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INTRODUCTION 

Food supplies energy and provides essential nutrients needed for body functions. The 

three basic nutritional components of food are protein, carbohydrates and fats, known as the 

macronutrients. After being converted into simpler compounds, the body uses them as a 

source of energy. 

Alcohol is also a source of energy but, unlike the macronutrients, it is not essential to 

the body. There has been a long debate about the effects of alcohol on the body. Moderate 

consumption of wine has been found to have a protective effect against coronary heart disease 

and cancer (1). The joint World Health Organization/Food and Agriculture Organization 

report (2) stated that low or moderate consumption of alcohol lowers the risk of coronary 

heart disease. However, other cardiovascular and health risks associated with alcohol do not 

favor a recommendation for its consumption. In developed countries, alcohol is considered as 

one of the main risk factors for cancers of the oral cavity, pharynx and esophagus, and 75 

percent of such cancers are attributed to alcohol and tobacco (3) The same report states that 

excessive alcohol consumption is the main dietary risk factor related to cancer of the liver. 

Several studies have found that alcohol is the main dietary factor which increases the risk of 

breast cancer, with around 10 percent increase in the risk for an average one alcoholic drink 

per day(4).  In some societies and communities, alcoholism is regarded as a stigma, especially 

among women, and inquiring about alcohol consumption in surveys presents considerable 

challenges to questionnaire design and interview protocol.  Questions about alcohol 

consumption may be ‘masked’ by inserting them among questions about lifestyle, diet, 

smoking habits and exercise (5). Despite these arrangements, there is a lot of evidence that 

alcohol consumption is under-reported in surveys.  Non-response, and the way it is handled in 

the analysis, is one reason for it.  

Extensive and reliable datasets are essential to investigate the link between alcohol 

intake and disease.  Missing values are a problem in most large-scale surveys that have 
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extensive questionnaires. They indicate that the data-collection protocol has not be adhered to, 

so less information was collected than planned. In a typical analysis, the incomplete records 

are either discarded or completed.  Both these generic approaches, data reduction and data 

completion, are deficient; the former because some valuable information is not used, and the 

latter because by analyzing a single completion we pretend to have more information than 

was collected.  The impact of missing data on estimates in epidemiological and biomedical 

studies is substantial (6-9). 

The analysis of the complete records (by data reduction or listwise deletion) may yield 

inferences substantially different from those that would be obtained had no values been 

missing.  In the study we analyze, the estimates of alcohol consumption based on complete 

records are biased.  The practice established at present is to impute zero for each missing 

value for a subject’s consumption.  The rationale for this is that zero is the modal (most 

frequent) value.  However, it is also the extreme (minimum) value that could be recorded, and 

so such imputation leads to under-representation of the alcohol consumption.  

The mean alcohol nutrient intake estimated by the three methods we consider, data 

reduction, single imputation and multiple imputation, is 7.5, 8.6 and 11.3g/week (grams of net 

alcohol per week), respectively. Given the substantial sample size, in excess of 35,000, the 

differences among the estimates are mainly due to the bias of at least two of the estimates.  

The substantially greater estimate obtained by multiple imputation is due to exploiting the 

information in the incomplete records, in which the consumption declared tends to be greater 

than in the complete records.   

Multiple imputation is based on a small number of alternative data completions that 

are generated by a process that entails some randomness.  If this process faithfully reflects our 

uncertainty about the missing values, the multiple imputation estimator is nearly unbiased and 

nearly efficient.  Important prerequisites for this are that the estimator used would have been 
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unbiased and efficient had the data been complete, and that its sampling variance would have 

been estimated without bias.  In brief, multiple imputation limits the damage caused by the 

non-response (missing values), but cannot make up for the deficiencies in the complete-data 

estimator. 

Analyzing the complete cases is the default approach for all those who do not 

appreciate the impact that missing values may have on the results.  The approach forces the 

data into a rectangular form, which can be analyzed by the same method and software as was 

planned or contemplated prior to data collection.  The price for this convenience is that a large 

fraction of the sample may be excluded. The retained (complete) cases may no longer be a 

representative sample, even if the original sample is, because the subjects with incomplete 

records may in some way be systematically different from those with complete records.  This 

problem is addressed by (10) in conjunction with hot-deck imputation. 

