter, much

less confined than here" #33–35$, and were consistent with an

invariant !int=!!.

Hence, the experiments here show that a simple descrip-

tion using a homogeneous constitutive curve != f!"̇" and a

unique value of !! is not sufficient to describe the flow over

the whole range of pressure drops studied. We will show

below that a consistent description arises by considering a

fully nonlocal description of the rheology.

The same experiments were performed in a wider channel

2e=200 #m for surface R2, with qualitatively similar re-

sults to those found in the smaller channel !Fig. 9". Shear

banded flows are observed for high shear stress at the wall.

As previously, significant slippage is observed at every value

of the wall shear stress !w. As displayed on Fig. 6, the slip

velocity does not depend upon the size of the microchannel.

The data extracted from the velocity profile in a 2e

=200 #m and in a 2e=120 #m collapse on a single curve.

However, the local flow curves extracted from the velocity

profiles measured in the microchannel agree much better

with measurements in the cone-and-plate geometry !Fig. 10";
noticeable discrepancies occur only for a few points at high

shear stress. Figure 8 shows that the stress at the interface

!int between the bands extracted from these velocity profiles

decreases slightly as a function of the applied shear stress at

the wall !see " in Fig. 8". The stresses in the wide channel

are closer than those in the narrow channel to the plateau

value measured in the cone-and-plate geometry.

This suggests that the discrepancy between local and glo-

bal rheology vanishes in thicker microchannels, so that in-

creasing the thickness of the microchannel allows us to re-

cover the measurements performed in the wide gap classical

geometry. The value of the shear stress at the interface be-

tween the two bands varies not only as a function of the

pressure drop, but also as a function of the confinement. This

clear finite size effects cannot be understood using the clas-

sical !homogeneous" flow curve.

B. Influence of the surface

We next consider the effect of the surface itself: we keep

the channel thickness fixed at 2e=200 #m and study an-

other rough glass surfaces !R1", a smooth glass surface !S1"
and a PDMS smooth surface !S2". To accurately compare the

flow in the various microchannels !see Fig. 11", we correct

the velocity profiles by removing the slip velocity. The data

for the slip velocity as a function of the shear stress at the

wall are reported in Fig. 14. In all cases, at low applied !w

the velocity profile is that of Poiseuille flow of a Newtonian
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FIG. 8. Shear stress at the interface between the two bands and

zint /z! as a function of the shear stress at the wall for various ge-

ometries and surfaces. The line corresponds to the plateau value

!!=54 Pa measured in cone-and-plate geometry !" to R2 2e

=200 #m, # to R2 2e=120 #m".
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FIG. 9. Velocity profiles for different -P !wall stresses !w

=51,58,66,73,80,87 Pa from bottom to top", for channel width

2e=200 #m with rough surface R2. Solid lines are calculated us-

ing the nonlocal model described in Sec. V with 01=20.6 Pa s,

02=0.35 Pa s, A=44 Pa, "1=5.6 s−1, 1=10−10 Pa s m2.
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FIG. 10. Global flow curve from a rheometer using a cone-and-

plate cell !"", with shear stress ! and the shear rate "̇ defined by

Eqs. !1" and !2". !#": local flow curve deduced from the velocity

profiles for a shear stress at the wall equal to !w=80 Pa. !+": local

flow curve deduced from the velocity profiles for a shear stress at

the wall equal to !w=94 Pa. The local shear rate is the derivative

of the velocity profile and the local shear stress is calculated using

Eq. !3". Solid lines are calculated using the nonlocal model de-

scribed in Sec. V with 01=20.6 Pa s, 02=0.35 Pa s, A=44 Pa,

"1=5.6 s−1, 1=10−10 Pa s m2. The velocity profiles are measured

in a 2e=200 #m thick microchannel made with rough R2 surfaces.
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fluid. At higher applied stresses !pressure drops" the shear-

induced band appears near the walls. Let us now analyze in

details the shape of the velocity profiles and the flow near the

wall !i.e., slip velocity and shear rate at the wall" as a func-

tion of the nature of the surface.

