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Synopsis

Spatially inhomogeneous shear flow occurs in entangled polymer solutions, both as steady state shear

banding and transiently after a large step strain or during startup to a steady uniform shear rate.

Theoretically, steady state shear banding is a hallmark of models with a nonmonotonic constitutive

relation between total shear stress and applied shear rate, but transient banding is sometimes seen in

fluids that do not shear band at steady state. We model this behavior using the diffusive Rolie-Poly

model in a Newtonian solvent, whose steady state constitutive behavior can be monotonic or

nonmonotonic depending on the degree of convective constraint release. We study monotonic steady

state constitutive behavior. Linear stability analysis of the startup to a sufficiently high shear rate

shows that spatial fluctuations are unstable at early times. There is a strong correlation between this

instability and the negative slope of the (time dependent) constitutive curve. If the time integral of the

most unstable eigenvalue is sufficiently large, then the system exhibits transient shear bands that later

vanish in steady state. We show how perturbations, due to fluctuations or the inhomogeneous

stresses, can trigger this instability. This transient behavior is similar to recent observations in

entangled polymer solutions.VC 2011 The Society of Rheology. [DOI: 10.1122/1.3610169]

I. INTRODUCTION

The original theory of Doi and Edwards (1989) (DE) predicts shear banding in

entangled polymers, when the shear rate exceeds the reciprocal of the timescale sd for

one-dimensional diffusion (reptation) within an effective mean field tube of constraints

from the surrounding molecules. For shear rates _c& 1=sd, DE theory predicts a
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decreasing shear stress rxy _cð Þ due to enhanced tube alignment, and thus leads to a nonmo-

notonic constitutive curve rxy _cð Þ and an instability to an inhomogeneous state in which

two states, or ‘shear bands’, of different viscosity and molecular alignment coexist

[McLeish and Ball (1986)]. However, banding was not inferred at that time in polymers;

for example, the apparent viscosity measurements of Menezes and Graessley (1982) on

entangled polymers are consistent with a weakly increasing shear stress for _csd > 1,

rather than the stress plateau that is expected from banding. By contrast, banding is prev-

alent in wormlike micelles [Rehage and Hoffmann (1991); Berret (2005); Cates and

Fielding (2006); Olmsted (2008)]. This was explained by Cates (1990), who combined

reptation with micellar breaking to predict shear banding at stresses and shear rates in

good qualitative agreement with experiments [Spenley et al. (1993)]. It is now realized

that a strictly constant stress plateau is not obtained for banding in a curved geometry,

such as cone and plate or cylindrical Couette fixtures [Olmsted et al. (2000)], so the

results of Menezes and Graessley (1982) may in fact be consistent with shear banding.

Discrepancies with DE theory have existed virtually since the theory’s inception

[Fukuda et al. (1975)], particularly in the response of highly entangled polymeric fluids

to a step strain. Osaki and Kurata (1980) and Vrentas and Graessley (1982) observed

stress relaxation that was much faster than predicted by DE theory. This is particularly

prevalent for entanglement numbers Z Z 60 for relaxation after large step strain [Osaki

(1993)] and has been termed anomalous or “type C” relaxation [Osaki (1993); Venerus

(2005)]. Marrucci and Grizzuti (1983) (MG) pointed out that the DE theory contains an

elastic instability; they showed that the free energy can be a convex function of strain

for large enough step strain (for _csd # 1). This would then lead to an elastic instability

and thus inhomogeneous (shear banding) behavior. They showed how this instability

can persist even when one includes relaxation. McLeish and Ball (1986) later suggested

that the DE theory could explain the measurements of the spurt effect by Vinogradov

(1973), in terms of the inherent instability to shear banding. Kolkka et al. (1988) used

the Johnson–Segalman model to study the nature of mechanical instabilities inherent in

fluid with a nonmonotonic constitutive relation. It was later demonstrated that wall slip

plays a major role in spurt [Wang (1999); Denn (2001)]. Morrison and Larson (1992)

tested Marrucci and Grizzuti’s idea by using entangled solutions at different concentra-

tions to mimic the effect of relaxation. They concluded that the Marrucci–Greco mecha-

nism gives a qualitatively correct description of the anomalous relaxation, which is

consistent with incipient inhomogeneities. More recently, Venerus [Venerus (2005);

Venerus and Nair (2006)] studied step strain experiments and concluded that many of

the anomalous “type C” responses could be explained by experimental conditions such

as wall slip or rheometer compliance; however, a number of experiments could not be

accounted for in this way.

In the last decade or so, the advent of high resolution velocimetry has led to a series of

exciting experiments, principally by Wang and coworkers, that demonstrate evidence of

shear banding in entangled polymers [Tapadia and Wang (2003, 2004); Boukany and

Wang (2007); Hu et al. (2008a); Ravindranath et al. (2008)]. Very well-entangled solu-

tions, with entanglement number Z Z 40 – 50, display well-defined steady state shear

bands [Wang et al. (2006); Hu et al. (2007, 2008a); Ravindranath et al. (2008); Boukany

and Wang (2009b)]. This occurs in both synthetic polymers, such as polybutadiene [Rav-

indranath et al. (2008)] and Deoxyribonucleic Acid (DNA) [Boukany et al. (2008); Bou-

kany and Wang (2009a); Hu et al. (2008b); Boukany and Wang (2009b)]. Polydisperse

systems exhibit smoother and less well-defined (or no) shear banding [Boukany and

Wang (2007)], possibly because the many timescales smear out the instability [as sug-

gested by Doi and Edwards (1979) in their original paper].
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There have been numerous improvements upon the original DE theory, notably to

incorporate convective constraint release (CCR) [Marrucci (1996); Mead et al. (1998);

Milner et al. (2001)]. CCR can reduce the severity of the DE instability and potentially

render the fluid stable [Graham et al. (2003)], and DE-CCR models can capture, at least

qualitatively, many of the shear banding signatures of these experiments. This was

recently shown by Adams and Olmsted (2009b, 2009a) in calculations based on the

Rolie-Poly (RP) model [Likhtman and Graham (2003)], a simple one-mode differential

version of DE theory that incorporates CCR and chain stretch. However, there is no con-

sensus yet as to the correct level of CCR required to describe existing experiments.

In related work, Zhou et al. (2008) showed that a nonmonotonic constitutive relation

based on the “partially extending convective strain” model of Larson (1984) also repro-

duces many of the features of the recent experiments, including recoil during startup onto

the banding plateau, and strain localization immediately after a step strain effected by

shearing at a very fast finite shear rate.

Numerous experiments also show inhomogeneous behavior in fluids that do not dis-

play steady state shear banding (smaller entanglement number Z). Examples include: (1)

transient band formation and recoil during startup, which eventually gives way to homo-

geneous shear flow [Tapadia and Wang (2006); Hu et al. (2007); Ravindranath et al.

(2008); Boukany and Wang (2009b)]; (2) extremely sharp shear banding during portions

of the cycle during large amplitude oscillatory shear (LAOS) [Tapadia et al. (2006); Rav-

indranath and Wang (2008); Zhou et al. (2010)]; (3) inhomogeneous response (including

negative velocity recoil) after step strain performed at high shear rates [Wang et al.

(2006); Ravindranath and Wang (2007)].

At a constitutive level, one cause of steady state shear banding is a nonmonotonic

steady state constitutive relation (such as the DE theory with sufficiently weak CCR),

which cannot support stable homogeneous steady states for a range of shear rates. How-

ever, the same criterion clearly cannot determine the apparent instability to transient

banding in fluids that do not shear band in steady state (i.e., that have monotonic flow

curves). Evidently these fluids are dynamically unstable, which need not be related to a

steady state nonmonotonic constitutive relation.

Indeed, pronounced transient shear banding has recently been reported by Divoux et al.

(2010) in a yield stress fluid with a monotonic steady state constitutive curve, and captured

theoretically in shear transformation zone (STZ) theories [Manning et al. (2007, 2009)], a

modified soft glassy rheology (SGR) model [Moorcroft et al. (2011)], a simplified fluidity

model [Moorcroft et al. (2011), and a mesoscopic model of plasticity [Jagla (2010)].

Several, possibly related, explanations for the transient banding can be envisioned, as

follows:

1. The dynamical equations of motion passes through a regime of parameter space, as a

function of time, in which the homogeneous instantaneous state is dynamically unsta-

ble to small spatial perturbations. Such perturbations will initially grow in time before

eventually decaying to a homogeneous steady state. However, if the instability is

strong enough the perturbations could grow into a macroscopically observable tran-

sient band before decaying. We will perform this linear stability calculation here, and

show that this gives an understanding of the transient homogeneities. A similar calcu-

lation was done by Fielding and Olmsted (2003) for wormlike micelles undergoing

steady state banding.

2. The fluid possesses, at any observation time tm, an instantaneous constitutive curve

rxy _c; tmð Þ. Such a constitutive curve can be constructed by performing a number of

startup evolutions (calculations or experiments) at different shear rates, which then
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define the loci of stress as a function of shear rate for given observation times tm after

flow inception. Since most of these points are not in steady state, the resulting curve

need not be monotonic even if the shear rate remains homogeneous. Then, one could

associate a negative slope @rxy _c; tmð Þ
!

@ _c < 0 with transient inhomogeneities. How-

ever, this only addresses a subspace of the full parameter space considered by the first

scenario above and could thus only serve as a rough guideline. One must also care-

fully distinguish between theoretical calculations in which a homogeneous shear rate

can be specified, and the experimental protocol above, in which the fluid will be

expected to become inhomogeneous after the onset of an instability. This procedure

was recently suggested by Hayes et al. (2010) in experiments using parallel plate rhe-

ometry of polymer solutions.

