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Abstract We propose a method for disambiguating uncertain detections of events by

seeking global explanations for activities. Given a noisy visual input, and exploiting

our knowledge of the activity and its constraints, one can provide a consistent set of

events explaining all the detections. The paper presents a complete framework that

starts with a general way to formalise the set of global explanations for a given activity

using attribute multiset grammars (AMG). AMG combines the event hierarchy with the

necessary features for recognition and all natural constraints. Parsing a set of detections

by such a grammar finds a consistent set of events that satisfies the activity’s natural

constraints. Each parse tree has a posterior probability in a Bayesian sense. To find the

best parse tree, the grammar and a finite set of detections are mapped into a Bayesian

Network (BN). The set of possible labellings of the Bayesian network corresponds to

the set of all parse trees for a given set of detections. We compare greedy, multiple-

hypotheses trees, reversible jump MCMC, and integer programming for finding the

Maximum a Posteriori (MAP) solution over the space of explanations. The framework

is tested for two applications; the activity in a bicycle rack and around a building

entrance.

Keywords activity analysis, event recognition, global explanations

1 Introduction

While most existing activity recognition techniques deal with independent events (e.g.

running, walking), realistic surveillance tasks typically involve multiple mutually de-

pendent events, extending over a long temporal duration. These dependencies can

be exploited to disambiguate uncertain visual data by seeking a global explanation.

The proposed framework bridges the gap between uncertain visual observations and

higher-level activity recognition. Preliminary ideas for this work appeared in conference

proceedings [7,8].

The paper begins with some definitions to clarify how the joint recognition of a set

of events can be seen as a mapping from detections to a consistent global explanation.
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Section 2 compares this framework to previous approaches. Section 3 explains how

attribute multiset grammars can define an event hierarchy along with its features, and

the activity’s natural constraints. Given the grammar, a set of detections is mapped

to a Bayesian network that models the probability distribution over the space of all

parse trees for those detections. Section 4 explains the derivation of this distribution in

terms of event likelihoods. The search for the Maximum a Posteriori (MAP) solution

is performed using heuristic and exhaustive techniques in Section 5. Finally, Section 6

applies the framework to two activities, and tests on several challenging datasets.

1.1 Definitions

To analyse an activity automatically, evidence is gathered through observing the scene

on which to base recognition of the occurring events. A detector is an independent

evidence collector that targets a given type of entity. Such detectors have been widely

used for event recognition, for example in detecting motion [9, 26, 34, 39], cars [23]

and pedestrians [35]. Some detectors are widely applicable and others are specific to

a narrow domain. We refer to the output of a detector as a detection. A feature is a

measurable characteristic of a detection.

The terms activity and event have been used in various, often ambiguous, ways

within the computer vision community. To avoid confusion, the terms are defined here

and then used consistently throughout the remainder of the paper. An event is a

context-related interpretation for a detection or a group of detections. An activity, on

the other hand, is a set of events. One can refer to the activity within the car park

as the set of all events that occur within the car park. Similarly, the activity around

the office is the set of events, that could be dependent or independent, yet are related

by the space in which they occur. In the simplest case of only one event occurring,

the activity and the event would be the same. In the general case, an activity involves

multiple events.

We distinguish two kinds of event. A primitive event is detected directly and corre-

sponds to one detection exactly. For example, a person walking across a car park could

be treated as a primitive event. A compound event is a constrained grouping of simpler,

compound or primitive, events. An activity is thus recursively defined as a composition

of events, with primitive events as its elementary components. A composition is a hier-

archical consistent grouping, where each level is made up of a consistent set of simpler

events. A consistent set of events is one that satisfies the activity’s natural constraints.