Quantitatively, striking differences are observed between

the various surfaces. Let us first report on the position of the

interface between the bands as a function of the shear stress

at the wall. Figure 12 shows that the value of the shear stress

at the interface between the two bands differs from !! mea-

sured in the wider cone and plate geometry. The position

occupied by the shear-induced phase may be greater !R2, S2"
or smaller !S1 and in some cases R1" than it would if the

stress at the interface remained constant. The maximal value

Vmax of the slip-corrected velocity also depends on the nature

of the surface. For wall shear stress !w=70 Pa we find

Vmax=516 #m s−1 for S2 !smooth PDMS" and Vmax

*314 m s−1 S1 !smooth glass". This large difference is

caused by the different values of the shear rate at the wall.

We measure shear rate at the wall by taking the slope of

linear fits of the last points of the velocity profiles near the

walls. Figure 13 shows the relation between wall shear rate

and wall shear stress. Strikingly, these laws differ from the

bulk rheology. Almost none of these points fall on the glo-

bally measured flow curve. It seems that for high shear

stress, the wormlike micelles are more viscous near the sur-

face than in the bulk. Note that these data do not depend

upon the degree of confinement: for the R2 surface the data
extracted from the velocity profiles measured in both 2e

=120 #m and 2e=200 #m microchannels collapse on a

single curve.

The surface rheological law thus depends on the nature of

the surface, and not on the degree of confinement. Figure 13

also shows that roughness plays a huge role in the flow be-

havior near the wall. For the same wall shear stress !w, the

wall shear rates on the smooth glass S1 are very different

from those obtained on the rough glass surfaces R1 and R2.

The chemical nature of the surface plays a role as well. Wall

shear rates are higher !up to a factor of 3" near PDMS sur-

faces than near glass surfaces for the same wall shear stress.

These data allow us to conclude that the relationship between

the wall shear rate and the wall shear stress does not prima-

rily depend on the confinement of the flow.

We now analyze the slip velocities. Figure 14 shows the

slip velocity Vs as a function of the wall shear stress !w. As
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FIG. 11. Velocity profiles corrected by the slip velocities for

different -P for various geometries. Solid lines are calculated using

the nonlocal model described Sec. V with the same fitting param-

eters 01=20.6 Pa s, 02=0.35 Pa s, A=44 Pa, "1=5.6 s−1, 1

=10−10 Pa s m2. Top left: 2e=200 #m thick microchannel with

rough surfaces R1. Wall shear stresses !bottom to top" !w

=33,42,50,58,66 Pa. Top right: 2e=200 #m thick microchannel

with smooth PDMS surfaces !S2". Wall shear stresses !bottom to

top" !w=38,54,62,70,77.5 Pa, Bottom left: 2e=200 #m thick

microchannel with smooth glass surfaces !S1". Wall shear stresses

!bottom to top" !w=55,60,65,70,75 Pa. Bottom right: 2e

=200 #m thick microchannel with rough surfaces !R2". Wall shear

stresses !bottom to top" !w=51,58,66,73,80 Pa.
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FIG. 12. Shear stress at the interface between the two bands and

zint /z! as a function of the shear stress at the wall for various ge-

ometries and surfaces. The line corresponds to the plateau value

!!=54 Pa measured in cone-and-plate geometry. !# correspond to

R1, " to R2 2e=200 #m, # to R2 2e=120 #m, $ to S2, % to

S1".
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corresponds to the bulk rheology.
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noticed previously, the slip velocities do not seem to depend

upon the thickness of the microchannel: data from the 2e

=120 #m and in a 2e=200 #m thick microchannels are

quite similar for R2 surfaces. The slip velocity increases with

the wall shear stress, roughly following a power law Vs

=A!w
%, with %=3.5 for R1 and R2 surfaces, %=2.7 for PDMS

!S2", and %=2.6 for smooth glass !S1". Notably, the slip is

weaker on rough surfaces, and the slip is lower on smooth

glass than on smooth PDMS. The surface rheological laws

are inconsistent with a simple constant drag coefficient,

which would arise from the following force balance:

Fig. 12 !w = bVs. !6"

The data are consistent with a “surface drag coefficient”

b!Vs" that decreases with increasing Vs; mechanisms could

be better alignment of micelles near the surface, or enhanced

depletion of micelles near the surface at higher slip veloci-

ties.

To conclude this section, our experiments reveal the limi-

tations of the classical global flow curve and finite size ef-

fects. The nature of the surface governs the flow in a con-

fined geometry, and the surface rheological law depends

upon the chemical nature surface. In the following, we show

how it is possible to capture the flow behavior using a non-

local model.