3. For very strong shear rates these viscoelastic fluids respond elastically, like a nonlin-

ear solid, and can display a stress overshoot. In this case the mechanism of Marrucci

and Grizzuti (1983) might be expected to apply, as follows. For a given imposed shear

rate _c the stress rxy is a function of strain c ¼ _ct. A solid with a negative gradient

@rxy
!

@c < 0 has an effective negative differential shear modulus, which leads to elas-

tic instability. This would imply that, for shear rates large enough to remain in the

elastic regime, a stress overshoot upon startup could signify an instability to inhomo-

geneous flows. [Note that the MG argument is strictly for an ideal step strain, rather

than a strain incurred during a fast but finite shear rate]. Sui and McKenna (2007)

pointed this out in their recent visualization study of the same materials studied by

Tapadia and Wang (2006). This scenario is suggested by data showing correlations

between transient banding and stress overshoots [e.g., the Figs. 3 and 4 of Boukany

et al. (2008)] and by calculations that show similar correlations [e.g., Fig. 3 of Adams

and Olmsted (2009b)], for both monotonic and nonmonotonic constitutive curves).

In this paper we explore these different scenarios, and thus the detailed conditions nec-

essary for transient inhomogeneities, using the diffusive Rolie-Poly (DRP or RP) model

as an example [Likhtman and Graham (2003)]. We calculate its instantaneous linear sta-

bility for parameters ranging from monotonic to nonmonotonic constitutive behavior. We

show that even fluids with monotonic constitutive curves, which have stable homogene-

ous steady states, can have periods of instability during startup flow. For some parame-

ters, strong linear instability is shown to lead to transient banding and negative velocity

recoil in the full nonlinear dynamics.

Since instabilities require an initial perturbation to manifest in eventual nonlinear

growth, we will study two natural perturbations: (1) stress gradients, as found in typical

circular rheometric devices (cone and plate or cylindrical Couette) and (2) nonuniform

(noisy) initial conditions. We find a strong link between transient inhomogeneities, stress

overshoots, and an instantaneous nonmonotonic constitutive curve, but we leave further

detailed analysis of this for future work.

We compare our calculations with recent experiments on transient data after startup to

steady state. For conciseness, we do not study the inhomogeneous response to a step strain,

though our results give a quantitative method for understanding this behavior as well.

II. THE DIFFUSIVE ROLIE-POLY MODEL

A. Momentum balance

Newton’s force balance for the fluid is given by

q
Dv

Dt
¼ r % r; (1)
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where q is the density, r is the total stress, and D=Dt is the material derivative. We will

use the full equation set (at finite but small Reynolds number) for the linear stability anal-

ysis in Sec. IV A, but take the zero Reynolds number (creeping flow) limit for calculating

the full spatially resolved nonlinear dynamics in Sec. IV B. In the latter case the equation

of motion reduces to

r % r ¼ 0: (2)

For the experimental cases of interest we expect very small Reynolds number Re & 10'3.

B. Stress

The total stress r in a polymer solution is assumed to comprise an elastic stress

carried by the backbone of the polymers (due to their stretching and orientation), and

viscous drag against solvent and other polymers. In polymer melts the viscous stress

can usually be safely neglected, particularly for weak flows [Doi and Edwards

(1989)]. However, for strong flows, where DE theory predicts a strongly decreasing

polymeric stress due to tube alignment, it is necessary to incorporate additional vis-

cous stresses from the faster degrees of freedom. This includes the Newtonian solvent

viscosity of solutions, as well as fast Rouse modes and interpolymer viscous friction

neglected in the simplest tube models. In addition to this crucial argument, a second

contribution to the total stress is physically necessary to describe steady state shear

banding in planar Couette flow, in which the shear rate is inhomogeneous but the total

stress must be homogeneous.

Hence, we represent the total stress as two separate components: fast Newtonian (or

solvent) degrees of freedom and the slow viscoelastic stress GW:

r ¼ 'pIþ 2gDþ GW; (3)

where I is the identity tensor, D ¼ 1
2
rvþ rvð ÞT
h i

; v is the velocity field, p is the iso-

tropic pressure determined by incompressibility ðr % v ¼ 0Þ, g is the solvent viscosity,

and G is the plateau modulus. In this representation the quantity W is the polymer, or

viscoelastic, strain, whose stress GW is parametrized by the elastic modulus G. Together

with a DE-like constitutive relation for W, Eq. (3) can yield either a monotonic or a non-

monotonic constitutive relation, with a Newtonian high shear rate branch.

C. Rolie-Poly model

There are many possible constitutive models for the polymeric strain W [Islam and

Archer (2001); Mead et al. (1998)], but here we will use the DRP model of Likhtman and

Graham (2003). This is a single mode approximation to the Graham-Likhtman and Mil-

ner-McLeish (GLAMM) model [Likhtman et al. (2000); Milner et al. (2001); Graham

et al. (2003)], and includes CCR, reptation of the polymers within their tubes, and the

stretching of the polymer chains. The constitutive equation for the deviatoric part of the

viscoelastic strain W is

ð@tþ v % rÞW' ðrvÞT %W'W%(rv)þ 1

sd
W

¼ 2D' 2

sR
ð1' AÞ IþWþ bA'2dW

" #

þDr2W;

(4)
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where

AðWÞ ¼ ð1þ trW=3Þ'1=2; (5)

sd is the disengagement time, sR is the Rouse time, and b parametrizes the efficiency and

rate of CCR. The ratio of disengagement to Rouse times defines the entanglement num-

ber [Larson et al. (2003)]

Z ¼ 1

3

sd

sR
: (6)

We have added ‘diffusion’ (the term with coefficient D) to the original Rolie-Poly model,

to be able to resolve spatial structure during shear banding [Lu et al. (2000); Olmsted et

al. (2000)]. The width of the interface between shear bands is proportional to
ffiffiffiffi

D
p

.

The RP model does not reproduce all the same constitutive behavior features of the

full GLAMM constitutive model (notably, the high shear rate behaviors of the normal

and shear stresses differ), primarily because only a single mode of the GLAMM model

has been kept in obtaining the RP model. However, it is simple enough to perform spa-

tially resolved simulations in the presence of the added diffusive term. The additional sol-

vent stress, 2gD in Eq. (3), was not included in the original formulation, which was

focused on melts and not on shear banding behavior.

D. Choice of parameters

Likhtman and Graham (2003) chose b¼ 0.5 and d¼'1=2, which optimized the com-

parison with transient and steady state measurements within the assumption of homoge-

neous flows. The negative value for d ensures that CCR decreases for large stretch, due

to the increased number of effective entanglements. The high shear rate scaling of the

total shear stress rxy in the RP model is

rxy

G
¼

1

ð6Z þ 1Þ2
þ !

" #
_csd ðd ) 0Þ

3d _csd

6Zb2d

% &

1
1þ2d

þ! _csd ðd > 0Þ;

8
>>>><
>>>>:

(7)

where

! ¼ g

Gsd
(8)

is the ratio between the solvent viscosity and that of the quiescent entangled solution.

Typical experimental values for the parameters are ! * 10'3'10'5 and Z* 15'200

[Adams and Olmsted (2009b); Tapadia and Wang (2006)].

As can be seen above, the choice d¼'1=2 leads to a Newtonian high shear rate

branch, with slope dominated by the entanglement contribution for typical values of !
and Z. This is inconsistent with the experiments of Tapadia and Wang (2003), which sug-

gest a scaling rxy * _c1=2 at high shear rate. This scaling can be produced by choosing

d¼ 1=2 [Eq. (7)], which leads to

rxy

G
¼ 31=2 _csd

6Zb21=2

% &1=2

þ! _csd: (9)
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This has an intermediate scaling rxy * _c1=2, before giving way at the highest shear rates

to Newtonian behavior. However, this choice does a poorer job at the validation tests car-

ried out by Likhtman and Graham (2003) and has the incorrect physical interpretation of

the effect of stretch on CCR (as noted above), and for these reasons we use d¼'1=2
here.

The Newtonian power law in the high shear rate branch, which applies for our choice

d¼'1=2, produces a relatively narrow stress plateau. This is one of the unsatisfactory

approximations to the GLAMM model that may explain why such a large Z value (com-

pared to experiments) is required for the RP model to exhibit velocity recoil and transient

banding. This is an obvious and important direction for future work.

E. Constitutive relations

The RP model readily admits nonmonotonic constitutive curves that can display shear

banding, depending on the values of the CCR parameter b, the entanglement number Z,

and the solvent viscosity !. For smaller ! and larger Z there is a wider separation between

the high and low shear rate branches, while the CCR parameter controls whether the

crossover between the two regimes contains a decreasing stress (smaller b or less active

CCR) or is monotonic (larger b or more active CCR). Figure 1 shows the effect of chang-

ing the number of entanglements for fixed solvent viscosity and CCR parameter, while

Fig. 2 illustrates the effect of varying the CCR parameter.

The parameters space ðb; !; ZÞ for the Rolie-Poly model can be divided into regions of

monotonic and nonmonotonic constitutive curves, illustrated in Fig. 3. Nonmonotonic

curves occur for small values of !, small values of b, and large Z.

