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Anisotropy of interband transitions in InAs quantum wires: an atomistic theory

Marco Califano and Alex Zunger
National Renewable Energy Laboratory, Golden, CO, 80401

The electronic and optical properties of [001]-oriented free-standing InAs cylindrical quantum
wires (QWRs) with diameters 10–100 Å are calculated using an atomistic, empirical pseudopotential
plane-wave method. We analyze the effect of different degrees of mixing between valence bands on
the optical properties of these nanostructures, by switching on and off the spin-orbit interaction. The
fundamental transition in these QWRs exhibit a large anisotropy, with emission polarized prevalently
along the wire axis z. The magnitude of such an anisotropy is found to depend on both degree of
valence band mixing and wire size. In higher energy interband transitions, we find anisotropies
close to 100% with emission polarized perpendicular to the wire axis. Furthermore, in large wires,
transitions involving highly excited valence states show in-plane polarization anisotropies between
the [110] and [11̄0] directions. InAs wires can therefore switch between z-polarized to xy-polarized
emission/absorption for different excitation energies. This makes them ideally suited for application
in orientation-sensitive devices.

PACS numbers: 71.15.-m, 71.55.-i

I. INTRODUCTION

Recent advances in fabrication techniques such as laser
assisted catalytic growth (LCG) and its variations, made
it possible1-9 to produce high quality quantum wires
(QWRs) of many III-V (InAs, InP, GaAs, GaP, GaN,
etc), II-VI (ZnS, ZnSe, CdS, CdSe), and IV-IV (alloys
of SiGe) semiconductors, with diameters ranging from
3 nm to several tens of nm, and lengths exceeding 1
µm. This growth method exploits laser ablation to gener-
ate nanometer diameter catalytic clusters that define the
size and direct the growth of the crystalline nanowires
by a vapor-liquid-solid mechanism. The availability of
such perfect cylindrical samples at a crystalline level of-
fers challenging opportunities to the theorist to explain
their properties and predict new features that can be
exploited for the realization of novel devices. One of
the most important properties of QWRs is the polar-
ization anisotropy of their interband transitions: due to
the 1D confinement, the emission/absorption intensity
I‖ for light polarized parallel to the wire axis (z) can be
different from that (I⊥) for light polarized in the (x, y)
plane, perpendicular to it. The polarization anisotropy
is defined in terms of the degree of linear polarization

ρ =
α‖ − α⊥

α‖ + α⊥
. (1)

where α is the absorption coefficient. Furthermore, as the
underlying crystal structure of the wire might be differ-
ent along two perpendicular directions in the (x, y) plane,
an in-plane polarization anisotropy can also be expected.
A giant anisotropy in the band gap emission, which was
found to be over 90% polarized parallel to the wire axis,
was recently measured1 in InP LCG-grown cylindrical
wires. Interestingly, no transition polarized perpendic-
ular to the wire axis was found1 in an energy range of
about 50-60 meV around the main peak. This feature
makes the wires ideal for many orientation-sensitive ap-
plications, such as optical switches and interconnectors,

near-field imaging and high resolution detectors. More-
over, the determination of the orientation of the polar-
ization gives also specific indications on the optimal con-
figuration of a QWR laser10, i.e., on whether it is better
to allign the wires parallel or perpendicular to the cavity
walls in order to achieve maximum interaction with the
optical cavity field.

The polarization of optical transitions in QWRs with
different cross sections has been extensively studied both
experimentally11-15 and theoretically16-26. All studies
concur to attribute the main origin of anisotropies in
the dipole matrix elements of optical transition to va-
lence band mixing. Another source of anisotropy in the
optical transitions, that may occur even in the case of
isotropic dipole matrix elements, is a dielectric constant
discontinuity at the wire surface22,23. Although exci-
tonic effects have also been found27 to weakly contribute
to the in-plane anisotropy even in cylindrically symmet-
rical quantum dots, this paper will focus only on the
single-particle contribution to the polarization anisotropy
in optical transitions. Despite the crucial importance
of band mixing to optical anisotropy, most theoretical
treatments16-24 decouple conduction and valence bands,
and consider only interactions between a limited number
of valence bands, e.g., only between the bulk Γ8v-derived
heavy-hole (hh) and light-hole (lh) bands, neglecting cou-
pling with the bulk Γ7v-derived split-off bands. This ap-
proach is also known as the infinite spin-orbit splitting

approach. Furthermore, in all the aforementioned treat-
ments, the wire is assumed to be a continuous medium
(i.e., with no underlying atomistic structure), modeled as
a 2D square well. It has therefore an ideally high sym-
metry: C∞v for a circular, C4v for a square and C2v for a
rectangular cross-section, whereas the actual (atomistic)
symmetries might be lower depending on the wire orien-
tation.

In the present work we present an atomistic study of
the electronic and optical properties of zinc-blende, [001]-
oriented, free-standing cylindrical wires by means of a
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semi-empirical pseudopotential method that naturally in-
cludes general multi-band coupling as well as the effect
of spin-orbit (SO). In one set of our calculations, we also
set artificially ∆so = 0 in order to study the contribution
of the split-off bands to band mixing and consequently
to polarization properties. We find that:

(i) the fundamental h1 → e1 transition in QWRs shows
a high polarization anisotropy, with emission polarized
prevalently along the wire axis z. The magnitude of
the anisotropy depends on the degree of valence band
mixing: when the SO interaction is set to zero (i.e., for
maximum band mixing), the value of the degree of lin-
ear polarization is close to 100% and is independent of
both size and temperature; when a realistic value for the
SO splitting is considered (i.e., for reduced band mix-
ing), ρ decreases to about 80% and becomes size- and
temperature-dependent.