V. NONLOCAL MODEL

Nonlocal models were introduced to describe smooth

structural inhomogeneities during shear banding. These mod-

els incorporate spatial gradients of the microstructure of

shear rate into the dynamical equations of motion, and give

rise to smooth variations of properties between shear bands,

with a characteristic interfacial width. The addition of spatial

gradients provides a mechanism for stress selection, as dis-

cussed already. One of the most studied equation is the dif-

fusive Johnson-Segalman !dJS" model #9,36,37$ for the poly-

meric contribution to the total stress tensor. However, the dJS

model predicts a Newtonian shear-induced state !% "̇, which

is not the case in our experiments. Hence, and also for sim-

plicity, we will use a much simpler phenomenological model

that captures the Bingham-like nature of the high shear rate

branch #6$, and is also easy to study analytically. This differs

from that measured by Nghe #42$ in a cetyl trimethyl ammo-

nium bromide !CTAB" solution, in which the shear-induced

structure was a highly shear thinning fluid, !% "̇%, %&0.26

#43$. Our approach is based on previous models for a scalar

order parameter with spatial gradients #38$; we will use a

model in which shear-rate gradients contribute to the total

stress as in #7,8,18$,

!!z" = !h#"̇!z"$ − 1
!

2"̇!z"
!

2z
, !7"

!h!"̇" = (01"̇ !"̇ * "̇1"

A + 02"̇ !"̇ 2 "̇1" .
) !8"

The constitutive relation !h!"̇" is thus a multivalued function

with two separated branches !Fig. 15". This model has five

parameters: the viscosity 01 of the nascent fluid, the viscosity

02 and “yield stress” A of the shear-induced structure, the

shear rate "̇1 above which the shear-induced structure can

appear and 1 the non local coefficient in #8,18,38$.
The homogenous term !h!"̇" is the constitutive curve for

an ideal pure shear flow. To it we have added a contribution

to the stress due to changes in the shear rate over length

scales of the order of the range of interactions between the

mesoscopic entities in the system. Since microstructural or-

der is then significantly different in adjacent sliding layers of

fluid one expects a correspondingly different response; to

lowest order this shows up as a second order derivative. This

“diffusive” term 1!
2"̇ /!

2z smooths the properties at the in-

terface between the bands.

One can also derive such a term by considering an explicit

equation of motion for a microstructural shear stress variable

!m, as follows:

! = !m + 0"̇ , !9"
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FIG. 14. Slip velocity Vs as a function of the wall shear stress

!w for various geometries and surfaces !# correspond to R1, " to

R2 2e=200 #m, # to R2 2e=120 #m, $ to S2, % to S1". From

top to bottom the lines correspond to the equation Vs

=0.0038!w
2.7 , Vs=0.0045!w
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FIG. 15. Homogeneous constitutive relation !h!"̇" to represent

the wormlike micelles. The parameters are given by 01

=20.6 Pa s, 02=0.35 Pa s, A=44 Pa, "1=5.6 s−1
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!t! = −
1

/
#!m − !̃h!"̇"$ + D

!
2!p

!
2z

, !10"

where ! is the total shear stress, 0 is a Newtonian viscosity,

and !̃h!"̇" is nonlinear function that expresses the depen-

dence of the microstructural stress !m on shear rate. In

steady state, the shear stress obeys !=A in simple shear flow

or !=Gz in pressure driven flow. In either case, one can

eliminate the microstructure stress from the total stress, to

obtain Eq. !7" with !h= !̃h+0"̇ and 1=D/. Note that such a

simple correspondence does not hold for more complex

flows.

In the following, we focus on two geometries commonly

encountered in rheology: simple shear flow between two in-

finite plates and planar Poiseuille flow. We will analyze vari-

ous kind of boundary conditions.

In simple shear flow, we will assume a wall shear rate

given by that of the homogeneous constitutive curve at the

given !selected" stress. In Poiseuille flow, we will assume a

given shear rate at the wall. We will use this boundary con-

dition in Sec. VI to compare our data with the model. In this

section we will assume a Newtonian behavior near the wall

in order to demonstrate the principles. In both geometries

!simple shear flow and Poiseuille flow", we will also present

the results for zero shear-rate gradient boundary conditions,

as is often used in non local models !analogous to the zero

gradient in micellar stress typically used in #9$".

A. Simple shear flow

In simple shear flow the shear stress is a constant, !0.