In what follows, we will illustrate the transient banding-like behavior associated with

monotonic constitutive relations. We will study the dynamics of startup to a shear rate

that is on the plateau region, and which eventually yields a nonbanded homogeneous

steady state. Transient banding behavior develops under these conditions, and we will

explain this with the help of linear stability analysis. We primarily use the parameters

ðb; !; ZÞ ¼ ð0:71; 10'5; 265Þ, corresponding to the thick line in Fig. 2. Unfortunately,

Z¼ 265 is much higher than the values Z + 40' 50 needed to see shear banding

FIG. 1. Constitutive curves for the Rolie-Poly model, showing monotonic and nonmonotonic behavior as a

function of entanglement number Z; for b¼ 0.65 and !¼ 10'5.
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experimentally. We believe that this is because the Rolie-Poly model, as discussed above,

only roughly approximates the full microscopic theory of the GLAMM model, which is

itself an approximation; hence we caution the reader against over-interpreting the values

of these parameters. We will return later to briefly discuss this point.

III. DYNAMICS AND BOUNDARY CONDITIONS

A. Flow geometry

We consider Couette flow between concentric cylinders of inner (outer) radii R1 (R2),

in cylindrical coordinates with flow varying only in the radial direction, v ¼ vðrÞĥ. Using
this description the tangential and radial components of the force balance conditions are,

respectively, given by

FIG. 2. Monotonic and nonmonotonic constitutive curves arising from the Rolie-Poly model obtained by vary-

ing the CCR parameter b, for !¼ 10'5 and Z¼ 265. The marked point at log10 _csd ¼ 1:138 _csd ¼ 13:74ð Þ on the

monotonic constitutive curve is studied in detail in Figs. 4, 5, and 6.

FIG. 3. Lines separating monotonic (upper right) from nonmonotonic (lower left) constitutive behavior as a

function of the viscosity ratio ! and CCR parameter b, for different entanglement numbers Z.
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q _v ¼ 1

r2
@r r2rrh
" #

; (10)

' q
v
2

r
¼ @rrrr þ

rrr ' rhh

r
; (11)

and the components of the polymer strain W obey

LWhh ' 2Wrh _c ¼ ' 2

sR
ð1' AÞ þ 2D

r2
ðWrr 'WhhÞ; (12a)

LWrr ¼ ' 2

sR
ð1' AÞ þ 2D

r2
ðWhh 'WrrÞ; (12b)

LWzz ¼ ' 2

sR
ð1' AÞ; (12c)

LWrh 'Wrr _c ¼ _c' 4D
r2

Wrh; (12d)

where _c ¼ r@r
v

r

" #

is the local shear rate and we have defined the nonlinear operator

L ¼ @t '
D
r
@rr@r þ

1

sd
þ 2

sR
½1' AðWÞ-½1þ bAðWÞ-: (13)

The constitutive equations can be simplified by parametrizing the spatial coordinate by

r ¼ R1e
qy; (14)

where

q ¼ ln
R2

R1

(15)

is a measure of the curvature of the measurement device, and the dimensionless coordi-

nate y 2 ½0; 1- spans the width of the gap L¼R2'R1 [Greco and Ball (1997)]. The rela-

tive stress difference between the two cylinders is given by

rrhðR1Þ ' rrhðR2Þ
rrhðR2Þ

¼ 1' e'2q: (16)

A Couette cell with radii R1¼ 2 cm, R2¼ 2.1 cm has q¼ 0.049. In a cone and plate de-

vice the stress varies as [Larson (1999)]

rh/ ¼ rh/ðh ¼ p=2Þ
sin2 h

; (17)

where h is measured with respect to the normal vector to the plate. Hence the stress varia-

tion between the cone and plate is

rh/ðaÞ ' rh/ð0Þ
rh/ð0Þ

¼ tan2 a; (18)
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where a is the cone angle. For cone angles a¼ p=2' h : 4. and 1. the stress difference
is roughly equivalent to the values q¼ 2/ 10'3 and q¼ 2/ 10'4, respectively [Adams

et al. (2008)]. In what follows, we will sometimes compare the stress variation of a cone

and plate geometry to the equivalent stress variation of a Couette cell with a particular

geometric parameter q; however, we do not perform calculations for the cone and plate

geometry.

We change to dimensionless quantities, labelled by a tilde *; by measuring time in

units of the disengagement time sd and stress in units of the plateau modulus G, so that

the total shear stress is expressed as

errh ¼ Wrh þ !e_c; (19)

where e_c ¼ _csd and errh ¼ errh=G. We define a dimensionless diffusion constant

D 0 Dsd

ðqR1Þ2
: (20)

Note that the inner radius R1 can be written in terms of the gap L between cylinders as

R1 ¼
L

eq ' 1
; (21)

so that qR1 depends only weakly on q for small q. Below we will use D and q as inde-

pendent parameters. Because we consider small q *< 10'2, the dependence of D on q is

negligible. Hence, by fixing D and varying q we can separate the effects of the total stress

gradient, as parametrized by q, from the effects of the finite width
ffiffiffiffi
D

p
of the interface.

In this representation the constitutive equation becomes

eLX ¼ '6ð1' AÞZ þ 2Se_cþ 2De'2qyðY ' XÞ; (22a)

eLY ¼ '6ð1' AÞZ ' 2De'2qyðY ' XÞ; (22b)

eLW ¼ '6ð1' AÞZ; (22c)

eLS ¼ ð1þ YÞe_c' 4De'2qyS; (22d)

where X¼Whh, Y¼Wrr, W¼Wzz, and S¼Wrh, and Z is the entanglement number given

by Eq. (6). The nonlinear operator is thus

eL ¼ @~t ' De'2qy@2
y þ 1þ 6Zð1' AÞð1þ bAÞ; (23)

and the momentum balance equations become

eqev
:

¼ e'3qy@yðe2qyerrhÞ; (24)

' eqev ¼ 1

q
@yerrr þ ðerrr ' erhhÞ; (25)

where eq ¼ qL2

Gs2
d

. The dimensionless velocity is scaled by sd and a length R1(e
q '1) that

becomes the plate separation R2'R1¼L in the q ! 0 limit.
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Planar Couette flow obtains in the limit q! 0, with the correspondences br ! 'by, bh ! bx,
q! 0, and qR1! L, and the force balance conditions become eqev

:

¼ @y eryx
" #

and @yeryy ¼ 0.

B. Boundary conditions

An imposed cylinder rotation rate V=R1 can be expressed in terms of the integral of

the shear rate across the gap by

'
V

R1

¼

ðR2

R1

_c
dr

r
¼

ð1

0

_cqdy (26)

The average applied shear rate is

_ch i 0
1

q

ðR2

R1

_c
dr

r
¼

ð1

0

_cdy: (27)

which reduces to 'V1=L in the planar limit. We assume that there is no slip at the walls,

despite the fact that wall slip can be important experimentally [Wang (1999); Boukany et

al. (2006); Boukany and Wang (2009a)].

The presence of spatial gradients in the form of the ‘diffusion’ term necessitates a

boundary condition on the viscoelastic strainW. Although it is possible to incorporate so-

phisticated wall constitutive models [Black and Graham (1996)] or complex boundary

conditions [Rossi et al. (2006); Adams et al. (2008)], we will use the simplest Neumann

boundary conditions for the polymer strain,

ðn̂ %rÞW ¼ 0 for y ¼ 0; 1; (28)

here n̂ is the normal to the boundary.

IV. CALCULATIONAL METHODS

A. Linear stability analysis

We first analyze the linear stability of Eqs. (22) above, in the planar limit (q ! 0),

which should be a good approximation of the behavior of typical systems for which

q’0:0001' 0:05. We follow the stability analysis performed for the Johnson–Segalman

model by Fielding and Olmsted (2003), who showed that fluids with nonmonotonic con-

stitutive curves are unstable during startup at fixed shear rate to spatial perturbations,

which ultimately develop into shear bands. We will apply this to monotonic constitutive

curves such as shown in Fig. 2.

The equations of motion are first solved for a homogeneous time-dependent solution,

which we refer to as the homogeneous base state. We study the time dependence of inho-

mogeneous perturbations about this homogeneous base state. If these perturbations grow

in time then the homogeneous time-dependent base state is unstable to inhomogeneous

states, which we refer to as transient banding. Hence, we linearize the Navier–Stokes

equation and the Rolie-Poly constitutive equations around an uniform time-dependent

base state (denoted by subscripts 0), X¼X0þ dX, Y¼ Y0þ dY, W¼W0þ dW,

S¼ S0þ dS, and e_c ¼ e_c0 þ de_c. The linearized Navier–Stokes equation [Eq. (11)] is

eq@tde_c ¼ @2
ydSþ !@2

yd
e_c; (29)
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where e_c ¼ @yev. Note that eq is exceedingly small ðeq * 10'9Þ for the experiments of inter-

est [Tapadia et al. (2006)] and justifies the creeping flow limit in Sec. IV B. However, we

keep this term in the linear stability analysis for completeness; leaving it out has no dis-

cernible effect for physically realistic values.

We now consider spatial fluctuations in all quantities,

duðyÞ ¼
X

k

duke
iky; (30)

u 0 ðX; Y;W; S;e_cÞ; (31)

where duk ¼ du1'k because the function du(y) is real. The boundary conditions of Eq.

(26) on the shear rate _c quantize the values of the wavenumber, k¼ np (n¼ 1,2, 3,…), to

keep the average shear rate across the gap fixed to the imposed value.