1.2 Global Explanations (GE)

The detections obtained during an observed period of activity typically belong to sev-

eral events. A global explanation for a set of detections is a consistent set of events that

covers all of these detections. The global explanation thus implictly associates one or

more detections with each event. The number of events is not known in advance, and

varies between the different explanations for the same set of detections. To clarify, con-

sider the problem of analysing the activity in a car park. Two detectors are available:

one for moving cars and another for pedestrians. In both cases, the detections consist

of object trajectories along with spatial and temporal features. Primitive events like a

car stopping, and a pedestrian passing by, are defined. The compound event ‘pick-up’

is made up of three primitive events: a car stopping, a person stepping into the car,
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Fig. 1 For the same set of detections, and given primitive and compound events, two different
global explanations ω1 and ω2 are shown, where each boundary corresponds to an event. In
ω1, each car picks up one pedestrian, while in ω2 the blue car picks up both pedestrians.

then the car driving away. Figure 1 shows the mapping from detections to multiple

global explanations.

This mapping from detections to a global explanation is constrained. We assume

three types of constraint. Temporal constraints allow or prevent temporally overlapping

events, or enforce an ordering. For example, a person can enter a car only after it stops.

Spatial constraints limit the separation of objects involved in an event, or the area in

which the event occurs. For example, for a car to pick up a pedestrian, the pedestrian

should appear within a certain distance from the car. Sharing constraints allow or

prevent an event from participating in multiple compound events. For example, a car

can pick up multiple people, but the same person cannot be picked up by multiple cars.

This paper proposes a framework that starts by formally defining the activity’s

events and its natural constraints. This framework finds the best global explanation

for all detections in a video input. Given prior probabilities, and the events’ likelihoods,

a Bayesian approach finds the best explanation that maximises the posterior proba-

bility. Figure 2 shows the different components of the framework. At the top of the

figure, a box indicates the tasks to be performed once for each considered activity. The

hierarchy and the natural constraints are employed to create an Attribute Multiset

Grammar (AMG). This process is manual, and the AMG is used, along with labeled

training sequences, to define priors and likelihood functions that favour some global ex-

planations over others. For a given video sequence, detectors gather a set of detections,

which represents terminal symbols, along with assigning values to the selected features.

A parse of the AMG generates a global explanation for all the detections. The frame-

work proposes an algorithm to transform the AMG, given a finite set of detections,

into a Bayesian network structure. Along with the learned probabilities, this Bayesian

network models the probability distribution over the space of global explanations for

this set of detections. The MAP solution of the Bayesian network is then believed to

be the global explanation that best suits the detections.

Video
Sequence

Fig. 2 A flowchart indicating the proposed framework.
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2 Background Review

Simultaneous analysis of all detections has proven advantageous in many areas of

computer vision, such as image denoising [13], segmentation [40] and object recogni-

tion [11,47]. As detections are noisy and often incomplete, global analysis outperforms

local interpretation. By contrast, global analysis for activity recognition has not been

widely explored. This section reviews previous work on the representation of domain

knowledge about activities, and the use of such representations in recognition.

2.1 Representing Activities

The decomposition of an activity into a set of events, which can be further decomposed

into simpler events, is naturally represented by a hierarchy. Grammars define possible

hierarchies, and were used to define activities in video as early as 1998 [49]. A grammar

provides a finite set of production rules. Parsing input using these rules results in a

semantic interpretation, which can be shown using a parse tree. Different types of

grammar have different expressive power. For example, ball passes between players

in a game of tennis can be modelled using a regular grammar, while a context-free

grammar can model football games allowing chains of passes of arbitrary length. For

a review of different grammar types, the reader is referred to [2].

Stochastic Context Free Grammars (SCFG) define a probability distribution over

the possible rewrites for each non-terminal symbol within the grammar. This can be

used to infer a probability distribution over the sentences of the language. Ivanov and

Bobick used SCFG to represent the different ways in which activities can be composed,

and demonstrated this for gesture recognition and surveillance within a car park [25].

Although not part of the SCFG formalism, they also added a consistency check within

the recognition process to enforce temporal constraints necessary for an explanation to

be valid. Several non-grammatical linguistic methods have been proposed to incorpo-

rate such constraints directly into the formalism [22,24,34,39,41,42].