 A missing response to a question about the quantity of alcohol consumed may be 

interpreted as zero – the respondent may have forgotten the instruction stated at the beginning 

of the questionnaire to draw a distinction between no consumption (‘Enter zero as the 

response’)  and not responding for one reason or another.  This motivates imputing zero for 

each missing value.  This is clearly problematic for sequences of questionnaire items, when 

the respondent has given up completing the remainder of the questionnaire (dropped out), or 

was distracted and skipped a page or a section of the questionnaire.   In this paper, we 

compare three methods for estimating the mean alcohol intake of the population represented 

by the UK Women Cohort Study (UKWCS) (11): data reduction, imputation of zero (the 

modal value) and multiple imputation, and discuss some extensions. 
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MATERIALS AND METHODS 

 

The survey 

 

The UK Women’s Cohort Study (UKWCS) aims to make inferences about the 

relationship between diet and cancer incidence and mortality (from selected causes) in a group 

of UK women who were middle-aged in the mid-1990’s.  The original survey targeted women 

residing in England, Wales and Scotland. A 217-item food frequency questionnaire (FFQ) 

was sent to 65,000 women who earlier declared their support for the World Cancer Research 

Fund (WCRF). All women aged between 35-69 in 1995 and who described themselves as 

vegetarians in an earlier WCRF survey, were included in the cohort.  

Each of these women was matched with a woman who declared that she eats meat and 

who was in the same 10-year age band; all fish eaters were also included (12, 13). Women 

were then contacted by post with a request to complete an extensive questionnaire about their 

diet and lifestyle. About 35,000 women responded, approximately a third of whom described 

themselves as being vegetarian, a third as red-meat eaters and a third as fish eaters.  

 

The extent of missing data 

 

Information on alcohol consumption was collected in two parts of the UKWCS 

questionnaire. The first part of the alcohol consumption questions consists of a block of five 

items in the form of FFQ. For each item there were ten response options ranging from 

“never” (coded as 0) to “six or more times per day” (coded 9), in response to the question: 

 “How often have you eaten these foods in the last 12 months?”, 

common to a long sequence of items.  Information on alcohol consumption was also collected 

by asking to state the number of specified units (pints, glasses or measures) of each type of 

alcoholic beverage (beer or cider, wine, sherry or fortified wines, and spirits) per week. The 

question was then repeated, asking about the intake five years previously.  For brevity, we 
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refer to this set of items as ‘recall’ (recent and five years ago).  Note that beer and cider is 

treated as a single category in the recall items. 

The rate of non-response to the recent recall items, a focus of this paper, ranged from 

18 percent for wine to more than 52 percent for beer and cider. For the same question relating 

to five years ago, the response rate was just as low, from 18 percent for wine consumption to 

52 percent for the consumption of beer and cider (Table 1). 

A subject’s total alcohol nutrient intake 

 

The overall nutrient intake of a subject is estimated by adding up the products of the 

reported frequency of each food by the amount of nutrient in a specified portion of that food. 

The total alcohol nutrient intake of a subject is then estimated by adding up the intake of the 

different types of alcohol consumed per week. For example, the total alcohol nutrient intake 

of a subject who reported consuming 2 pints of beer, 3 glasses of wine, 2 glasses of sherry and 

a glass of spirits per week is 

{(2  (2287)  4.53) + (3  125  9.25) + (2  40  16.65) + (23  31.70)} / 100 

=  107.30 g/week. 

Here 287, 125, 40 and 23 are the quantities (masses), in grams, of a pint of beer or cider, a 

glass of wine, sherry and spirits respectively; 3.08, 5.98, 9.25, 16.65 and 31.70 are the 

quantities of the alcohol nutrient in 100 grams of beer, cider, wine, sherry and spirits, 

respectively. As beer and cider were combined in the same question, the nutrient intake in 

100gms was calculated as the average nutrient  of beer and cider (Table 2) (14). 
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Statistical analysis 
 

 

When only a small fraction of the records are incomplete (say, five percent or less), 

data reduction may be a reasonable solution.  The complexity of more involved methods for 

dealing with the missing values is hard to justify when they are unlikely to yield substantially 

different estimates 

A blank response to an item about consumption of a food or beverage may in some 

circumstances be appropriately interpreted as ‘no consumption’. The subject may have 

skipped the item believing that the blank response would be interpreted as such.  Certainly, 

there is much less rationale for interpreting a blank response as any particular positive 

quantity, except perhaps as an excessive quantity, if the subject wishes not to disclose a habit 

she regards as undesirable or departing from some perceived norm.  In this context, imputing 

zeros for missing responses to items about alcohol consumption is an easy target for criticism.  