Using the dimensionless variable ze=z /e where e is the gap

between the two surfaces, this model leads to

!!ze" = !0 = !h#"̇!ze"$ − Nl

!
2"̇!ze"
!

2ze

, !11"

Nl =
1

e2
, !12"

where "̇!ze"=
!V!ze"

!ze
. The shear stress is given by inverting

"̇h!!"= "̇h!!"=!h
−1!"̇", and is multivalued for a range of

shear stress. Shear banding is possible in multivalued range,

as an inhomogeneous differentiable solution to Eq. !11" with

the nascent fluid is at ze=0 and the shear-induced structure at

ze=1. Equation !11" requires boundary conditions. We as-

sume no slip at the wall, and a wall shear rate given by that

of the homogeneous constitutive curve at the given !selected"
stress. That is, we set "̇wall= "̇h!!0", where !0 is the !homo-

geneous" selected shear stress at the wall, and choose the two

walls to lie on different branches of the multivalued function.

Note that, in the multivalued range, homogeneous solutions

may be found by assuming that the fluid follows the pure

shear flow rheological curve near the walls, and that both

walls are in contact with the nascent fluid or with the shear-

induced structure.

The solution is presented in the Appendix. From the cal-

culation of the velocity profile, we can extract the global

flow curve of applied shear stress as a function of average

shear rate !velocity of the upper plate divided by the size of

the gap" as would be measured by a rheometer. Figure 16

shows the flow curves for various values of the nonlocal

parameter Nl. Homogeneous flows !thinnest line correspond-

ing to the !h function" are obtained at low and high shear

stress, whereas heterogeneous flow !thick lines" are obtained

for intermediate values. The curves depend significantly on

N1, and hence the size of the gap; a value of Nl=2,10−2 is

sufficient to induce deviations from the flow curve. In the

limit N1→0 local parameter Nl, this model selects a single

value of the shear stress for the heterogeneous state equal to

!see Appendix":

!! = "̇*0102 +
A

1 + *02/01

. !13"

For small values of Nl the flow curve is continuous, while for

larger values the flow curve is not continuous; this qualita-

tive feature was also found in #9$ in a study of the dJS

model, and a recent shear banding calculation by Cook et al.,

who calculated a smooth variation for a relatively large non-

local coefficient #39$.
The discontinuity in the flow curve comes from the dif-

ference between a homogeneous flow of the shear-induced

structure and a heterogeneous !shear banding" flow where the

shear-induced structure coexists with a thin layer of the na-

scent structure. This behavior is due to the influence of the

boundary condition #9,20$. In the first case the shear rate at

the wall is large and given by !"̇101−A" /02 whereas in the

second case it is low and given by "̇1. For large Nl the

boundary condition affects a larger fraction of the gap, z /e

&*N1. This explains the differences of velocity at the wall

between the homogeneous flow of the shear-induced struc-

ture, and the heterogeneous flow with a very thin layer of the

nascent fluid and the discontinuity of the flow curve for large

values of the nonlocal parameter. A similar argument applies

for an homogeneous flow of the nascent fluid and an hetero-

geneous flow with a thin layer of the shear-induced structure.

We have also considered a homogeneous boundary con-

dition, !"̇ /!z=0 near the walls #8$. In the limit Nl→0 the

same selected stress results.
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FIG. 16. Global flow curves in steady shear flow for various

value of Nl calculated following the procedure detailed in the text.

We set "̇wall= "̇h!!0", where !0 is the !homogeneous" selected shear

stress at the wall, and choose the two walls to lie on different

branches of the multivalued function. The two thinnest lines corre-

spond to the !h function. They describe homogeneous states, which

do not depend upon Nl. The solid lines correspond to the heteroge-

neous states for !from thickest to the thinnest" Nl=0.1,10−2 ,10−3

Right: zoom of the Plateau region.
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B. Poiseuille flow

Let us now focus on the planar Poiseuille geometry,

where a pressure drop -P or equivalently a wall shear stress

!w drives flow between two surfaces separated by a gap 2e

in the z direction. In this geometry, the shear stress is a linear

function of the distance from the center of the gap. Using the

dimensionless variable ze=z /e, the condition of a linear

stress imposes the following differential equation on the

shear rate:

!!ze" = !wze = !h#"̇!ze"$ − Nl

!
2"̇!ze"
!