In recent work, Tran and Davis [45] use first-order logic production rules to encode

domain knowledge. Four rule types are used: ‘definite clauses’ which are hierarchical

decompositions of activities into events, and have weights to imply rule preferences;

‘disjunctions’ which provide alternative decompositions; ‘negative preconditions’ which

are constraints on applying the rules; and ‘exclusion relations’ which model constraints

between events occurring at the same time. For example, an exclusion relation might

specify that a person can drive only one car. Weights are assigned to the clauses to

imply rule preferences.

Attribute grammars were orignally proposed to extract semantics from the compo-

sitional structure of a parse tree [30] through propagating attribute values associated

with terminal and non-terminal symbols up and down the tree. They have later been

extended with constraints on attribute values that restrict the set of allowable parse

trees. Such an approach has been used in vision to identify rectangular objects like

floor tiles and windows in static images [21]. Strong rectangular candidates from edge

detection are used to hypothesise larger structures through the application of gram-

mar rules. This can initiate a search for weaker evidence of rectangles consistent with

these structures. The result is a hybrid of top-down and bottom-up processing com-

bined with Markov chain Monte Carlo (MCMC) sampling [52]. Attribute grammars

have been recently used to recognise activities in a car park [27, 31], although these

approaches do not employ the full capabilities of attribute grammars, as they do not

use inherited attributes or inherited constraints (explained in Section 3).
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2.2 Recognising Activities

The activity’s representation is then used to recognise events from video input. Single

event recognition uses graphical models like hidden Markov models (HMMs) [25, 35]

and Bayesian Networks [24, 29], and partitioning detections into events uses Markov

Random Fields (MRF) [31] or data association techniques [35,43].

In [25], recognition is decoupled into two stages: (i) a set of HMMs detects primitive

events, and (ii)a modified Earley-Stolcke parser generates the parse with the highest

posterior probability given a sequence of uncertain events and the SCFG. A single com-

pound event, involving interacting agents, is recognised in each given video. Shi et al.

use discrete Condensation to sample the space of explanations [41]. This outperforms

the parsing from [25] in recovering from errors and uncertainties in the data.

Kitani et al. build a hierarchical Bayesian network from an SCFG [29]. Instead of a

parser, ‘deleted interpolation’ is used to find the explanation with the maximum pos-

terior probability. In deleted interpolation, the probability distribution at each point

in time is calculated as a weighted sum of pieces of evidence within a window of

size l. A solution that better explains recent observations is favoured. Intille and Bo-

bick also build a Bayesian network and represent each event by a ternary observed

node (yes/maybe/no) [24]. When applied to the activity of American football, multi-

ple Bayesian networks for different strategies are tested at each point in time to deter-

mine which strategy is used by the players. The network with the highest confidence

is selected as the recognised strategy.

Although most prior work on activity recognition has focused on recognising a single

event instance from a set of detections, some recent work deals with the more realistic

situation in which the detections arise from multiple events within an activity. The

approaches in [10,26] assign detections to events greedily in a sequential order during

recognition. Nguyen et al. [35] use a combined hierarchical hidden Markov model along

with the joint probabilistic data association filter (HHMM-JPDAF) to jointly assign

detections and recognise complex events. The approach uses MCMC to sample from the

set of possible assignments, then exact inference is used for each HHMM to recognise

the event. This expects the number of events to be fixed and known in advance in

order to decide on the number of HHMMs. The assignment assumes each detection

participates in one and only one event.

Another recent attempt to partition detections into events combines SCFG with

a MRF [31]. The MRF defines the joint probability on nodes in the possible parse

trees. The unary term defines an event’s likelihood, while pairwise terms define the

relationships between nodes. Applied to picking up people in a car park, the pairwise

potentials in the MRF are calculated from the spatial proximities of people and cars.