For example, the survey would fail to capture information about the extent of binge drinking. 

 

Multiple imputation 

 

In multiple imputation, a model is posited for the association of the missing values 

with the recorded values.  Replacements, called plausible values, are generated using this 

model for each missing value.  We assume that a complete-data analysis (or method) is 

available – it is a method and software implementing it that would be appropriate (and 

efficient) if the collected data were complete; in most settings it is the analysis that would be 

applied if the data were complete.  The analyst in charge may be familiar with this analysis 

and would like to apply it, ideally, without any alterations.   

One set of plausible values completes a dataset, and it can be analyzed by the 

complete-data method.  In multiple imputation, several (replicate) sets of plausible values are 

generated, with a completed dataset for each of them, yielding replicate complete-data 
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estimates and estimates of the associated sampling variances.   The average of these 

completed-data estimates is the multiple-imputation (MI) estimate.  Its sampling variance is 

estimated by the average of the completed-data sampling variances, inflated by the between-

completion variance.   

Let m̂ , m =1, …, M, be the set of completed-data estimates of a population quantity 

 , and let 2ˆ
ms  be the estimates of the completed-data sampling variances.  Then the MI 

estimator of   is defined as  
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variance of ̂ that would be attained if the data were complete.  The second term can be 

interpreted as the variance inflation due to non-response; B̂  estimates this inflation if 

infinitely many completions were applied ( M ), and the additional term, MB /ˆ , is due 

to using only a finite number of completions (imputations).   

 The plausible values have to reflect the uncertainty about the missing values for which 

they are intended.  In most applications this entails two sources of uncertainty:  about the 

model parameters and about the missing values conditionally on the values of the model 

parameters.  The former source is accounted for by using sets of plausible parameter values, 

drawn at random from the estimated sampling distribution.  Each set of plausible values is 

based on a different set of plausible parameters.  The latter source is due to the variation 

inherent in the posited model even when the model parameters are known.  For example, in 
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the simple model of independent replicates of an event with binary outcomes (Yes/No), there 

is uncertainty about the probability of the positive outcome, but even if this probability were 

known there would still be uncertainty about the outcome because it is subject to chance.  

Similarly, in a linear regression model, there is uncertainty about the model parameters and 

uncertainty about the outcome due to the residual variation; the latter is present even when the 

model parameters are known. 

 Validity of the model for imputation is an important assumption of the MI method that 

cannot be ascertained.  In many settings, we can merely define more general models, which 

improve the chances of attaining validity, or coming sufficiently close to it. For the theoretical 

background, see (15), and for applications and examples (16).  Central to the applications is 

the assumption of the data missing at random (MAR), according to which, with a suitably 

specified conditioning, there are no systematic differences between the missing and the 

available data.  Then the model that is applied for the available data, which can be fitted 

relatively easily, applies also to the missing data, providing us with a prescription for 

generating plausible values.  If a model is valid and the condition of MAR is satisfied, then a 

more general model is also valid and MAR is also satisfied.  This gives a rationale for using 

as complex models as is feasible for generating plausible values. 

 In a typical application of MI with an incompletely recorded continuous variable y, an 

ordinary regression model   Xy  is fitted to the complete records, assuming that with 

the conditioning in this regression the MAR condition is satisfied.  A plausible residual 

variance 2~  is then drawn from the scaled 2 distribution which estimates the sampling 

distribution of the residual variance estimate 2̂ .  A plausible variance matrix of the 

regression parameter estimates is 1T2 )(~ XX  and a plausible vector of regression parameters 

is generated as   ˆ~
β , where   is a vector drawn at random from the multivariate normal 
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distribution with zero mean and variance matrix 1T2 )(~ XX .  Finally, the plausible values 

are generated according to the ‘plausible’ model formula  
~

Xy , with a random sample 

  from the normal distribution with zero mean and variance 2~ .  Difficulties arise when 

there are missing values also in X . We applied multiple imputation by chained equation (17) 

as data are incomplete on all alcohol variables. This method which is sometimes referred to as 

variable by variable multiple imputation, assumes that a multivariate distribution exists, 

without specifying a specific form for it, and that draws from it can be generated by Gibbs 

sampling the conditional distributions.  i.e. the multivariate problem is split into a number of 

univariate problems.  The procedure of generating plausible values proceeds as follows: - 

 

- Fill in missing values for each incomplete variable by a starting value, in this 

application this is chosen the mean for the continuous variables. 