2ze
, !14"

where, in the thin and long !length L" gap limit, !w

=-Pe /L is the wall stress. The shear rate satisfies

!"̇ /!z +ze=0=0 !at the center of the gap" by symmetry. In order

to discuss the model, at the wall we will arbitrarily either

assume that the high shear-rate phase lies near the wall with

a Newtonian viscosity 03 or zero gradient. The analytic so-

lutions are given in the Appendix.

Figure 17 presents the value of the shear stress at the

interface and the shear stress at the wall as a function of the

position of the interface for various values of Nl. Near the

wall, the fluid is assumed to be Newtonian with prescribed

wall stress and viscosity 03=1 Pa s. The other parameters

are given by 01=20.6 Pa s, 02=0.35 Pa s, A=44 Pa, "1

=5.6 s−1.

For smaller Nl=10−5, the shear stress at the interface is

independent of the wall stress, and equal to !! !Fig. 17", as

was suggested in #21$. For larger Nl the shear stress at the

interface varies with applied wall stress", and decreases when

the size of the shear-induced structure increases. Values as

low as Nl=10−3 can induce a large effect. This result sug-

gests that the asymptotic analysis of Radulescu et al. #21$ is

limited to a smaller range of Nl than suggested in that work.

Figure 17 highlights a very important point: for the same

shear stress at the wall, the shear-induced phase will fill a

large part of a small capillary tube !very large Nl" and a very

small part of a large one !much smaller Nl".
Finally, we have performed the same analysis assuming a

zero gradient boundary condition. Figure 18 shows similar

results to the previously chosen BC. The shear stress at the

interface varies with applied shear stress. We note however

that for large Nl, the value of the shear stress at the wall

decreases when the size of the high sheared band increases

and the interface thus moves away from the wall.

VI. COMPARISON BETWEEN THE MODEL

AND THE DATA AND DISCUSSIONS

Figures 5, 9, and 11 compare the velocity profiles from

our model with the experimental data. To fit the data, bound-

ary conditions !i.e., velocity slip at the wall and shear rate at

the wall" were required. This question is a key point. At this

stage and to the best of our knowledge, there is no consensus

about the correct boundary condition to handle the non local

!diffusive" term. In the scalar model we use this is a bound-

ary condition on the shear rate !in addition to the required

boundary condition for the velocity". Typical choices could

be a zero gradient in shear rate !analogous to the zero gradi-

ent in micellar stress typically used, e.g., in #9$". Another

possibility is an imposed “surface viscosity,” so that the sur-

face follows, for example the constitutive behavior of one or

the other shear branches, or something else characteristic of

the surface. Here, we take a more empirical approach, and

use the boundary conditions that are measured. One reason

for this is that the strong shear stress gradient near the walls,

in Poiseuille flow, is quite strong. Hence we measure the

values of the shear rate at the wall, as determined by a linear

fit of the last three points of the velocity profiles near the

walls !see Figs. 14 and 13". Clearly, these measurements do

not correspond to the bulk rheology and depend upon the
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FIG. 17. Shear stress at the interface between the two bands and

zint /z! as a function of the shear stress at the wall in a Poiseuille

flow. From thicker to thinner lines, Nl is given by Nl

=10−5 ,10−3 ,10−1. Near the wall, the fluid is assumed to be New-

tonian with prescribed wall stress and viscosity 03=1 Pa s. The

other parameters are 01=20.6 Pa s, 02=0.35 Pa s, A=44 Pa, "1

=5.6 s−1.
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FIG. 18. Shear stress at the interface between the two bands and

zint /z! as a function of the shear stress at the wall. The dashed lines

correspond to the wall shear stress whereas the solid lines corre-

spond to the stress at the interface. From thicker to thinner lines, Nl

is given by Nl=10−5 ,10−3 ,10−1. Near the wall, we assume a zero

gradient boundary condition. The other parameters are given by

01=20.6 Pa s, 02=0.35 Pa s, A=44 Pa, "1=5.6 s−1.
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nature of the surface. We use these experimental data as

boundary conditions together with the measured slip velocity

boundary condition. A single set of parameters !01

=20.6 Pa s, 02=0.35 Pa s, A=44 Pa, "1=5.6 s−1, 1
=10−10 Pa s m2" allows us to fit all the profiles. For this

value of 1 the nonlocal parameter Nl lies between 10−2 and

2,10−3 for different channel widths.

To give an idea of the precision of the fit, Fig. 19 shows

for a typical velocity profile the role of the parameter 1.