A Gibbs sampler is used to find the best set of objects for each event. While this

framework can partition the detections, it can not handle the constraints between

events in an obvious way, like allowing the car to pick up several people while the

person can be picked up by one car at most.

The problem of assigning detections to events has been explored in the more general

setting of Data Association. The canonical problem is to find a mapping of detections

to a previously unknown number of identities (in this case events), whilst satisfy-

ing ‘association’ constraints. Data association has been employed often in tracking to

assign detections or measurements to targets, and to solve the exponential complex-

ity of the search space. Heuristic techniques have included Multiple-Hypotheses Trees

(MHT) [23, 37] and sampling the distribution of associations using importance sam-
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pling [48] or MCMC [36, 43, 50, 51]. Smith [43] uses Reversible Jump MCMC (RJM-

CMC) in a sliding window, and the globally optimal trajectories are computed for

each window independently. An exact search technique formulates the problem as a set

packing task, and solves it using integer programming [33].

3 Defining Global Explanations of Activities

Attribute Grammars as first introduced by Knuth [30], also referred to as Feature-Based

Grammars [4] and Attribute-Value Grammars [1], add attributes to the terminal and

nonterminal symbols of a grammar. Attribute rules are associated with the production

rules of the grammar and propagate information up towards the root of the parse

tree, or down towards the leaves. The motivation was to provide a way to compute

semantics in a compositional fashion from a parse tree. Although not in Knuth’s original

formulation, the attributes can also be used to govern the application of production

rules, thereby constraining the language generated by the grammar.

Attribute Multiset Grammars (AMG) were introduced in [14] for representing the

allowable constituents of visual languages, like defining grammars for flowcharts and

state diagrams using terminals such as circles, rectangles and arrows. A multiset (or

a bag) is a generalisation of a set where the order is irrelevant although each symbol

can still appear more than once. AMGs generalise attribute grammars by removing

the sequential ordering of symbols in a sentence, requiring only a multiset of symbols.

Thus, the same terminal symbol, representing a particular graphical component for

example, may appear more than once. We use the formalism from [14] in the rest of

the paper. This is adaptated from Knuth’s original terminology [30].

An AMG is defined as a five-tuple G = (N, T, S, A, P) where N is the set of

nonterminal symbols denoted with capital letters, T is the set of terminal symbols

denoted by lower case letters, S is the start symbol, A(X) is a set of attributes defined

for the symbol X ∈ N ∪ T , and P is the set of production rules. The notation X.a

is used to denote the value of the attribute a ∈ A(X). Attributes are of two types,

A(X) = A0(X) ∪ A1(X), where A0(X) is the set of synthetic attributes which have

predefined values for all terminals and are calculated for nonterminals based on their

children, and A1(X) is the set of inherited attributes which are calculated based on

the attributes of their parents.

Each production rule p ∈ P is a three-tuple (r, M, C) where r is a syntactic rule

of the form X0 → X1, X2, ..., Xnp that rewrites the nonterminal X0 as a multiset of

nonterminal and terminal symbols X1, X2, ..., Xnp . M is a set of attribute rules, where

each rule m ∈ M = M0 ∪M1 assigns a value to one of the attributes of the symbols

involved in r. A synthetic attribute rulem ∈M0 assigns a value to a synthetic attribute,

while m ∈ M1 assigns a value to an inherited attribute. A set of attribute constraints

C = C0 ∪ C1 governs the application of the production rule. A parse tree belongs to

the grammar’s language only if all attribute constraints of the applied production rules

are satisfied. An AMG can thus define an activity as follows:

– The start symbol (S) represents the complete activity.

– Nonterminal symbols (N) represent the compound events that can be rewritten

into a multiset of simpler events.

– Terminal symbols (T) represent primitive events that are directly detected.

– Synthetic attributes (A0) are distinguising features, originating from the detections.

– Inherited attributes (A1) are explanation-related attributes, like the number of

people picked up by one car (Figure 1). Such attributes are not calculated from the

detections, but are part of the explanation, and differ between explanations.
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– Synthetic constraints (C0) define temporal and spatial constraints.