(ii) Higher energy interband transitions show polariza-
tion anisotropies close to 100% with emission perpendic-
ular to the wire axis, with no dependence on wire size or
band mixing.

(iii) If we assume a line broadening of the order of
that obtained in typical experimental conditions1, the
features of photoluminescence (PL) peaks with emission
polarized perpendicular to the wire at energy close to the
band gap transition are hidden by the broad band-gap
PL. This might be the reason why no transition polarized
perpendicular to the wire axis was found1 in InP wires
in an energy range of about 50-60 meV around the main
peak.

(iv) Transitions involving highly excited valence states
in thick wires show in-plane polarization anisotropies
(i.e., anisotropies between the inequivalent [110] and [11̄0]
directions, both perpendicular to the wire axis) regard-
less to whether SO is considered or not.

II. ORIGINS OF THE LINEAR POLARIZATION

ANISOTROPY IN QWRS

Within the dipole approximation, in the limit where
the wavelength λ of the electromagnetic field is much
larger than the wire radius R, absorption and emission
are proportional to the scalar product of the local elec-
tric field E and the interband dipole moment p, averaged
over the electron-hole wave function. The absorption co-
efficient α can therefore be written as:

α(i) ∝
|〈ψv|E

(i) · p|ψc〉|
2

|E∞|2
, (2)

where i = ‖,⊥ are the component parallel and perpendic-
ular to the wire axis respectively. There are two main fac-
tors that can cause a polarization dependence in the opti-
cal transitions in a QWR: (i) a discontinuity in the dielec-
tric constant between the wire and its surroundings22,23;
(ii) a strong valence band mixing20.

A. Polarization anisotropy due to dielectric

constant discontinuity

According to Landau theory of dielectric media32,
when the electric field E∞ of the incident light wave far
from the wire is perpendicular to the wire axis, the am-
plitude of E inside the wire is strongly modulated on the
scale of the nanostructure radius, due to the boundary
conditions, resulting in32:

E⊥ = δ · E⊥
∞ (3)

where

δ =
2εout

εout + εin
, (4)

and εin and εout are the dielectric constant of the wire
and the surrounding material, respectively. When E∞ is
parallel to the wire axis, no modulation takes place. The
degree of linear polarization is defined as:

ρ =
α‖ − α⊥

α‖ + α⊥
=

|〈ψv|E
‖ · p|ψc〉|

2 − |〈ψv|E
⊥ · p|ψc〉|

2

|〈ψv|E‖ · p|ψc〉|2 + |〈ψv|E⊥ · p|ψc〉|2

(5)

where we assumed E
‖
∞ = E⊥

∞. If E is homogeneous inside
the wire, Eq. (5) becomes:

ρ =
|M

‖
cv|2 − δ2|M⊥

cv|
2

|M
‖
cv|2 + δ2|M⊥

cv|
2

(6)

where

M (i)
cv = 〈ψv|pi|ψc〉. (7)

It follows that if εout = εin (i.e., if δ = 1) the polar-
ization anisotropy in the optical transition is completely
determined by the intrinsic anisotropy of the interband
dipole matrix elements. If, however, δ 6= 1, there will be
a polarization anisotropy component deriving from the
discontinuity in the dielectric constant between wire and
surrounding material, even in the absence of anisotropy
in Mcv. This effect vanishes in spherical objects, where
the field distribution due to boundary conditions does not
depend on the light polarization. A further cause of po-
larization anisotropy could also arise in case the electric
field were inhomogeneously distributed inside the wire22.

B. Polarization anisotropy due to valence band

mixing

1. Band couplings

In bulk zinc-blende semiconductors with point group
Td the valence bands can have three symmetries: Γ8,
Γ7, and Γ6. The Γ8v bands are fourfold degenerate at
zone center (k = 0) and have a total angular momen-
tum J = 3/2, with projection along z Jz = ±3/2 (these
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bands are also known as heavy-holes), and Jz = ±1/2
(these bands are known as light-holes). The Γ7v bands,
also called split-off bands, have J = 1/2, and Jz = ±1/2
and are located ∆so below the Γ8v bands at zone center.
Group theoretical treatments16,18,26,28 have long estab-
lished that the characterization of valence band states as
heavy-holes and light-holes is not possible in QWRs, be-
cause the irreducible representations for the hole states in
these structures (see below) do not transform neither like
heavy-hole nor like light-hole, but have a mixed character
at all k. One of the main causes of polarization depen-
dence in the optical transitions in QWRs is precisely this
mixing of the valence bands. This is in contrast to the
case of the quantum well, where the hh and lh states are
decoupled at the zone center.