Keeping all the others parameter constant we have varied

this parameter by a factor of 3, 1.25, 0.75, and 1/3. Clearly,

the velocity profiles depend strongly upon this parameter.

Our procedure allows us to measure it with a better precision

than 25%.

Moreover to measure the quality of our fitting procedure,

we have computed the standard deviation of the difference

between the experimental velocity profile and the theoretical

one. We recall that standard deviation of vector V is equal to

std V=*! 1

N−1
,i=1

n !Vi− V̄"", where V̄ is the mean value of V

and N the number of data points. For each profile, we find a

standard deviation of less than 4% of the maximal velocity.

In addition, with this set of parameters we can fit the bulk

flow curve by approximating the cone-and-plate geometry,

which has a nearly uniform stress, by the uniform shear

stress of planar shear flow !see Appendix". From the value of

the shear curvature viscosity, one can estimate a characteris-

tic length $=*!1 /0!"̇"". In the plateau region $ varies from 1

to 10 #m in agreement with recent indirect measurements

on the same system #25$. At first sight, this length is much

larger !50 times" than the one measured by Radulescu et al.

using kinetic experiments on CTAB-NaNO3 #40$. However

these discrepancies seem related to the difficulty of properly

separating the kinetic steps involved in the displacement of

the interface !instability, reconstruction, and front propaga-

tion". It seems that a more complete analysis leads to µm size

length scale for this system also #41$.

This length is much larger than the typical mesh size

$mesh= ! kbT

G
"1/3 of these solutions which can be estimated by

using the elastic modulus G of the solution. For our system,

G=70 Pa and $mesh=39 nm.

A candidate physical mechanism for the nonlocal term is

local concentration fluctuations in the highly sheared band.

In visible light microscopy the high shear band appears to be

black #10$ in transmission, suggesting significant scattering

due, for example, to concentration fluctuations on µm scales

or larger. These concentration fluctuations are observed even

without particles. This suggests that the correlation length

exists even without particles and is not correlated with the

size of the particles. $ is much smaller than the gap !0.5–1

mm" or curvature radii !cm" of classical rheometers, so that

nonlocal effects cannot be detected in these geometries, even

by performing local measurements. Note also that $ is closed

to the depth of the rough surfaces. This may explain the

strong effect of the ruguous walls on the surface rheology.

VII. CONCLUSION

Our work shows that nonlocal model is required to cap-

ture the behavior of wormlike micellar system in a small gap.

We have used a phenomenological model. More work need

to be done to describe the high sheared branch. The two

species model introduced recently by Cook and co-workers

may be good candidates as it predicts a Bingham behavior

for the high sheared branch.

Our work highlights the fundamental role of the surfaces

on the flow of wormlike micellar solutions. This point is not

limited to the semidilute wormlike micellar solution of this

study. Recently, it has been shown that surfaces govern the

flow behavior in laponite solution #44$, concentrated emul-

sions #45,46$, and concentrated wormlike micellar solutions

#47$. In all cases, the slip velocity is affected by the rough-

ness of the surface. More strikingly, the wall shear rate for a

given wall shear stress varies as a function of the nature of

the surface. This suggests the existence of a surface rheologi-

cal law; i.e., a nontrivial relationship between the wall shear

stress and the wall shear rate, which differs from the bulk

rheological law and depends upon the nature of the surface.

Experiments to better measure the flow and flowing micro-

structure very close to solid surfaces will thus open avenues

for modeling the rheological behavior of wormlike micelles

near a surface, and help determine the proper boundary con-

ditions for the fluids.
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APPENDIX

In this appendix we present the details of the calculations

in both simple shear and Poiseuille flows. For simple shear,

we will assume that shear rate is fixed to low or high shear

!1 0 1
0

500

1000

1500

z/e

V
(
µ
m
s!
1
)

FIG. 19. Velocity profile for !w=73, channel width 2e

=200 #m with rough surface R2. Solid lines are calculated using

the nonlocal model described in Sec. V. From top to bottom 1

=310−10 , 1.2510−10 , 10−10 , 7.510−10 , 3.310−11. The other pa-

rameters are given by 01=20.6 Pa s, 02=0.35 Pa s, A=44 Pa,

"1=5.6 s−1.
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branch. For Poiseuille flow, we will calculate the flow as-

suming zero shear gradient or imposed wall shear rate near

the wall.