Linearizing Eqs. (22) and (29) about the homogeneous instantaneous state produces a

matrix equation of the form

@tduk ¼ Mðk; tÞ % duk; (32)

where the stability matrix is given by

M ¼

P' ZA3ð1þ CXÞ 'A3Zð1þ CXÞ 'A3Zð1þ CXÞ 2e_c 2S

'A3Zð1þ CYÞ P' ZA3ð1þ CYÞ 'A3Zð1þ CYÞ 0 0

'A3
CZW 'A3Zð1þ CWÞ P' ZA3ð1þ CWÞ 0 0

'A3
CZS 'A3

CWSþe_c 'A3
CZS P 1þ Y

0 0 0 ' k2

eq ' k2!

eq

2
6666664

3
7777775
;

(33)

with

P ¼ '1' Dk2 ' 6Zð1' AÞð1þ AbÞ; (34)

C ¼ 1' bþ 2Ab: (35)

The matrix depends on the values of the shear rate and polymer strain at a time t, deter-

mined according to homogeneous evolution of the dynamics. A linear disturbance duk
will grow exponentially in time if an eigenvalue xa of M has positive real part [Fielding

and Olmsted (2003)]. We define xmax as the eigenvalue with the largest real part <ðxaÞ.
To analyze the stability of the transients with respect to spatial fluctuations we calculate

the evolution of the eigenvalues of M as a function of time t, using the homogeneous so-

lution W(t) for the unperturbed state at a given time.

A useful measure of the duration and severity of instability is the total ‘weight’ Xmax

of the instability, obtained by integrating the real part of xmax over all time during which

it is positive,

Xmax ¼
ð1

0

Maxð0;<ðxmaxÞÞdt: (36)

For larger weights Xmax we expect the fluid to enter the nonlinear regime and develop a

transient shear band, after which stable homogeneous flow is restored in steady state (for
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monotonic constitutive curves). This is verified by the full nonlinear calculation, to which

we now turn.

B. Spatially resolved Rolie-Poly model

We have thus far addressed the evolution of the homogeneous model and the linear

(in)stability of this evolution to inhomogeneous states. To compute the full inhomogene-

ous nonlinear dynamics we solve the creeping flow equation, Eq. (2), and the DRP consti-

tutive equations, Eqs. (22), with a constrained shear rate, Eq. (26), and the boundary

conditions, Eq. (28). This leads to a set of coupled second order partial differential equa-

tions. A uniform spatial grid of 500 points was used to discretize the equations, and a

semi-implicit Crank–Nicolson scheme was used to effect the time evolution. We have

checked convergence with respect to timestep and spatial mesh. Typical dimensionless

time steps were 10'5, with dimensionless spatial meshes of 2/ 10'3; and a dimension-

less diffusion constant D¼ 4/ 10'4 was used, corresponding to an effective dimension-

less diffusion length 2/ 10'2.

The shear rate constraint of Eq. (26) was implemented by integrating Eq. (24) in the

zero Reynolds number limit to obtain

Te'2qy ¼ errh ¼ Wrh þ !e_c; (37a)

T ¼
2q

1' e'2q
Wrhh i þ ! e_c

D Eh i
; (37b)

where T is the torque per unit length applied to the inner cylinder. Eqs. (37) were then

used to eliminate the local shear rate e_cðyÞ in Eqs. (22) in terms of the torque and the local

value of the polymer shear strainWrhðyÞ;

e_cðyÞ ¼ 1

!
½Te'2qy 'WrhðyÞ-: (38)

The torque per unit length T can be computed at any instant in time from the full inhomo-

geneous profile in terms of the spatial averages ofWrh and e_c, as defined in Eq. (37b).

There are several possible measures of the degree of inhomogeneity in the spatially

resolved flow profile. At any instant we define the shear rate drop

D ¼ _cmax ' _cminj j

e_c
D E ; (39)

where _cmax (respectively _cmin) is the maximum (respectively minimum) of the measured

shear rate profile, which should be easily accessible from experimental data. Other meas-

ures could include the variance of the shear rate values across the sample cell or the max-

imum local gradient of the shear rate. Since all of these give an equivalent qualitative

indication of the development of inhomogeneities during flow, we choose this simple

measure.

V. RESULTS: INSTABILITYAND TRANSIENTS

In this section we study the linear (in)stability of homogeneous startup, and compare

this with the nonlinear spatially resolved calculations in which the transient shear bands
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are allowed to form naturally. Here we consider an initial state at rest with no ‘noise’, in

a weakly curved geometry q¼ 10'3. In Sec. VI we will study the effects of different

magnitudes of spatial noise and curvature.

We study model parameter values ðb; !; ZÞ ¼ ð0:71; 10'5; 265Þ, corresponding to the

solid constitutive curve in Fig. 2, for an imposed shear rate _csd ¼ 13:74 (the marked point

at _csd ¼ 1:138) and with shear stress gradient parametrized by q¼ 10'3. During startup

the shear stress overshoots, before settling down to steady state on a time of order sd. Fig-

ure 4(i) compares a calculation in which the shear rate remains homogeneous (solid line)

with a spatially resolved calculation that allows for inhomogeneities (dashed line), showing

that the stress decays more rapidly in the spatially resolved model. The largest unstable

eigenvalue, from the linear stability analysis, becomes positive for log10 t=sdð Þ& ' 1:2 and

reaches a maximum shortly after the stress overshoot. At late times it decays to a slightly

negative value, controlled by the very shallow slope of the steady state constitutive curve.

Associated with this positive eigenvalue is a pronounced inhomogeneous transient

during startup, as evidenced by the shear rate drop D in Fig. 4 and the velocity profiles in

Fig. 5. The most significant heterogeneity comes shortly after the eigenvalue has reached

its maximum, after the instability has had sufficient time to develop nonlinear consequen-

ces. Figure 5 shows that this maximum (at time t¼ 0.25sd, labeled b) corresponds to a

FIG. 4. Evolution of various quantities as a function of time during shear rate startup for parameters

ðb; !; ZÞ ¼ ð0:71; 10'5; 265Þ, for q¼ 10'3 and applied average shear rate _csd ¼ 13:74ðlog10 _csd ¼ 1:138Þ (the
marked point on the monotonic constitutive curve in Fig. 2). (i) Dimensionless total shear stress calculated

based on homogeneous flow (solid) or allowing inhomogeneous transients (dashed); (ii) real part of the largest

unstable eigenvalue xmax; (iii) shear rate drop D [as defined in Eq. (39)], as a measure of spatial inhomogeneity

showing significant transients during startup. The times a, b, c, d, and e are shown as velocity profiles in Fig. 5.
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dramatic transient banding profile, in which the velocity field has recoiled and become

negative at the outer part of the cell (closer to y¼ 1), where the total stress is slightly

lower. The strong transient bands decay after a few sd until the steady state profile is

reached. In this case, the stress gradient corresponding to q¼ 10'3 is enough to induce

significant heterogeneity even in steady state [Adams and Olmsted (2009b)] (we will

return to the role of the stress gradient in Sec. VI). Figure 5 also shows the degree of

polymer deformation (strain) during the recoil. The polymer strain tensor becomes well-

ordered, at an angle of approximately 45. with respect to the flow direction, when the

transient develops [Fig. 5(b)]. Interestingly, it remains ordered and changes only weakly

until steady state is reached; moreover, the spatial gradient only introduces a relatively

small gradient in the molecular order and orientation. Hence, the transient inhomogeneity

would be difficult to observe using a molecular probe such as birefringence or neutron

scattering, as compared to explicit measurements of velocity profiles.

Having explored the response to a single shear rate startup protocol, we now study the

strength of the instability for different shear rates. Figure 6 shows the weight Xmax of the

instability (integrated unstable eigenvalue) for all applied shear rates for this parameter

set. The largest weight occurs near the flattest part of the stress plateau, and indeed we

find the clearest transient banding in this region. A detailed study (not shown here)

reveals that the weight Xmax is larger for large Z, small ! and larger b; i.e., parameters for

which the two flow branches are more widely separated and the constitutive curve has a

shallower slope. The larger value of b produces a flatter, longer stress plateau.

In summary, transient banding is initiated by a linear instability that begins during

startup and becomes largest shortly after the stress overshoot. If this instability has

enough time and strength to grow, as parametrized by the weight Xmax, then transient

FIG. 5. Velocity profiles during startup flow for the parameters of the marked point log10 _csd
¼ 1:138 _csd ¼ 13:74ð Þ on the monotonic constitutive curve in Fig. 2: ðb; !;ZÞ ¼ 0:71; 10'5; 265

" #

, for q¼ 10'3.

The corresponding ellipsoids indicating the components Wrr, Whh, and Wrh of the polymer strain are shown

below. At time t¼ 0.25sd, which is shortly after the stress overshoot, both negative recoil velocities and tran-

sient shear banding occur. The times labeled a, b, c, d, and e are the points labeled on D(t) in Fig. 4.
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banding and even recoil can appear before the eventual steady state is reached. The

steady state is not banded, but weakly inhomogeneous as specified by the stress gradient

across the rheometer.

VI. THE ROLE OF PERTURBATIONS IN TRANSIENT BANDING

We have seen thus far that inhomogeneous flow, or equivalently transient shear band-

ing, is correlated with the most unstable eigenvalue governing fluctuations away from a

homogeneous state at a given instant in time. We now study the spatial perturbations

needed to trigger the instability, by evolving the nonlinear inhomogenous equations of

motion. There are several sources of spatial inhomogeneity that could serve this purpose:

curved rheometer devices (cone and plate or cylindrical Couette geometries) possess a

spatial inhomogeneity in the shear stress; thermal or instrument noise is presumably

always present; thermal gradients across the cell may persist; and there may be inhomo-

geneous initial conditions due to very slow relaxation after sample loading. Here we will

study (i) the consequences of a stress gradient due to curved streamlines and (ii) the role

of inhomogeneous initial conditions that may arise due to the other effects just

mentioned.