There are two types of possible zone-center coupling
between valence bands in a QWR: (i) intra-band cou-
pling between the components (hh, lh) of the bulk Γ8v-
derived bands20: Γ8v(Jz = 3/2)–Γ8v(Jz = −1/2) and
Γ8v(Jz = −3/2)–Γ8v(Jz = 1/2). According to the k·p
approach17,19,21, the highest degree of linear polariza-
tion produced by this hh-lh coupling for the fundamen-
tal h1 → e1 (band gap) transition is 60%, indepen-
dent of wire diameter and composition19 or orientation21.
(ii) Inter-band coupling between the bulk Γ8v-derived lh
and the Γ7v-derived split-off bands: Γ8v(Jz = ±1/2)–
Γ7v(Jz = ±1/2). Citrin and Chang showed28 that, in
square cross-section wires, this lh-split-off coupling af-
fects the energy position and dispersion of all subbands
at the zone center in QWRs. This is a consequence of
the hh-lh coupling (i) in these wires: in quantum wells,
where at zone center there is no such hh-lh coupling and
the valence subbands can be characterized as pure hh or
lh, the heavy-holes do not couple to the split-off bands
for k = 028; if the hole subbands in a wire had pure
hh or lh character, the inclusion of the spin-orbit cou-
pling would influence only lh states, leaving hh states
unchanged. As in these wires all energy subbands are
affected when spin-orbit is considered, it follows that
all states have some lh component, i.e., there is lh-hh
coupling. The degree of linear polarization calculated
by Citrin and Chang26 is of the order of 67% in GaAs
square cross-section wires. According to Zheng and co-
workers25, the inclusion of the lh-split-off coupling in the
k·p treatment leads in In0.53Ga0.47As cylindrical wires to
a diameter- and temperature-dependent ρ, which ranges
from 40% (for a d = 15 nm wire at T = 300 K) to about
80% (for a d = 7 nm wire at the same temperature).

2. Perceived wire symmetry

The magnitude of these band couplings and the po-
larization of the inter-band transitions depend on the
symmetry with which the wire is “seen” by a theoreti-
cal model. The simplest approach is k·p, where the wire
is assumed to be a continuous medium (i.e., with no un-
derlying atomistic structure), modeled as a 2D square

well. Within this approach, a circular cross-section wire
has therefore an ideally high C∞v symmetry19 which is
independent of its orientation. However, a real cylin-
drical wire made of zinc-blende material, due to its un-
derlying atomic structure, has always a lower symme-
try than that modeled by the continuum k·p approach.
Furthermore, this symmetry depends on its crystallo-
graphic orientation, or growth direction: if grown along
the principal axes [100], [010] or [001] it will have an over-
all D2d symmetry, otherwise its symmetry will be even
lower. A cylindrical wire grown along the (111) direc-
tion, for example, has a C3v symmetry. In order to obtain
these two symmetries within continuum models, however,
one must represent the real circular cross-section wire as
having instead square26,28 (the groups C4v and D2d are
isomorphic33) and, respectively, triangular28 cross sec-
tions. The problem with the perceived higher symmetry
in k·p is that the irreducible representations of C∞v are
different from those of the real D2d, C3v, etc. symme-
tries. This is discussed in the next section.

TABLE I: Summary of the polarizations allowed in C∞v, D2d

and C4v symmetry for the different transitions considered.
The directions z and x refer to orientations parallel and per-
pendicular to the wire axis, respectively. The class to which
each transition belongs is also indicated: pF and lF stand
for parity-Forbidden and l-(angular momentum)-Forbidden;
SP and MP stand for Single and Mixed Polarization, respec-
tively.

Irrep. Transition Polariz. Class

C∞v C(±) → E(∓) / pF
C(0) → E3/2,n x SP
C(0) → E1/2,n z,x MP
C(1) → E3/2,n z,x MP
C(1) → E1/2,n z,x MP

D2d, C4v ∆l 6= 0 / lF
Γ6 → Γ7 x SP
Γ7 → Γ6 x SP
Γ6 → Γ6 z,x MP
Γ7 → Γ7 z,x MP

III. GENERAL PROPERTIES OF WIRES WITH

C∞v AND D2d SYMMETRIES

In a C∞v wire the irreducible representation of the va-
lence states at Γ are characterized19 by the value Fz of the
z component of their total angular momentum F = J+L

(where L is the angular momentum of the envelope part
and J the total angular momentum of the Bloch part of
the wave function) and by their zone-center parity [even
(+), or odd (-)] in the plane perpendicular to the wire,

as E
(±)
Fz,n, where n refers to the order of the subband for

the particular quantum number Fz. The conduction sub-
bands are labeled according to their parity in the plane
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perpendicular to the wire (henceforth when referring to
“parity” we will always mean parity in the plane perpen-
dicular to the wire), and the value of |Lz|, as C(±)(|Lz|).
In what follows we will consider interband transitions
of the form C(±)(|Lz|) → E

(±)
Fz,n (at zone center, tran-

sitions between subbands with different parities, i.e.,

C(±)(|Lz|) → E
(∓)
Fz,n, are forbidden). The allowed tran-

sitions can be divided into two general classes, depend-
ing on their polarization: (i) mixed polarization (MP)
transitions, that have both perpendicular (x) and paral-
lel (z) component (to this class belong C(0) → E1/2,n,

C(1) → E1/2,n and C(1) → E3/2,n
19); (ii) single polar-

ization (SP) transitions, that are polarized only perpen-
dicular to the wire axis, like C(0) → E3/2,n

19.