- Discard the filled-in values from the first variable leaving the original missing 

values. The missing values are then imputed using  linear regression, conditioning 

on the other four variables as described below. 

- The filled-in values are discarded from the second variable. These missing values 

are then imputed using  linear  regression imputation. 

- The procedure is repeated for each variable in turn. Once each variable has been 

imputed, we have then completed one iteration.   

- The same procedure is repeated for several (in this case 10) iterations. This 

generates one complete dataset. 

- For m completed datasets, repeat the procedure m times independently. 
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Application 

 Imputation models were specified to generate plausible values for each type in the 

recall section of the questionnaire by the simple linear regression of the current consumption 

on the consumption of the four alcohol types five years earlier, and the three remaining 

current alcohol consumption types. Note that the assumption of normality is particularly 

problematic because a large fraction of the outcomes are zeros. It is argued in the literature on 

MI (15, 18), that this assumption is unimportant. For an approach that addresses the problem 

of excess zeros among the outcomes, see (9).  

The estimated correlations of the consumption of each alcohol type currently and five 

years earlier are 0.60, 0.81, 0.77 and 0.71 for beer, wine, sherry and spirits, respectively. They 

are based on all the available data. The strong association for each alcohol type suggests that 

the past consumption is useful in an imputation model for (missing) current consumption  

Ten completed datasets were generated. 

 

RESULTS 

 

Complete-case analysis 

 

The complete-case analysis of nutrient alcohol consumption is based on only 12,571 

(36 percent) records that have complete data, see Table 3. Such a large reduction of the data 

raises two issues. First, having collected less data than anticipated, we have less information 

than planned.  Second, the subjects who fail to respond (to an item or a block of items) may 

tend to differ (systematically) from subjects whose records are complete. A naïve analysis 

based on just one third of the data would very likely be biased, both for simple summaries and 

more involved inferences about associations of variables, e.g., those based regression models. 

 

Imputing a default value 

 

By imputing zeros for all missing responses in current consumption, all subjects could 

be included in the analysis. The estimate of the mean alcohol nutrient intake increased from 
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7.75g/day in the complete case analysis to 8.60g/day.  This increase may at first appear 

counterintuitive; after all, we have imputed the smallest possible value for each missing value. 

Among the subjects included in this analysis, but not in the analysis of complete cases, there 

are disproportionately many high consumers; with their inclusion in the analysis, the estimate 

of the mean is greater.  For example, if a subject reported that she currently consumes a lot of 

beer and wine, and did not respond to the questions about spirits and sherry, her record would 

not contribute to the analysis of complete cases.  With zeros imputed for spirits and sherry 

consumption in her record, it now contributes to the single-imputation analysis by the lowest 

plausible amount.  

 

Multiple imputation 

 

The analysis by multiple imputation is based on information from 34,465 records. A 

small fraction of the subjects (902, 2.5 percent) were excluded from the analysis because the 

recall of the current alcohol consumption and that of five years earlier was missing for the 

four types of alcohol.  We generated twenty sets of plausible values for the current 

consumption.  Generating more sets does not present any problems as the (additional) data 

storage requirements are not excessive.   We justify the choice of twenty sets post hoc, by 

comparing the estimated variance inflation MB /ˆ with the remainder of the sampling 

variance, BU ˆˆ  , which cannot be reduced. 