We first consider the effect of random initial conditions in a geometry with no intrinsic

stress gradient (i.e., planar Couette flow, q¼ 0). A cosine wave with wavelength 2L, in

keeping with the boundary conditions, was set as the initial condition for a given polymer

strain component, with the others set to zero. The constitutive equations were then

evolved and the velocity profile calculated. This was carried out for a range of different

amplitudes K of the cosine wave. The different components of the polymer strain have

markedly different effects: perturbations in Wyy have the most dramatic effect, because

this strain component (along the flow gradient) is advected into the polymer shear strain

Wxy [Eq. (22d)], which in turn directly contributes to the measured total shear stress. Con-

versely, perturbations inWxy are much less important because they are rotated into the ve-

locity direction (Wxx), which does not contribute to the total shear stress. Figure 7 shows

the effect of an initial condition in Wyy. For small enough initial noise there is virtually

no transient banding, while substantial initial noise (a few percent of the steady state

polymer strain in flow) can lead to strong transient banding and negative velocity recoil.

The modulus of the entangled polymers is G ’ ckBT, where c is the concentration of

entanglement strands. Reasoning that coherent fluctuations can obtain within a volume of

FIG. 6. The weight Xmax of the instability (magnitude of the integral of the most unstable eigenvalue) and the

monotonic constitutive curve rxyð _cÞ (solid line) from Fig. 2. For ðb; !;ZÞ ¼ 0:71; 10'5; 265
" #

, for q¼ 10'3.
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order a3, where a is the tube diameter, Marrucci and Grizzuti (1983) estimated the typical

average strain dWab

( )
due to thermal fluctuations in entangled polybutadiene melts to be

of order
ffiffiffiffiffiffiffiffiffiffiffi
1=6:4

p
’ 0:39, assuming a ’ 5:8 nm; this is comparable to the initial condition

necessary to induce a transient banding response in our numerical calculation.

The stress overshoot also changes character (Fig. 8): for a larger value of K (a stronger

perturbation) the stress relaxes more quickly after the overshoot, due to the more rapid

development of transient banding. For K¼ 10'2, the stress actually undershoots the

steady state value before increasing and then finally decreasing slowly to the steady state.

Similar stress undershoots were reported by Tapadia and Wang (2004) and Sui and

McKenna (2007), for entangled polymer solutions that underwent flow instability, and by

Crawley and Graessley (1977) in much earlier work.

FIG. 7. Effect of noisy initial conditions for Wyy on (a) the shear rate drop D as a measure of inhomogeneity,

and (b-d) transient velocity profiles v(y), for different initial conditions Wyy ¼ K cospy. In steady state

Wyy¼'0.52. For parameters ðb; !;ZÞ ¼ 0:71; 10'5; 265
" #

and q¼ 0.

FIG. 8. Stress overshoots for initial conditions conditions Wyy ¼ K cospy, parametrized by K. For parameters

ðb; !; ZÞ ¼ 0:71; 10'5; 265
" #

.
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An alternative perturbation is a stress gradient due to, e.g., the curvature of a Couette

cell or a nonzero angle in a cone and plate rheometer. This is studied in Fig. 9. As

explained earlier we parametrize this by the curvature parameter q¼ ln R2=R1 [Eq. (15)].

For q> 10'3, whose stress gradient is similar to that of very thin gap Couette rheometers

or typical cone and plate rheometers, there is substantial transient banding for these pa-

rameters; while for q¼ 10'5 there is essentially no transient banding. [We remind the

reader that this calculation was performed for cylindrical Couette flow, and that the com-

parison with cone and plate flow is based solely on the shear stress gradients in the two

geometries.] The stress overshoot also relaxes quicker after the overshoot for a larger

stress gradient (larger q) (Fig. 10).

An experimental test is thus to observe the change in transient banding as a function

of flow geometry and hence q; or to systematically preshear the material to induce molec-

ular deformation; or otherwise induce spatially inhomogeneous initial conditions into a

sliding plate geometry. Existing experiments show transient banding in both curved and

flat geometries; our calculations would be consistent with reproducible transients in a

curved geometry, but less reproducible transients in a flat geometry, reflecting the varia-

tions of initial and loading conditions.

VII. DISCUSSION

A. Parameter space and critique of the Rolie-Poly model

We have explored the behavior of transient banding as a function of the parameters of

the DRP model (Fig. 11). A monotonic constitutive curve is more (dynamically) unstable

and susceptible to transient banding if it has well separated flow branches, which occurs

for greater numbers of entanglements Z, larger CCR efficiency b, or lower solvent

FIG. 9. Effect of different stress gradients q 0 ln R2

R1
on (a) the shear rate drop D as a measure of inhomogeneity,

and (b-d) transient velocity profiles v(y). For parameters ðb; !; ZÞ ¼ 0:71; 10'5; 265
" #

. The value q¼ 10'3 corre-

sponds roughly to a cone angle of 2.5..
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viscosity !. The larger CCR parameter b may appear paradoxical, since increasing it ren-

ders a banding fluid stable. However, one also needs, simultaneously, a smaller viscosity

ratio and larger Z, to render the plateau shallower and wider in the monotonic regime.

Although the value of the CCR parameter b is evidently important, we have as yet no

way of independently determining it. Likhtman and Graham (2003) used the values of

b¼ 0, 0.5, and 1 to fit multimode, steady state, and transient data, respectively. It would

be useful to compare a quantitative model such as the DRP model with experimental

results on shear banding (transient or steady state) to try and infer the magnitude of the

CCR parameter, given knowledge of the other parameters.

Unfortunately the DRP model is still too crude to make this a justifiable exercise. The

high shear rate branch is not handled correctly, since Newtonian behavior is not observed

experimentally at the highest shear rates [Tapadia and Wang (2003)]. Moreover, the DRP

model is only a simple approximation to the more complete GLAMM theory [Likhtman

and Graham (2003); Graham et al. (2003)], and there is thus not a precise correspondence

between the parameter values used to fit the DRP model to data, and their microscopic

physical meaning in the original GLAMM model. For example, we use rather larger val-

ues of entanglement number Z than are realized in most experiments. However, the DRP

model reproduces the qualitative behavior, albeit without the quantitative material pa-

rameters. These qualitative conclusions seem to be robust, as far as we can discern: the

much broader and flatter steady state constitutive curves are accompanied by dramatic

dynamics that can result in transient inhomogeneities. There is an urgent need for per-

forming inhomogeneous calculations with more detailed theories such as the GLAMM

model. The GLAMM model itself is also only an approximation, and it certainly misses

important physics about the behavior of the tube at very high shear rates [Graham and

McLeish (2007)].

Figure 11 shows the behavior expected for three values of b, as a function of entangle-

ment number Z and viscosity ratio !, for q¼ 10'3. The figure shows regions of (1) steady

state banding signified by a nonmonotonic constitutive curve; (2) transient banding dur-

ing startup; and (3) dramatic recoil with negative velocities during startup. From our

startup calculations we found these phenomena to occur for shear rate drops [see

Eq. (39)] D& 2 (transient banding) and D& 7 (transient banding featuring srecoil).

Experiments show transient banding for Z* 15' 50, steady state banding for higher Z,

and recoil for some fluids that do not shear band in steady state. Based on this, we suggest

that the experimental phenomenology of entangled polymer solutions most resembles

FIG. 10. Stress overshoots for different stress gradients q ¼ ln R2

R1
. For parameters ðb; !;ZÞ ¼ 0:71; 10'5; 265

" #

.
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that for values of the CCR parameter b in the range between b¼ 0.71 and b¼ 0.8, as par-

ametrized by the Rolie-Poly model. We emphasize that the parameter values for this

model do not necessarily correspond to those of experiments. However, polymer solu-

tions have a reasonably wide range of Z for which transient, and not steady state, banding

is found as exhibited in Fig. 11 for b¼ 0.71.

B. The stress overshoot and the nonmonotonicity of the instantaneous

constitutive curve

Figure 4 shows that transient banding occurs during the decreasing stress after the

stress overshoot and occurs a short time after the unstable eigenvalue is most unstable. At

these shear rates the fluid behaves elastically at early times, and the stress overshoot as a

function of time could thus be envisioned as the stress overshoot of a solid as a function

of strain c ¼ _ct; such an elastic material with @rxy
!
@c < 0 could be expected to be unsta-

ble [Marrucci and Grizzuti (1983)]. This was also noted by Sui and McKenna (2007) in

their study of entangled polymer solutions.

Figure 6 shows that the integrated instability, as determined by the linear stability

analysis, is most pronounced near the flattest part of the constitutive curve. Since the

steady state is nearly unstable at this point, it is tempting to declare the nearly flat slope

as the cause of the instability. However, the steady state behavior may have little influ-

ence on the instantaneous dynamics. To explore this, we have calculated the instantane-

ous constitutive curve, as described in the introduction and constructed by Hayes et al.