In a C4v square cross-section wire or a D2d cylindri-
cal wire instead, the conduction and valence subbands
have Γ6 and Γ7 symmetry28. In order to determine the
allowed and forbidden transitions in D2d wires we can
resort to considerations similar to those regarding the
conservation of the parity quantum number, just made
for C∞v wires. In this case the angular momentum l
of the envelope function needs to be conserved, there-
fore transitions between subbands with different value of
l are formally forbidden. This criterion would yield the
same forbidden transitions in D2d wires as the parity se-
lection rule yielded in C∞v wires. However, we find that,
due to the strong confinement, the wire subbands do not
have pure (s, p, d, etc.) character, but receive contri-
butions from different angular momenta. This leads to
a relaxation of the angular momentum conservation rule
in D2d cylindrical wires. The interband Γi → Γj tran-
sitions (with i, j = 6, 7), can again be grouped into two
classes, as before: (i) the mixed polarization transitions
include only Γi → Γi transitions, whereas to (ii) single
polarization transitions belong transitions between sub-
bands with different symmetries. The explanation for
the inclusion of a particular transition in one of the two
classes derives from general group theoretical considera-
tions. In C∞v, C4v and D2d wires, the component of the
dipole operator along the z axis transforms as the identity
representation19. Therefore, in C∞v wires transitions be-
tween conduction subbands with Lz = 0 (C(0)) and va-
lence subbands with Fz = 3/2 cannot occur if the optical
wave is polarized along the wire axis z. The same is true
for transitions between subbands with different symme-
tries in C4v and D2d wires. Transitions through optical
waves polarized perpendicular to the wire are however
allowed. Table I summarizes the allowed polarizations
for the different transitions considered and indicates the
class to which each transition belongs.
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FIG. 1: Schematics of the calculated single-particle energy
levels (labeled with their main angular momentum com-
ponent) for 3 InAs D2d cylindrical wires with sizes d =
1.2, 3.6, 9.6 nm respectively. The dashed lines connect respec-
tively CBM and VBM in the different wires. Only a few states
are shown that were used in the calculations of the optical
properties.

IV. ATOMISTIC DESCRIPTION OF D2d WIRES

The electronic structure of a nanostructure is calcu-
lated by solving the single-particle Schrödinger equation:

[

−
h̄2

2m
∇2 + V (r)

]

ψi(r) = εiψi(r), (8)

where V (r) is the potential and εi the energy eigenvalues.
In the effective mass approximation, m is taken as the
effective mass, and V = Vext(r) is an external potential
defining the geometric confinement of the nanostructure.
We use a different approach, where m = m0 is the actual
(bare) electron mass and the microscopic pseudopotential
of the system Vps(r) is obtained as a superposition of
screened atomic potentials,

Vps(r) = Σi,αvα(r − Ri,α), (9)

where vα(r − Ri,α) is the atomic potential for an atom
of type α located at the position Ri,α. The atomic pseu-
dopotentials are derived from the bulk LDA screened
pseudopotential and fitted to reproduce the measured
InAs bulk transition energies, deformation potentials and
effective masses29. The total potential is then expressed
as

V (r) = Vps(r) + Vnl (10)

where Vnl accounts for the nonlocal part of the poten-
tial and includes the SO coupling. In this atomistic ap-
proach Eq. (9) we set up the zinc-blende geometry of
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the system (nanostructure plus its surrounding matrix)
in a supercell with periodic boundary conditions. The
supercell size is chosen so as to minimize any interaction
between neighbouring nanostructures This is obtained by
increasing the supercell size until the calculated electron
ground state energy does not change to within 1 meV
(the hole energies converge much faster than the electron
energies). We model LCG grown wires as free-standing,
unstrained systems. In order to simulate the effect of
an oxide coating, that is often present after the wire
growth9, the nanostructures are embedded in a lattice-
matched fictitious wide-gap (∼ 5.6 eV) material. This
results in large band offsets and the absence of strain be-
tween matrix and wire. The atoms occupy therefore the
ideal positions of a perfect zinc-blende bulk crystal.

Due to the large number of atoms involved, we solve
Eq. (8) by using the folded spectrum method30,31,
whereby it is possible to calculate exactly only selected
eigenstates of the Schrödinger equation around an arbi-
trary reference energy εref. In this approach, Eq. (8) is
replaced by:

[

−
h̄2

2m0
∇2 + Vps(r) + Vnl − εref

]2

ψi(r) = (εi−εref)
2ψi(r),

(11)
which is equivalent to it in the sense that the ground

state of Eq. (11) coincides with the solution of Eq. (8)
with energy closest to εref. Therefore, with this method
the band-edge states can be obtained by choosing the
reference energy inside the band gap. The minimization
procedure is carried out in a plane-wave basis set using
a preconditioned conjugate-gradients algorithm. More
details on this procedure can be found in Ref.31. With the
single-particle energies and wave functions thus obtained,
we calculate the inter-band transition energies Ecv = εc−
εv and dipole matrix elements:

M (i)
cv = 〈ψv|pi|ψc〉 (12)

where εv, ψv and εc, ψc are valence and conduction band
eigenenergies and wave functions, respectively, and p is
the momentum operator with coordinates pi (i = x, y, z).
The emission spectrum is then calculated as a function
of energy and temperature according to:

I(i)
cv (E, T ) = C

∑

c′,v′ |M
(i)
c′v′ |2 e

−
(E−E

c′v′ )
2

λ2 e
−

(E
c′v′−Ecv)

kBT

∑

c′,v′ e
−

(E
c′v′−Ecv)

kBT

(13)
where C is a constant, λ is the PL broadening, T is the
temperature, and we take a Boltzmann average, where
the sum over c′v′ is over states that satisfy Ec′v′ ≥ Ecv,
to take into account temperature effects.