1. Simple shear flow

We first focus on simple shear flow between infinite

plates, for which the shear stress is constant, !0. Using the

dimensionless variable ze=z /e where e is the gap between

the two surfaces, this model leads to

!!ze" = !0 = !h#"̇!ze"$ − Nl

!
2"̇!ze"
!

2ze

, !A1"

"̇!ze" =
!V!ze"

!ze

. !A2"

where Nl=
1

e2 is the dimensionless nonlocal parameter. To

compute the shear-rate field "̇!ze" we require boundary con-

ditions for the shear rate. The velocity field is assumed to

obey a no-slip condition, but the nonlocal term demands an

additional condition on the shear rate. Many different

choices are possible, depending on the nature of the surface

interaction. In principle the correct boundary condition

should follow from mechanical balance at the wall #20$. Pos-

sibilities include a zero gradient !"̇ /!ze=0; a fixed value

"̇!0"; or a more complex expression. Here, we will assume a

simple form to illustrate the importance of the nonlocal term.

Hence, we assume that near the surfaces, the fluid follows

the rheological curve set by !=!h!"̇".
!a" For !0*02"̇1+A, we demand "̇!ze"=!0 /01 for ze

=0,1. In this case a homogeneous solution results, corre-

sponding to the nascent structure, "̇!ze"=!0 /01.

!b" For !0+01"̇1, we demand "̇!ze"= !!0−A" /02 for ze

=0,1. In this case, we obtain a homogeneous solution corre-

sponding to the shear-induced structure, "̇!ze"= !!0−A" /02.

!c" For 02"̇1+A+!0+01"̇1, the constitutive curve is

multivalued !Fig. 15" so that for a range of shear stresses two

different shear rates may be found at the walls: either the low

!nascent" or high !shear-induced" shear-rate branches of the

fluid. Banded flows obtain if one wall prescribes the nascent

fluid and the other wall prescribes the shear-induced fluid,

"̇!0" = !0/01, !A3"

"̇!1" = !!0 − A"/02 !A4"

!or vice versa".
The solution for a continuous shear-rate field with a single

interface can be written as

"̇!ze" = -
!0

01

+ ."̇1 −
!0

01

/ sinh!X1ze"
sinh!X1a"

!ze * a"

!0 − A

02

+ ."̇1 −
!0 − A

02

/ sinh#X2!ze − 1"$
sinh#X2!a − 1"$

!ze + a" ,0 !A5"

where Xi=*0i

Nl
and a is the position of the interface between the nascent structure and the shear-induced structure. Demanding

continuity of the derivative of the shear rate "̇!ze" at the interface ze=a leads to a condition that determines the selected shear

stress !!1!0 at which shear banding occurs,

."̇1 −
!!

01

/X1 tanh#X2!a − 1"$
X2 tanh!X1a"

= ."̇1 −
!! − A

02

/ . !A6"

For finite systems the shear stress changes as the interface between shear bands approaches the wall, while in an infinite system

the shear stress is unchanged. In the limit Nl→0, this condition can be written as

!! = "̇1
*0102 +

A

1 + *02/01

+ 3
*0102

!*01 + *02"2
#"̇!01 − 02" + A$ + ¯ , !A7"

3 = 2#e−X2!1−a" − e−X1a$ . !A8"

These equations then determine the velocity field, assuming no slip at the wall V!0"=0,

V!ze" = -
!!ze

01

+ ."̇1 −
!!

01

/ cosh!X1ze" − 1

X1 sinh!X1a"
!ze * a"

!!! − A"ze

02

+ ."̇1 −
!! − A

02

/ cosh#X2!ze − 1"$
X2 sinh#X2!a − 1"$

+ VV !ze + a" ,0 !A9"
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VV = ."̇ −
!!

01
/2 !1 − 01/02"cosh X1a − 1

!1 + *01/02"X1 sinh X1a
3 + 2!!. 1

01

−
1

02
/ +

A

02
3a . !A10"

From this we can calculate the velocity Vw at the moving

wall,

Vw =
!!! − A"

02

+ ."̇1 −
!! − A

02

/ 1

X2 sinh!X2!a − 1""
+ VV.

!A11"

and thus the global flow curve.