(2010) from their experimental data. We calculate the startup flow for different homoge-

neous shear rates to obtain a surface rxy _c; tð Þ. This surface then defines a curve relating

FIG. 11. Regions of parameter space in which one expects to find different phenomena, for b¼ 0.65, 0.71, 0.8

and q¼ 10'3. The numbers in boxes denote the largest value of the shear rate drop D found during startup for an

applied average shear rate on the flattest part of the steady state constitutive curve, analogous to the solid circle

in Fig. 6. Shown are: steady state banding in the nonmonotonic region; transient banding (D *> 2 and diamonds

or ellipses); and negative velocity recoil upon startup (D *> 7 and ellipses).
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shear stress to shear rate at any instant in time t (the instantaneous constitutive curve). If

this curve has a negative slope, then one expects an instability in the dynamics at finite

Reynolds number, or at least in a subspace of the full dynamics specified by the matrix

M that appears in the linear stability calculation of Sec. IV A. Figure 12 shows that the

instantaneous constitutive curve becomes nonmonotonic, with the strongest instability

(largest unstable eigenvalue xmax) indeed occurring very close the point of steepest nega-

tive slope @rxy
!
@ _c.

Hence, transient banding, while evidently linked to the steady state constitutive curve,

may be expected when the instantaneous constitutive curve is unstable (has negative

slope), based on linear stability analysis. It may also be expected during a stress over-

shoot, for applied shear rates that approximate a step strain and are thus strong enough to

bring the fluid into its elastic regime [Marrucci and Grizzuti (1983)]. We emphasize that

we have shown a very strong correlation, but in the context of the Rolie-Poly model. The

precise correspondences remain to be explored in other models, and we await more work

on this subject.

C. Other transient phenomena

Two other transient banding phenomena have been reported. Well-defined shear bands

have been observed during portions of the cycle during LAOS in polymer solutions

[Tapadia et al. (2006); Ravindranath and Wang (2008)]. This has also been calculated

numerically by Adams and Olmsted (2009b) using the DRP model for a monotonic con-

stitutive curve and by Zhou et al. (2010) for a nonmonotonic constitutive model devised

for wormlike micelles. The calculations revealed banding-like transients for shear rates

sweeping across the pseudoplateau of a barely monotonic constitutive model and for fre-

quencies slower than the inverse reptation time. This is slow enough for a transient band

to form during the upward sweep of strain rate (according to Fig. 4), but not so slow that

FIG. 12. (a) Maximum eigenvalue as a function of shear rate _c for different times t after startup and (b) instanta-

neous constitutive curves, calculated from starting up at different shear rates _c. Each curve represents the stress

obtained a time t after starting up at the given shear rate _c. Note the strong correlation between the region of pos-

itive maximum eigenvalue and the region of negative slope of the time-dependent constitutive curve.
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it decays away completely. It can then be reinforced in subsequent sweeps, given the

strong spatial perturbation it represents, until it develops a sharp profile after a few

cycles.

In other experiments, step strain at shear rates _csR > 1 leads to an inhomogeneous

response (including negative velocity recoil) after cessation of step strain, in both solu-

tions [Wang et al. (2006); Ravindranath and Wang (2007)] and melts [Boukany et al.

(2009)]. In one example, a solution of Z¼ 64 was strained to just the stress maximum in

the overshoot. During relaxation, recoil and an inhomogeneous response developed, simi-

lar to our previous calculations [Adams and Olmsted (2009a)]. One explanation for this

result is that the fluid became unstable during strain, and the instability was able to

amplify a nascent fluctuation large enough to induce a nonlinear and heterogeneous

response during the subsequent relaxation. Indeed, the calculation in Fig. 4 shows that

the largest eigenvalue can become positive, signifying instability, before the overshoot is

reached. However, this cannot be the entire story. In melts the inhomogeneous response

can also be a dramatic fracture [Boukany et al. (2009)] that, as yet, we cannot calculate

from the DRP model [Wang (2009); Adams and Olmsted (2009a)]. This could be because

the DRP model inadequately captures the physics of the GLAMM model; or because im-

portant physics governing the heterogeneity associated with retraction has yet to be cor-

rectly incorporated in any model [Wang et al. (2007)].

D. Implications for validating constitutive models

A significant amount of literature, both experimental and theoretical, has been devoted

to testing constitutive models against the initial stress transients, including the overshoot

and subsequent relaxation [Likhtman and Graham (2003); Wang et al. (2006)]. This is

typically done by comparing the stress transient for shear rate startup to a calculation that

assumes homogeneous shear flow in a planar geometry. As is evident in Fig. 4, the relax-

ation after the overshoot is faster when the fluid is allowed to become inhomogeneous, as

physically occurs during transient banding. Cone and plate geometries are often used

because unlimited strains can be applied and the weak stress gradient is usually hoped to

be negligible. Unfortunately, the transient banding and hence its associated stress

response can be pronounced even for very small stress variations, as parametrized by q.

A planar geometry should exhibit less transient banding if there are no significant pertur-

bations (Fig. 9). We are not yet able to quantify this level of perturbation.

Another common benchmark is the Doi–Edwards damping function h(c, t)¼ rxy(c,

t)=rxy(0, t), defined as the stress relaxation rxy(c, t) after a finite step strain c, normalized

by the relaxation rxy(0,t) that would occur in the linear limit of zero strain. In strongly

entangled systems anomalous behavior in h(c,t) has been reported [Osaki (1993); Ven-

erus (2005)], corresponding to faster relaxation than predicted by DE theory. As noted

above, dramatic heterogeneities can also occur during relaxation after a step strain, in the

DRP model [Adams and Olmsted (2009b)] and experiments on entangled polymers

[Wang et al. (2006); Ravindranath and Wang (2007); Boukany et al. (2009)]. These het-

erogeneities will have a signature in the stress response to a step strain. Thus, it is con-

ceivable that transient heterogeneities could account for the anomalous damping function

measurements [Marrucci and Grizzuti (1983)].

Hence, one must take great care in making predictions for constitutive models: pertur-

bations such as noise or the stress gradients of curved geometries, or the presence of non-

monotonic constitutive behavior, necessitates a validation against a full inhomogeneous

calculation. This warning was also given by Zhou et al. (2008). Such calculations are
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currently out of reach for models such as the GLAMM model, which already involve

solving partial differential equations in time and arc length coordinates [Graham et al.

(2003)].

VIII. SUMMARY

Experiments on highly entangled polymers dissolved in their oligomers show inhomo-

geneous transient velocity profiles in shear flow in a variety of experimental tests. We

have modeled this behavior using the single mode DRP model. The DRP model has

some quantitative shortcomings, but can explain many of the experimental transient phe-

nomena. By varying the model parameters, namely the CCR efficiency b, the entangle-

ment number, Z and the solvent viscosity !, we have shown that transient shear banding

can occur even for monotonic constitutive curves. Similar behavior was found by Zhou

et al. (2008) in calculations using a different nonmonotonic model for entangled poly-

mers, the partially extended convective strain model.

A linear stability analysis of the startup transient shows that the homogeneous state is

unstable, at early times, to the inhomogeneous transient shear bands. The “weight” Xmax

of this instability, given by the time integral of the most unstable eigenvalue, provides a

good predictor of flow instability. Xmax is largest where the constitutive curve is flat. If

this weight is large then small perturbations can provide the seed for this instability. For

large enough perturbations, particularly in fluctuations of the normal stress, the flow pro-

file develops a shear banding state, which then decays over a few relaxation times sd
once the eigenvalue returns to a stable value. We have shown that spatial perturbations

play a crucial role in triggering the transient instability. Examples include strong enough

stress gradients, as found in rotational rheometers; or inhomogeneous initial conditions

due to thermal noise; or residual stress from loading the sample.

Hence, shear banding ranges from the steady state shear banding seen in nonmono-

tonic constitutive curves, to transiently inhomogeneous flow that can develop even for

monotonic constitutive curves. The stress overshoot during startup relaxes more quickly,

due to the transient shear banding, than if the fluid were to remain homogeneous. This

may be consistent with the suggestion long ago by Marrucci and Grizzuti (1983) that an

elastic instability could lead to inhomgeneities in a step strain experiment. The relaxation

of the stress overshoot is more pronounced in geometries with stronger stress gradients.

Our calculations suggest that fluids with a nonmonotonic instantaneous constitutive

curve rxyð _c; tÞ are more likely to have an instability and transient banding [Hayes et al.

(2010)]. Indeed, the linear stability analysis in such situations leads to an unstable eigen-

value that is coincident (in time) with the more strongly nonmonotonic instantaneous con-

stitutive curves. Similarly, transient banding is strongly correlated with the stress overshoot

observed during startup [Sui and McKenna, (2007)]. This is a subject for future work.

In attempting to fit the parameters of the Rolie-Poly model to the existing data, it is

apparent that the model should be judged mainly for its qualitative conclusions: for

example, shear banding in the model occurs for much larger Z than is found in experi-

ments. The model also fails to describe the high shear rate branch correctly without vio-

lating certain physical criteria used to define the effect of stretch on CCR in the parent

GLAMM model [Likhtman and Graham (2003); Graham et al. (2003)]. Finally, chal-

lenges for future work include explaining the dramatic fracture seen in some recent

experiments on both entangled melts and solutions [Boukany et al. (2009); Ravindranath

and Wang (2007)], and extending (or replacing) the GLAMM model to accurately

describe the highest shear rate behavior.

1029TRANSIENTS IN THE ROLIE-POLY MODEL



ACKNOWLEDGMENTS

The authors are grateful to the UK EPSRC (SMF, EP=E5336X=2) and the Royal Com-

mission of 1851 (JMA) for financial support; and to Ron Larson for useful comments.

References

Adams, J. M., S. M. Fielding, and P. D. Olmsted, “The interplay between boundary conditions and flow geome-

tries in shear banding: Hysteresis, band configurations, and surface transitions,” J. Non-Newtonian Fluid

Mech. 151, 101–118 (2008).