V. RESULTS

In order to investigate the role of microscopic structure
and degree of valence-band coupling in the determination

of the wire optical properties, we calculated dipole matrix
elements and degree of linear polarization for cylindrical
wires with diameters in the range 1–10 nm, both in the
finite (W/SO) and in the zero (N/SO) spin-orbit splitting
approximation. In this way we were able to vary the
mixing between Γ8-derived and Γ7-derived bands, which
is maximum in the absence of SO interaction.

A. Single-particle energies of cylindrical InAs wires

Figure 1 shows schematically the electron and hole
energy levels calculated with our atomistic method, to-
gether with their main angular momentum component,
relative to 3 InAs wire sizes: the thinnest, d = 1.2 nm, the
thickest, d = 9.6 nm, and an intermediate size, d = 3.6
nm. We see that the energy gap and the energy splitting
between the subbands decreases with increasing wire di-
ameter, owing to the decreased size confinement effect.
As we will see, this feature is one of the causes of the
different temperature behaviour of the degree of linear
polarization with different wire size.

B. Calculated polarizations and the role of

dielectric mismatch

Figures 2 and 3 show the dipole matrix elements
squared |M |2 and the relative degree of linear polar-
ization, for the hi → ej (i = 1, . . . , 6 and j = 1, 2, 3)
transitions with light polarized along the wire axis (z-
polarized) and perpendicular to it (x-polarized). The
x- and z-polarized matrix elements relative to the same
transition are offset for clarity. The degree of linear po-
larization shown was calculated from Eq. (6) considering
only the anisotropy of the matrix elements but not the
dielectric constant discontinuity between wire and sur-
rounding material (i.e., δ = 1). Indeed δ ≈ 1 in a wire
covered by an oxide, where the two materials have sim-
ilar dielectric constants. In the case of a free standing
wire in vacuum (εout = 1), because of the small value of
δ in Eq. (6), the anisotropy due to the dielectric constant
discontinuity dominates over the contribution due to the
matrix element anisotropy. Using our calculated matrix
elements and the values of εin = 14.6 for the InAs di-
electric constant and εout = 1, we find that the degree of
linear polarization of the fundamental transition h1 → e1
assumes values > 99% for all wire diameters considered.
On the other hand, if we assume isotropic matrix ele-
ments (M⊥ = M‖) in Eq. (6), we obtain for the same
systems the value of 96.8%. Therefore we find that, for
a wire in vacuum, the matrix element anisotropy con-
tributes by less than 3% to the total anisotropy.
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FIG. 2: (a) Matrix elements squared and (b) degree of linear polarization for the interband transitions hi → ej (i = 1, . . . , 5,
j = 1, 2, 3), as a function of the transition energy for the d = 3.6 nm InAs wire.

C. Symmetry considerations

Table II summarizes the irreducible representations of
the first 3 conduction and 5 valence subbands in C∞v

19,
D2d and C4v

28 wires with similar sizes. In a C∞v wire the
lowest conduction subband C(+)(0) has even parity and
is singly degenerate (excluding spin), whereas the next
subband C(−)(1) has odd parity and is doubly degener-
ate (without spin). The uppermost subbands h1, . . . , h5

in a d = 10 nm wire at zone center are19: E
(+)
1/2,1, E

(−)
1/2,2,

E
(+)
3/2,1, E

(−)
3/2,2, and E

(+)
3/2,3, respectively. In a L = 10 nm

C4v square cross-section wire (where L is the square side
dimension), instead, the lowest conduction states e1, e2
and e3 have Γ6

26, Γ7 and Γ7 symmetry, respectively. The
uppermost valence subbands h1, . . . , h5 in this case are28:
Γ6, Γ7, Γ6, Γ7, and Γ7, respectively. In this work we
find that, despite the identical labeling between the C4v

and D2d representations33, the ordering of both conduc-
tion and valence subbands in a L = 10 nm C4v square
cross-section and D2d cylindrical wires is different (see
Table II). In fact, although the isomorphism between
the C4v and D2d groups specifies the possible symme-
tries of the subbands, it does not pose any constraint on
their specific ordering, a feature which depends, among

other factors, on the magnitude of the confinement. It is
therefore not inconsistent with our group theoretical con-
siderations that the subbands in cylindrical and square
cross-section wires have different order. This fact has
important consequences on the allowed polarizations in
several transitions. From Table II we see that the lowest
conduction subband e1 and the uppermost valence sub-
band h1 have the same symmetry (and the same main
angular momentum component) in C4v and D2d wires.
As a consequence, the lowest energy transition has the
same polarization (i.e., MP) in both wires. This prop-
erty can be expected in general from isomorphic groups,
and reflects the stability of the band edges with respect to
perturbations, such as the change in wire symmetry can
be considered to be. Therefore, by considering a contin-
uous wire with the appropriate cross section (i.e. the one
that simulates the symmetry resulting from the underly-
ing crystal structure of the real wire, as mentioned in Sec.
II B 2), one should always be able to obtain the correct
polarization for the ground state transition. As shown in
Table II, however, the similarity between two isomorphic
groups cannot be exploited further to infer the polariza-
tion of higher energy transitions as the ordering of the re-
maining subbands might be different in the two groups.
Given the ordering of the subbands shown in Table II,
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FIG. 3: (a) Matrix elements squared and (b) degree of linear polarization for the interband transitions hi → ej (i = 1, . . . , 5,
j = 1, 2, 3), as a function of the transition energy for the d = 9.6 nm InAs wire.