The MI estimate of mean alcohol intake is much greater than with data reduction and 

single imputation, see Table 3.  For example, the MI estimate of the alcohol intake is 

13.84g/day and the zero-imputation estimate 8.60 g/day.  The difference is due to imputing 

many large values (as opposed to zero as the default).  Many plausible values are large 

because they are informed by the substantial consumption of the same type of alcoholic 

beverage in the past.  The estimated standard errors obtained by the analysis of complete 

cases are greater than by the two other methods, because only a fraction of the records are 
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used.  The estimated standard errors for the MI estimate are greater than for the zero-

imputation estimate; however, the difference (0.056 vs. 0.088) is minute when compared to 

the likely bias.  In any case the figure for zero-imputation underestimates the standard error 

because it is based on much more data than was collected.  Apart from the rather complex 

theory in (15), we can argue that the MI estimator is more appropriate because some of the 

subjects who declared that they consumed a type of alcoholic beverage five years earlier are 

bound to have consumed some also recently.  Evidence of this is borne out by the regression 

models used for imputation.  Of course, single-imputation methods more complex than zero 

imputation can be devised.  For example, the value from five years ago, when available, could 

be imputed for the current consumption.  But every such method can be improved by its MI 

version in which the uncertainty about the fitted values is duly reflected. 

 

DISCUSSION 

 

We compared three methods of dealing with non-response in making inferences about  

the mean alcohol nutrient consumed and showed that ignoring non-response by reducing the  

data to complete records underestimates the mean. A lot of information contained in the non-

empty records is discarded. Imputing a default value, in this case zero, also results in biased 

estimates, even though much more of the available information is brought to bear on the 

result.  By pretending that we know the value of each missing item we underestimate the 

sampling variance; in our application this is of next to no importance when compared to the 

substantial bias we incur.  The method of multiple imputation had two strengths: the 

information contained in most of the incomplete records is used and the estimates inherit the 

properties of the complete-data method – unbiasedness and unbiased estimation of the 

sampling variance.  These properties are contingent on the appropriate model for imputation; 

however, the model we employed, is a substantial improvement on the model that can be 

associated with zero-imputation (‘missing’ mean zero), and the model associated with data 
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reduction (incomplete records are like complete records without any conditioning).   A 

practical advantage of MI is that the software intended for the analysis when no non-response 

was anticipated can be used without any alterations, even though the application has to be 

repeated several times.   

Even when applied with an imperfect model, MI is clearly superior to single 

imputation.  The imperfection of the model we applied is due to its simplicity and obvious 

departure from the assumptions of normality.  More complex models can ameliorate this 

problem.   

The work associated with an application of MI can be split between an analyst with an 

expertise in MI who is acquainted with the data collection and non-response processes, who 

generates the sets of plausible values, and a (secondary) analyst whose expertise is only in the 

complete-data methods.  The instructions that have to be given to this analyst (beyond those 

for analyzing a complete dataset) are simple and involve no complexity additional to an 

application of the complete-data method.  The first analyst’s product, sets of plausible values, 

can be used for several analyses.  
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Recorded Missing (%) Recorded Missing (%)

Beer or Cider 16,877 18,490 52.3 16,973 18,394 52.0

Wine 28,937 6,430 18.2 28,879 6,488 18.3

Sherry 17,122 18,245 51.6 17,459 17,908 50.6

Spirits 27,620 7,747 21.9 20,629 14,738 41.7

TABLE 1. Response to the recall set of questions about alcohol consumption.

Alcohol

Current intake Intake five years before

  

 

 

 

 

Alcohol Grams per 

pint/glass

Alcohol 

nutrient/100g

Wine 125 9.25

Beer 287 3.08

Cider 287 5.98

Spirits 23 31.70

Sherry 40 16.65

TABLE 2. Alcohol nutrient in a pint of beer and a glass of 

cider,   spirits and sherry. 

 
 

 

 

 

Obs. Est. SE Obs. Est. SE Obs. Est. SE

Wine 28,937 6.72 0.047 35,367 5.50 0.041 34,465 6.88 0.047

Beer/Cider 16,877 3.11 0.055 35,367 1.48 0.028 34,465 4.11 0.051

Spirits 27,620 1.45 0.019 35,367 1.11 0.015 34,465 1.54 0.019

Sherry 17,122 1.02 0.015 35,367 0.49 0.008 34,465 1.31 0.015

Total alcohol 

Intake g/week 12,571 7.75 0.098 35,367 8.60 0.056 34,465 13.84 0.088

TABLE 3. The impact of handling missing data by the complete case analysis, 

imputing zeros and multiple imputation, on alcohol nutrient intake.

Alcohol (g/day) Complete-Case Analysis Imputing Zero Multiple Imputation
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