Adams, J. M., and P. D. Olmsted, “Adams and Olmsted reply,” Phys. Rev. Lett. 103, 067801 (2009a).

Adams, J. M., and P. D. Olmsted, “Nonmonotonic models are not necessary to obtain shear banding phenomena

in entangled polymer solutions,” Phys. Rev. Lett. 102, 219802 (2009b).

Berret, J.-F., “Rheology of wormlike micelles: equilibrium properties and shear banding transition,” in Molecu-

lar Gels, edited by R. G. Weiss and P. Terech (Springer, Dordrecht, 2005), pp. 235–275.

Black,W. B., andM.D. Graham, “Wall-slip and polymer-melt flow instability,” Phys. Rev. Lett. 77, 956–959 (1996).

Boukany, P. E., Y. T. Hu, and Wang, S.-Q., “Observations of wall slip and shear banding in entangled DNA sol-

utions,” Macromolecules 41, 2644–2650 (2008).

Boukany, P. E., P. Tapadia, and S. Q. Wang, “Interfacial stick-slip transition in simple shear of entangled

melts,” J. Rheol. 50, 641–654 (2006).

Boukany, P. E., and S.-Q. Wang, “A correlation between velocity profile and molecular weight distribution in

sheared entangled polymer solutions,” J. Rheol. 51, 217–233 (2007).

Boukany, P. E., and Wang, S.-Q., “Exploring the transition from wall slip to bulk shearing banding in well-

entangled DNA solutions,” Soft Matter 5, 780–789 (2009a).

Boukany, P. E., and S.-Q. Wang, “Shear banding or not in entangled DNA solutions depending on the level of

entanglement,” J. Rheol. 53, 73–83 (2009b).

Boukany, P. E., S.-Q. Wang, and X. Wang, “Step shear of entangled linear polymer melts: New experimental

evidence for elastic yielding,” Macromolecules 42, 6261–6269 (2009).

Cates, M. E., “Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers),” J.

Phys. Chem. 94, 371–375 (1990).

Cates, M. E., and S. M. Fielding, “Rheology of giant micelles,” Adv. Phys. 55, 799–879 (2006).

Crawley, R. L., and W. W. Graessley, “Geometry effects on stress transient data obtained by cone and plate

flow,” J. Rheol. 21, 19–49 (1977).

Denn, M. M., “Extrusion instabilities and wall slip,” Annu. Rev. Fluid Mech. 33, 265–287 (2001).

Divoux, T., D. Tamarii, C. Barentin, and S. Manneville, “Transient shear banding in a simple yield stress fluid,”

Phys. Rev. Lett. 104, 208301 (2010).

Doi, M., and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1989).

Doi, M., and S. F. Edwards, “Dynamics of concentrated polymer systems. Part 4.-Rheological properties,”

J. Chem. Soc., Faraday Trans. 2 75, 38–54 (1979).

Fielding, S. M., and P. D. Olmsted, “Kinetics of the shear banding instability in startup flows,” Phys. Rev. E 68,

036313 (2003).

Fukuda, M., K. Osaki, and M. Kurata, “Nonlinear viscoelasticity of polystyrene solutions. I. Strain-dependent

relaxation modulus,” J. Polym. Sci., Polym. Phys. Ed. 13, 1563–1576 (1975).

Graham, R. S., A. E. Likhtman, T. C. B. McLeish, and S. T. Milner, “Microscopic theory of linear, entangled

polymer chains under rapid deformation including chain stretch and convective constraint release,” J. Rheol.

47, 1171–1200 (2003).

Graham, R. S., and T. C. B. McLeish, “Emerging applications for models of molecular rheology,” J. Non-New-

tonian Fluid Mech. 150, 11–18 (2007).

Greco, F., and R. C. Ball, “Shear-band formation in a non-Newtonian fluid model with a constitutive insta-

bility,” J. Non-Newtonian Fluid Mech. 69, 195–206 (1997).

Hayes, K. A., M. R. Buckley, H. Qi, I. Cohen, and L. A. Archer, “Constitutive curve and velocity profile in

entangled polymers during start-up of steady shear flow,” Macromolecules 43, 4412–4417 (2010).

1030 ADAMS, FIELDING, and OLMSTED

http://dx.doi.org/10.1016/j.jnnfm.2008.01.008
http://dx.doi.org/10.1016/j.jnnfm.2008.01.008
http://dx.doi.org/10.1103/PhysRevLett.102.067801
http://dx.doi.org/10.1103/PhysRevLett.103.219802
http://dx.doi.org/10.1103/PhysRevLett.77.956
http://dx.doi.org/10.1021/ma702332n
http://dx.doi.org/10.1122/1.2241989
http://dx.doi.org/10.1122/1.2424947
http://dx.doi.org/10.1039/b804791j
http://dx.doi.org/10.1122/1.3009299
http://dx.doi.org/10.1021/ma9004346
http://dx.doi.org/10.1021/j100364a063
http://dx.doi.org/10.1021/j100364a063
http://dx.doi.org/10.1080/00018730601082029
http://dx.doi.org/10.1122/1.549462
http://dx.doi.org/10.1146/annurev.fluid.33.1.265
http://dx.doi.org/10.1103/PhysRevLett.104.208301
http://dx.doi.org/10.1039/f29797500038
http://dx.doi.org/10.1103/PhysRevE.68.036313
http://dx.doi.org/10.1002/pol.1975.180130809
http://dx.doi.org/10.1122/1.1595099
http://dx.doi.org/10.1016/j.jnnfm.2007.09.004
http://dx.doi.org/10.1016/j.jnnfm.2007.09.004
http://dx.doi.org/10.1016/S0377-0257(96)01521-2
http://dx.doi.org/10.1021/ma100162c


Hu, Y. T., C. Palla, and A. Lips, “Comparison between shear banding and shear thinning in entangled micellar

solutions,” J. Rheol. 52, 379–400 (2008a).

Hu, Y. T., C. Palla, and A. Lips, “Role of electrostatic interactions in shear banding of entangled DNA sol-

utions,” Macromolecules 41, 6618–6620 (2008b).

Hu, Y. T., L. Wilen, A. Philips, and A. Lips, “Is the constitutive relation for entangled polymers monotonic?,”

J. Rheol. 51, 275–295 (2007).

Islam, M. T., and L. A. Archer, “Nonlinear rheology of highly entangled polymer solutions in start-up and

steady shear flow,” J. Polym. Sci., Part B: Polym. Phys. 39, 2275–2289 (2001).

Jagla, E. A., “Towards a modeling of the time dependence of contact area between solid bodies,” J. Stat. Mech.:

Theory Exp. 2010, P06006 (2010).

Kolkka, R. W., D. S. Malkus, M. G. Hansen, and G. R. Ierley, “Spurt phenomena of the Johnson-Segalman fluid

and related models,” J. Non-Newtonian Fluid Mech. 29, 303–335 (1988).

Larson, R. G., “A constitutive equation for polymer melts based on partially extending strand convection,”

J. Rheol. 28, 545–571 (1984).

Larson, R. G., The Structure and Rheology of Complex Fluids (Oxford University, New York, 1999).

Larson, R. G., T. Sridhar, L. G. Leal, G. H. McKinley, A. E. Likhtman, and T. C. B. McLeish, “Definitions of

entanglement spacing and time constants in the tube model,” J. Rheol. 47, 809–818 (2003).

Likhtman, A. E., and R. S. Graham, “Simple constitutive equation for linear polymer melts derived from molec-

ular theory: Rolie-Poly equation,” J. Non-Newtonian Fluid Mech. 114, 1–12 (2003).

Likhtman, A. E., S. T. Milner, and T. C. B. McLeish, “Microscopic theory for the fast flow of polymer melts,”

Phys. Rev. Lett. 85, 4550–4553 (2000).

Lu, C.-Y. D., P. D. Olmsted, and R. C. Ball, “Effects of nonlocal stress on the determination of shear banding

flow,” Phys. Rev. Lett. 84, 642–645 (2000).

Manning, M. L., E. G. Daub, J. S. Langer, and J. M. Carlson, “Rate-dependent shear bands in a shear-transfor-

mation-zone model of amorphous solids,” Phys. Rev. E 79, 016110 (2009).

Manning, M. L., J. S. Langer, and J. M. Carlson, “Strain localization in a shear transformation zone model for

amorphous solids,” Phys. Rev. E 76, 056106 (2007).

Marrucci, G., “Dynamics of entanglements: A nonlinear model consistent with Cox-Merz rule,” J. Non-Newto-

nian Fluid Mech. 62, 279–289 (1996).

Marrucci, G., and N. Grizzuti, “The free energy function of the Doi-Edwards theory: Analysis of the instabilities

in stress relaxation,” J. Rheol. 27, 433–450 (1983).

McLeish, T. C. B., and R. C. Ball, “A molecular approach to the spurt effect in polymer melt flow,” J. Polym.

Sci., Part B: Polym. Phys. 24, 1735–1745 (1986).

Mead, D. W., R. G. Larson, and M. Doi, “A molecular theory for fast flows of entangled polymers,” Macromo-

lecules 31, 7895–7914 (1998).

Menezes, E. V., and W. W. Graessley, “Nonlinear rheological behavior of polymer systems for several shear-

flow histories,” J. Polym. Sci., Polym. Phys. Ed. 20, 1817–1833 (1982).

Milner, S. T., McLeish, T. C. B., and A. E. Likhtman, “Microscopic theory of convective constraint release,”

J. Rheol. 45, 539–563 (2001).

Moorcroft, R. L., M. E. Cates, and S. M. Fielding, “Erratum: Age-dependent transient shear banding in soft

glasses,” Phys. Rev. Lett. 106, 055502 (2011).