TABLE II: Summary of the irreducible representations of the
first 5 valence and 3 conduction subbands in wires with C∞v

(d = 10 nm), D2d (d ≥ 3.6 nm) and C4v (L = 10 nm) sym-
metry.

Subband Representation

C
(a)
∞v D

(b)
2d C

(c)
4v

e1 C(+)(0) Γ6 Γ6

e2 C(−)(1) Γ7 Γ7

e3 C(−)(1) Γ6 Γ7

h1 E
(+)

1/2,1 Γ6 Γ6

h2 E
(−)

1/2,2 Γ7 Γ7

h3 E
(+)

3/2,1 Γ7 Γ6

h4 E
(−)

3/2,2 Γ6 Γ7

h5 E
(+)

3/2,3 Γ6 Γ7

a Ref.19
b Present calculation.
c Ref.26,28.

using the general arguments discussed in Section III we
can deduce the polarizations allowed in all the transi-
tions involving the first 3 conduction and 5 valence sub-

bands in wires with C∞v, C4v and D2d symmetry. The
results are summarized in Table III, which also contains
our pseudopotential results. A consequence of the differ-
ent subband ordering in C4v and D2d symmetry is that
transitions with particular polarizations that are forbid-
den in C4v symmetry are allowed in D2d and vice versa.
Furthermore Table III also highlights two other impor-
tant differences between D2d and C4v wires: (i) the dif-
ferent angular momentum composition of the subbands,
which is manifested in different l-forbidden transitions;
(ii) the fact that in continuous wires the subbands al-
ways have pure l character, as opposed to atomistic wires
where, as discussed in Section III, each subband receives
contributions from different angular momentum compo-
nents. The angular momentum selection rule is therefore
relaxed in D2d wires and formally forbidden transitions
may become weakly allowed. We find that this mixing of
l character in the wave functions of D2d wires increases
with decreasing wire diameter (i.e., with increasing con-
finement) and with increasing subband position (i.e., h5

and e3 are more mixed than h1 and e1). This is reflected
in the decrease, with increasing wire diameter, of the
magnitude of the optical matrix elements relative to the
formally angular-momentum-forbidden transitions (com-
pare Figures 2a and 3a). Furthermore the lower degree
of angular momentum component mixing in e2 compared
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to e3 is shown in the fact that, although both conduc-
tion states have main p character (and h1 main s), the
e2 → h1 transition is forbidden (see Table III), whereas
the e3 → h1 transition is very weakly allowed (see Figures
2a and 3a).

TABLE III: Summary of the polarization predicted for the
transitions ei → hj (i = 1, 2, 3, h = 1, . . . , 5) for wires with
(atomistic) D2d (d1 = 3.6 nm, d2 = 9.6 nm) and (continuum)
C∞v (d = 10 nm) and C4v (L = 10 nm) symmetry. The main
angular momentum components obtained in the present cal-
culation for each subband the are indicated in parenthesis.
The directions z and x refer to orientations parallel and per-
pendicular to the wire axis, respectively. In case of multiple
polarizations, the first direction quoted is the one with the
largest matrix element. We indicate in boldface the polar-
izations that are found different between d1 and d2 for the
same transition. Each transition is also labeled by the class
to which it belongs, according to Table I.

Transition Polarization
EPM k·p

D2d(d1) D2d(d2) C
(a)
∞v C

(b)
4v

e1(s)→ h1(s) z,x(MP) z,x(MP) z,x(MP) z,x(MP)

e1(s)→ h2(p) x(SP) x(SP) pF x(SP)

e1(s)→ h3(s,d)∗ x(SP) x(SP) x(SP) lF
e1(s)→ h4(p) z,x(MP) x(MP) pF lF
e1(s)→ h5(d,s)∗ z,x(MP) z,x(MP) x(SP) x(SP)

e2(p)→ h1(s) lF lF pF lF
e2(p)→ h2(p) z,x(MP) z,x(MP) z,x(MP) lF
e2(p)→ h3(s,d)∗ x,z(MP) z,x(MP) pF x(SP)

e2(p)→ h4(p) x(SP) x(SP) z,x(MP) z,x(MP)

e2(p)→ h5(d,s)∗ x(SP) lF pF lF

e3(p)→ h1(s) x(MP) z(MP) pF lF
e3(p)→ h2(p) x(SP) x(SP) z,x(MP) lF
e3(p)→ h3(s,d)∗ x(SP) x(SP) pF x(SP)

e3(p)→ h4(p) z,x(MP) z,x(MP) z,x(MP) z,x(MP)

e3(p)→ h5(d,s)∗ x,z(MP) z,x(MP) pF lF

∗ The angular momentum components s and d have similar
magnitudes.
a Ref.19
b The polarization of e1 → hj transitions is from Ref.26, that
of transitions involving e2 and e3 has been deduced from
group theory arguments.