2. Poiseuille flow

Here we consider pressure-driven Poiseuille flow between

flat parallel plates, in which the shear stress is a linear func-

tion of the distance z from the midpoint between the plates

!we assume a symmetric velocity profile". Using the dimen-

sionless variable ze=z /e where 2e is the gap between the two

surfaces, the strain rate must thus satisfy the following dif-

ferential equation:

!!ze" = !wze = !h#"̇!ze"$ − Nl

!
2"̇

!ze
2 , !A12"

where the wall stress, in the limit of an infinitely long chan-
nel with wide aspect ratio, is given by !w=-Pe /L. We will
cast the rest of the results in terms of this idealized wall
stress; conversion to pressure difference or pressure gradient
is straightforward. By symmetry we must have

"̇!ze = 0" = 0. !A13"

As previously, the choice of boundary condition as the wall
will drive the flow. We present two calculations: zero gradi-
ent at the wall, and a specified wall shear rate "̇w.

a. Imposed wall shear rate !̇w

If we assert that the wall specifies a certain shear rate,
then the boundary condition is

"̇!ze = 1" = "w. !A14"

The shear-rate field that satisfies the boundary conditions,
and switches between flow branches such that "̇!ze=a"= "̇1 is

"̇!ze" = -
!wze

01

+ ."̇1 −
!wa

01

/ sinh!X1ze"
sinh!X1a"

!ze * a"

!wze − A

02

+ ."̇1 −
!wa − A

02

/ sinh#X2!ze − 1"$
sinh#X2!a − 1"$

+ ."̇w −
!w − A

02

/ sinh X2!a − ze"
sinh X2!a − 1"

!ze + a" ,0 !A15"

where a is the position of the interface between the nascent and shear-induced phases. Continuity of the derivative "̇!!ze" at the

interface ze=a relates the interface position a to the wall stress !w !the analog of stress selection",

!w. 1

01

−
1

02

/ + ."̇1 −
!wa

01

/X1 coth X1a = ."̇w −
!!w − A"

02

/ X2

sinh X2!1 − a"
− ."̇1 −

!!wa − A"
02

/X2 coth X2!1 − a" .

!A16"

Figure 17 shows an example of the relation between the stress at the interface, !int=!wa, and the wall stress !w !assuming

that the rheology at the wall follows Newtonian behavior".
In wide geometries, i.e., for vanishing values of the non local parameter Nl, this condition leads the same selected stress as

in simple shear flow, such that the shear stress at the interface satisfies !wa=!!, with !! given by Eq. !A8".

!! = 2"̇*0102 +
A

1 + *02/01

321 −
1

a
*D

02

1

1 + *02/01

+ ¯3 , !A17"

where the expansion is in the small Nl limit, such that the interface is sufficiently far from either the walls or the center of the

cell, X1a41,X2!1−a"41.

The velocity profile follows by integrating the shear-rate field, Eq. !A14" with boundary condition V!z= 51"=0,

V!ze" = -
!wze

2

201

+ ."̇1 −
!wa

01

/ cosh!X1ze"
X1 sinh!X1a"

+ V !ze * a"

!wze
2 − 2Aze

202

+ ."̇1 −
!w − A

02

/ cosh#X2!ze − 1"$
X2 sinh#X2!a − 1"$

− ."̇w −
!w − A

02

/ cosh X2!a − z"
X2 sinh X2!a − 1"

!ze + a" ,0 !A18"
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V = V2!a" −
!wa2

201

− ."̇1 −
!wa

01

/ cosh!X1a"
X1 sinh!X1a"

. !A19"

We have used formula !A19" to fit our measurements.

b. Zero gradient !!=0

Another choice of boundary condition is zero gradient, boundary condition is

"̇!!ze = 1" = 0. !A20"

In this case the solutions are

"̇!ze" = -
!wze

01

+ ."̇1 −
!wa

01

/ sinh!X1ze"
sinh!X1a"

!ze * a"

!wze − A

02

+ ."̇1 −
!wa − A

02

/ cosh X2!1 − ze"
cosh X2!1 − a"

−
!w

X202

sinh X2!ze − a"
sinh X2!1 − a"

!ze + a" ,0 !A21"

and the stress selection condition, determined by continuity of the derivative "̇!, is

!w =
02"̇1#1 + *01/02 coth X1a coth X2!1 − a"$ + A

!1 − 02/01"coth X2!1 − a" − csch X2!1 − a"
X2

+ a#1 + *02/01 coth X1a coth X2!1 − a"$

. !A22"
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