Morrison, F. A., and R. G. Larson, “A study of shear-stress relaxation anomalies in binary mixtures of monodis-

perse polystyrenes,” J. Polym. Sci., Part B: Polym. Phys. 30, 943–950 (1992).

Olmsted, P. D., “Perspectives on shear banding in complex fluids,” Rheol. Acta 47, 283–300 (2008).

Olmsted, P. D., O. Radulescu, and C.-Y. D. Lu, “Johnson-Segalman model with a diffusion term in cylindrical

Couette flow,” J. Rheol. 44, 257–275 (2000).

Osaki, K., “On the damping function of shear relaxation modulus for entangled polymers,” Rheol. Acta 32,

429–437 (1993).

Osaki, K., and M. Kurata, “Experimental appraisal of the Doi-Edwards theory for polymer rheology based on

the data for polystyrene solutions,” Macromolecules 13, 671–676 (1980).

Ravindranath, S., and S.-Q. Wang, “What are the origins of stress relaxation behaviors in step shear of entangled

polymer solutions?,” Macromolecules 40, 8031–8029 (2007).

1031TRANSIENTS IN THE ROLIE-POLY MODEL

http://dx.doi.org/10.1122/1.2836937
http://dx.doi.org/10.1021/ma801382j
http://dx.doi.org/10.1122/1.2433701
http://dx.doi.org/10.1002/polb.v39:19
http://dx.doi.org/10.1088/1742-5468/2010/06/P06006
http://dx.doi.org/10.1088/1742-5468/2010/06/P06006
http://dx.doi.org/10.1016/0377-0257(88)85059-6
http://dx.doi.org/10.1122/1.549761
http://dx.doi.org/10.1122/1.1567750
http://dx.doi.org/10.1016/S0377-0257(03)00114-9
http://dx.doi.org/10.1103/PhysRevLett.85.4550
http://dx.doi.org/10.1103/PhysRevLett.84.642
http://dx.doi.org/10.1103/PhysRevE.79.016110
http://dx.doi.org/10.1103/PhysRevE.76.056106
http://dx.doi.org/10.1016/0377-0257(95)01407-1
http://dx.doi.org/10.1016/0377-0257(95)01407-1
http://dx.doi.org/10.1122/1.549715
http://dx.doi.org/10.1002/polb.1986.090240809
http://dx.doi.org/10.1002/polb.1986.090240809
http://dx.doi.org/10.1021/ma980127x
http://dx.doi.org/10.1021/ma980127x
http://dx.doi.org/10.1002/pol.1982.180201006
http://dx.doi.org/10.1122/1.1349122
http://dx.doi.org/10.1103/PhysRevLett.106.055502
http://dx.doi.org/10.1002/polb.1992.090300902
http://dx.doi.org/10.1007/s00397-008-0260-9
http://dx.doi.org/10.1122/1.551085
http://dx.doi.org/10.1007/BF00396173
http://dx.doi.org/10.1021/ma60075a036
http://dx.doi.org/10.1021/ma071495g


Ravindranath, S., and S.-Q. Wang, “Large amplitude oscillatory shear behavior of entangled polymer solutions:

Particle tracking velocimetric investigation,” J. Rheol. 52, 341–358 (2008).

Ravindranath, S., S.-Q. Wang, M. Olechnowicz, and R. P. Quirk, “Banding in simple steady shear of entangled

polymer solutions,” Macromolecules 41, 2663–2670 (2008).

Rehage, H., and H. Hoffmann, “Viscoelastic surfactant solutions: Model systems for rheological research,”

Mol. Phys. 74, 933–973 (1991).

Rossi, L. F., G. McKinley, and L. P. Cook, “Slippage and migration in Taylor-Couette flow of a model for dilute

wormlike micellar solutions,” J. Non-Newtonian Fluid Mech. 136, 79–92 (2006).

Spenley, N. A., M. E. Cates, and T. C. B. McLeish, “Nonlinear rheology of wormlike micelles,” Phys. Rev.

Lett. 71, 939–942 (1993).

Sui, C., and G. B. McKenna, “Instability of entangled polymers in cone and plate rheometry,” Rheol. Acta 46,

877–888 (2007).

Tapadia, P., S. Ravindranath, and S.-Q. Wang, “Banding in entangled polymer fluids under oscillatory

shearing,” Phys. Rev. Lett. 96, 196001 (2006).

Tapadia, P., and S.-Q. Wang, “Yieldlike constitutive transition in shear flow of entangled polymeric fluids,”

Phys. Rev. Lett. 91, 198301 (2003).

Tapadia, P., and S.-Q. Wang, “Nonlinear flow behavior of entangled polymer solutions: Yieldlike entangle-

ment-disentanglement transition,” Macromolecules 37, 9083–9095 (2004).

Tapadia, P., and S.-Q. Wang, “Direct visualization of continuous simple shear in non-Newtonian polymeric flu-

ids,” Phys. Rev. Lett. 96, 016001 (2006).

Venerus, D. C., “A critical evaluation of step strain flows of entangled linear polymer liquids,” J. Rheol. 49,

277–295 (2005).

Venerus, D. C., and R. Nair, “Stress relaxation dynamics of an entangled polystyrene solution following step

strain flow,” J. Rheol. 50, 59–75 (2006).

Vinogradov, G. V., “Critical regimes of deformation of liquid polymeric systems,” Rheol. Acta 12, 357–373

(1973).

Vrentas, C. M., and W. W. Graessley, “Study of shear stress relaxation in well-characterized polymer liquids,”

J. Rheol. 26, 359–371 (1982).

Wang, S. Q., “Molecular transitions and dynamics at polymer=wall interfaces: Origins of flow instabilities and

wall slip,” in Polymers in Confined Environments, Adv. Poly. Sci. (Springer, Berlin, 1999), Vol. 138,

pp. 227–275.

Wang S.-Q., “Comment on nonmonotonic models are not necessary to obtain shear banding phenomena in

entangled polymer solutions,” Phys. Rev. Lett. 103, 219801 (2009).

Wang S-.Q., S. Ravindranath, P. Boukany, M. Olechnowicz, R. Quirk, A. Halasa, and J. Mays, “Nonquiescent

relaxation in entangled polymer liquids after step shear,” Phys. Rev. Lett. 97, 187801 (2006).

Wang S-.Q., S. Ravindranath, Y. Wang, and P. Boukany, “New theoretical consideration in polymer rheology:

Elastic breakdown of chain entanglement network,” J. Chem. Phys. 127, 064903 (2007).

Zhou, L., L. P. Cook, and McKinley, G. H, “Probing shear-banding transitions of the VCM model for entangled

wormlike micellar solutions using large amplitude oscillatory shear (LAOS) deformations,” J. Non-Newto-

nian Fluid Mech. 165, 1462–1472 (2010).

Zhou, L., P. A. Vasquez, L. P. Cook, and G. A. McKinley, “Modeling the inhomogeneous response and forma-

tion of shear bands in steady and transient flows of entangled liquids,” J. Rheol. 52, 591–623 (2008).

1032 ADAMS, FIELDING, and OLMSTED

http://dx.doi.org/10.1122/1.2833453
http://dx.doi.org/10.1021/ma7027352
http://dx.doi.org/10.1080/00268979100102721
http://dx.doi.org/10.1016/j.jnnfm.2006.02.012
http://dx.doi.org/10.1103/PhysRevLett.71.939
http://dx.doi.org/10.1103/PhysRevLett.71.939
http://dx.doi.org/10.1007/s00397-007-0169-8
http://dx.doi.org/10.1103/PhysRevLett.96.196001
http://dx.doi.org/10.1103/PhysRevLett.91.198301
http://dx.doi.org/10.1021/ma0490855
http://dx.doi.org/10.1103/PhysRevLett.96.016001
http://dx.doi.org/10.1122/1.1822931
http://dx.doi.org/10.1122/1.2135331
http://dx.doi.org/10.1007/BF01502988
http://dx.doi.org/10.1122/1.549686
http://dx.doi.org/10.1103/PhysRevLett.103.219801
http://dx.doi.org/10.1103/PhysRevLett.97.187801
http://dx.doi.org/10.1063/1.2753156
http://dx.doi.org/10.1016/j.jnnfm.2010.07.009
http://dx.doi.org/10.1016/j.jnnfm.2010.07.009
http://dx.doi.org/10.1122/1.2829769

	s1
	cor1
	s2
	s2A
	E1
	E2
	s2B
	E3
	s2C
	E4
	E5
	E6
	s2D
	E7
	E8
	E9
	s2E
	F1
	s3
	s3A
	E10
	F2
	F3
	E11
	E12a
	E12b
	E12c
	E12d
	E13
	E14
	E15
	E16
	E17
	E18
	E19
	E20
	E21
	E22a
	E22b
	E22c
	E22d
	E23
	E24
	E25
	s3B
	E26
	E27
	E28
	s4
	s4A
	E29
	E30
	E31
	E32
	E33
	E34
	E35
	E36
	s4B
	E37a
	E37b
	E38
	E39
	s5
	F4
	F5
	s6
	F6
	F7
	F8
	s7
	s7A
	F9
	F10
	s7B
	F11
	s7C
	F12
	s7D
	s8
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B47
	B48
	B49
	B50
	B51
	B52
	B53
	B54
	B55
	B56
	B57
	B58
	B59
	B60
	B61
	B62
	B63
	B64
	B65
	B66
	B67
	B68
	B69
	B70
	B71