D. Near band-gap transitions hi → e1

The fundamental band-gap h1 → e1 transition has
both z and x polarizations, but is mainly polarized along
the wire axis in all wire symmetries considered in Ta-
ble III. We find that, in the absence of SO interaction
(∆so = 0 eV), in a circular cross-section wire with atom-
istic D2d symmetry it is 100% z-polarized (i.e., the h1

state does not interact at all with optical waves polar-
ized normal to the wire axis). When the coupling be-
tween bulk Γ8v- and Γ7v-derived valence bands is restored
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FIG. 4: (a) Degree of linear polarization of the fundamental
transition h1 → e1 as a function of wire diameter, calculated
at T = 2 K and T = 300 K both considering (W/SO) and not
considering (N/SO) SO splitting. (b) Dipole matrix elements,
for the same transition, polarized parallel (z) and perpendic-
ular (x) to the wire axis, in the finite and zero SO splitting
approximations.

to its actual value (with ∆so = 0.4 eV in bulk InAs)
the degree of linear polarization decreases by about 20%
and becomes size and temperature dependent. Figures 4
and 5 show the temperature dependence of our calculated
dipole matrix elements and degree of linear polarization
in the finite and zero SO approximations. This decrease
of ρ from 100% to about 80% with increasing SO split-
ting, together with the value of 60% obtained for ρ in the
infinite spin-orbit approximation17,19,21, show that linear
polarization effects in actual 1D systems are due to sub-
stantial mixing between the four bulk Γ8v- and the two
Γ7v-derived valence bands.

The next transition (h2 → e1), is a Γ7 → Γ6 transi-
tions in both D2d and C4v wires and is therefore allowed
to be polarized only perpendicular to the wire axis. The
h2 → e1 and the h4 → e1 transitions are forbidden in
C∞v

19 QWRs, due to the different parity of the elec-
tron and hole wave functions. As discussed above, these
transitions would be formally (angular-momentum) for-
bidden in our D2d wires as well. However, due to the non
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zero l = 1 component of e1 we find that they are weakly
allowed: the dipole matrix elements for these transitions
decrease by over one order of magnitude with increasing
wire diameter (i.e., with decreasing l mixing in e1), from
2.4 nm to 9.6 nm (both becoming less than 1% of the
value of the matrix element relative to the band gap tran-
sition in the d = 9.6 nm wire). As the h3 → e1 transition
is only x-polarized in C∞v wires, the two lowest energy
transitions have opposite polarizations in D2d, C4v, and
C∞v wires. The fundamental transition is in fact polar-
ized mainly along the wire axis while the next allowed
transition has only x polarization in all symmetries. The
h4 → e1 transition, instead, being a transition between
two Γ6 subbands, can have both polarizations: however,
in d > 4.8 nm D2d structures, it is only polarized perpen-
dicular to the wire. The polarization component parallel
to the wire axis increases from zero34 to a value which is
larger than that of the perpendicular component, when
the wire diameter decreases from 9.6 nm to 3.6 nm.

1. Temperature dependence

We find (Fig. 4 and Fig. 5) a stronger temperature
dependence for ρ(h1 → e1) in thick wires: in a d = 9.6
nm wire ρ decreases by 10% with a 300 K temperature
increase, compared to a 0.25% decrease in a d = 1.2 nm
wire, for the same temperature variation. This size de-
pendence of the polarization can be understood in terms
of lateral confinement effects. Due to the quantum size
effect, thin wires experience a stronger confinement than
thicker wires, which means that they have a higher ki-
netic energy introduced by the confinement. As this ki-
netic energy is responsible for the mixing20 of the valence
bands at zone center, thin wires have also a stronger mix-
ing and therefore a higher degree of linear polarization.
Furthermore, due to the larger confinement, the hole en-

ergy levels are farther apart in thin wires than they are
in thicker wires (see Fig. 1), and their density of states is
lower close to the band edge. Therefore in thin wires at
low temperature the h1 → e1 transition is the most prob-
able and the degree of polarization is high (see Fig. 6). In
the case of thick wires the probability for h2,3 → e1 tran-
sitions, which as we mentioned before, unlike the h1 → e1
transition are polarized only perpendicular to the wire,
increases with T. This reduces the degree of linear polar-
ization with increasing temperature in thick wires. This
is clearly seen in Fig. 6, where we show the PL polar-
ization spectra (with 50 meV broadening) around the en-
ergy of the fundamental h1 → e1 transition, calculated at
T = 2 K and T = 300 K for a d = 1.2 nm and a d = 9.6
nm wire. The different density of states also explains
the larger blue shift (7 meV) of the x-polarized PL that
takes place in thick wires with a temperature increase of
300 K, compared to that (2 meV) occurring in thin wires
(Figure 6). The detectability of PL polarization peaks in
these wires is, however, closely related to the experimen-
tal line broadening. As shown in Fig. 7, if the broadening
is larger than 20 meV at room temperature (in typical
experimental conditions it is > 50 meV1), the peak in
the x-polarized emission corresponding to the h3 → e1
transition, found in Fig. 3, is masked by the broadening
of the fundamental transition in a d = 9.6 nm wire. In
a d = 1.2 nm wire (Fig. 7), even if the broadening is of
the order of 40 meV, the second peak in the x-polarized
emission can still be seen as a shoulder on the high en-
ergy side of the main peak, but is almost completely lost
in it for broadenings ≥ 50 meV. Therefore this peak has
not been seen in cylindrical LCG wires of any size, due
to the present experimental accuracy.

E. Higher energy transitions hi → e2,3

The h1 → e2 transition is found to be forbidden in all
wires considered in Table III. The h2 → e2 and h3 → e2
transitions in Fig. 2 (Γ7 → Γ7 transitions in D2d wires)
are both x- and z-polarized. The former transition has a
stronger parallel component that increases with wire di-
ameter, while the perpendicular component stays almost
constant. In the h3 → e2 transition (weakly allowed only
because of the non zero l = 2 component of the e2 sub-
band in D2d wires, and parity-forbidden in C∞v

19 wires),
instead, the perpendicular component decreases by more
than one order of magnitude with increasing d, becoming
smaller than the parallel component for d > 3.6 nm (see
Table III). The h4 → e2 and h5 → e2 transitions are
Γ6 → Γ7 transitions in D2d QWRs and can, therefore,
only be x-polarized. The former, however, is predicted
to have both polarizations in C∞v

19 QWRs, where the
‖ component is the strongest. The h5 → e2 transition
that we only find very weakly allowed in small (d ≤ 6
nm) D2d wires, due to the higher l mixing in these struc-
tures, is also formally parity-forbidden in the lower sym-
metry wires. Interestingly, the (very weakly allowed in
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FIG. 6: PL polarization spectra around the energy of the
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(with 50 meV broadening). The arrows mark the position in
energy of the transitions hi → e1, with i = 1, . . . , 5.

D2d wires) h1 → e3 and h5 → e3 transitions, forbidden
in low symmetry wires19 have opposite polarizations in
the two wires of Fig. 2: h1 → e3 is z-polarized in d > 6
nm wires and x-polarized in d ≤ 6 nm wires; in h5 → e3
both polarizations are present, but the ⊥ component de-
creases with increasing d, becoming smaller than the ‖
component for d > 6 nm.

As a rule we find that whenever a transition is for-
mally angular-momentum-forbidden in D2d QWRs (and
parity-forbidden in lower symmetry wires), the ⊥ com-
ponent decreases (very often by more than one order of
magnitude) with increasing d in D2d QWRs, resulting ei-
ther very weak or non existent altogether in thick wires.

F. In-plane optical anisotropies

In an attempt to include microscopic features in
the k·p treatment in the infinite spin-orbit split-
ting approximation, Yamaguchi and Usui21 derived
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FIG. 7: PL polarization spectra at T = 300 K calculated for
a d = 1.2 nm (a), and a d = 9.6 nm (b) wire for different
values of the line broadening.

a crystallographic-orientation-dependent expression for
the dipole matrix element, which led to an in-plane
anisotropy. In the spherical approximation for the va-
lence bands (in which the Luttinger parameter γ2 = γ3)
there is no polarization anisotropy in the plane normal
to the wire axis in a C∞v wire21. By including the ef-
fect of valence-band anisotropy, Yamaguchi and Usui21

predicted a weak dependence on the wire orientation for
the polarization along z, and a strong dependence for the
polarization along two perpendicular directions x and y
(both in-plane) for the fundamental transition in wires
oriented in directions different than [001] and [111]. Fur-
thermore, only for [001]- and [111]-oriented wires they
found no in-plane anisotropy, i.e., |Mx| = |My|. For all
other orientations the calculated dipole matrix elements
along x and y were different.

Similarly, we find no in-plane anisotropy in the fun-
damental transition in D2d wires. However, higher en-
ergy transitions show polarization anisotropy in the plane
perpendicular to the wire axis. Figures 8 and 9 show
the xy-plane (⊥ to the wire axis) anisotropy we find in
the h4 → e1 and h5 → e1 transitions in D2d QWRs,
grown along the [001] direction, with d ≥ 6 nm, where
the matrix element along the [110] direction is different



11

0.05 0.1 0.15 0.2 0.25
E(h4,e1)

-Eg (eV)

0

0.05

0.1

0.15

D
eg

re
e 

of
 L

in
ea

r 
P

ol
ar

iz
at

io
n 

|ρ
’|

(b)

0

2×10
-4

4×10
-4

6×10
-4

|M
|2  (

ar
b.

 u
ni

ts
)

(1-10)-polarized
(110)-polarized

9.6 7.2 2.43.64.86.0
d (nm)

x10
-1

x10
-2

h4     e1

(a)
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InAs wires.

from that along the [11̄0] direction. We see that the
h4 → e1 transition is prevalently [110]-polarized with
only the d = 9.6 nm wire polarized along [11̄0]. The
opposite is true for the h5 → e1 transition, where the
only size for which the transition is prevalently polarized
along [110] is d = 6 nm. However the d = 9.6 nm wire
is found mainly polarized along [11̄0] and the d = 6 nm
wire mainly along [110], in both transitions. In all other
transitions considered we found no anisotropy in the xy
plane.

VI. SUMMARY

In summary we applied an atomistic, empirical pseu-
dopotential method to calculate optical transitions in
free-standing, unstrained [001]-oriented cylindrical InAs
quantum wires with diameters in the experimentally ac-
cessible range 10-100 Å. We found evidence of strong cou-

pling of bulk Γ8v- and bulk Γ7v-derived bands in the size
and temperature dependence of the linear anisotropies of
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InAs wires.

optical transitions in QWRs. We show that simple ap-
proaches, that model the wire as a continuum with no
underlying crystal structure, miss some optical transi-
tions, due to their strict application of conservation rules
that we found to be relaxed in strongly confined atomistic
nanostructures.
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