– Inherited constraints (C1) impose consistency between the constituent events form-

ing an explanation.

The key difference between AMG and conventional string grammar is the absence

of a sequential ordering. For string grammars, allowable variations in ordering must

be dealt with through the grammar rules - each possible ordering is defined in a sepa-

rate rule. When such variation is the norm, or when events can occur in parallel, this

becomes unwieldy. In AMG by contrast the grammar rules only define the permit-

ted composition of entities (in our case events) - allowable relations between entities

(e.g. temporal or spatial relations) are specified via the attribute constraints. This is

convenient when there are relatively few such constraints.

Using a multiset instead of a set, means that symbols may appear multiple times.

An activity can contain multiple instances of the same event. Note that two event

instances of the same type are considered identical, which motivated the usage of

multiset grammar. In our use of AMGs we also assume multiple consumption - each

terminal or nonterminal symbol x ∈ T ∪ N can be consumed more than once in the

parse tree. This allows the same detection or event to be part of multiple complex

events. One can think of this as a cloned copy of the node in the parse tree that shares

the same attribute values. Used without care, this could result in an infinite number of

parses for a given input. We prevent this through the use of ‘counting’ attributes and

associated constraints which implement natural constraints of our activity domain. For

example, while the car can pick up multiple people, the person can be picked up by

one car at most.

After a parse tree is built, attribute values are calculated using the attribute rules.

For AGs in general, assumptions are normally made about the order in which attributes

are computed, assuming such an ordering exists and there is no circularity [28]. In our

case, we assume a strict ordering of evaluation as follows. First, all synthetic attributes

are evaluated bottom-up until the root is reached. Next, inherited attributes are eval-

uated in a top-bottom manner until leaf nodes are reached. This implies synthetic

attribute rules do not require any inherited attribute values. When multiple attribute

rules are associated with the same production rules, they are evaluated in the order

in which they appear in the grammar. Because of multiple consumption, a node of

the parse tree may have more than one parent. When this occurs, the attribute rules

are evaluated in an arbitrary order. We assume the attribute rules are such that the

resulting attribute values are invariant to the chosen ordering. Finally, the attribute

constraints are evaluated. A parse tree is invalid if any constraint is broken.

To illustrate, consider the AMG G1 in Table 1. For each input video, detectors

are used to retrieve a set of detections D. Each detection is an instance of one of the

terminals T in the grammar, together with assigned values for the synthetic attributes

defined for that terminal. The set of all derivations of D, given G1, is the set of all

possible explanations for the input video. For the grammar G1, suppose the detectors

generated the following multiset D = {a1 (t=1), a2 (t=2), b1 (t=2), c1 (t=3), c2 (t=4)}
- subscripts distinguish different instances of the same terminal. Values for the synthetic

attribute t are assigned by the detector for each terminal symbol. Figure 3 shows two

possible parse trees. Recall that the left-right order of branches from each non-terminal

in the tree is irrelevant.

For readers familiar with And-Or Graphs, it is worth noting that this is an equiv-

alent representation to context-free grammars [19]. Figure 4 shows the sample AMG
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Terminals (T): a, b, c primitive events
Nonterimanls (N): S, A, B compound events

Attributes (A):
attribute name type domain defined for
t A0 Z {a, b, c, A, B}
count (default = 0) A1 Z {b, B}
Production Rules (P):
rule Syntactic Rule (r) Attribute Rules (M) Attribute Constraints (C)
p1 S → A�, B�, a�, c�

p2 A → a, B A.t = a.t+B.t a.t < B.t
B.count = 1 B.count �= 1

p3 B → b,c B.t = c.t b.t < c.t
b.count = B.count b.count �= 1

Table 1 AMG example G1

Fig. 3 Two parse trees given a set of detec-
tions and AMG G1.

S

A B a

cb

or-node
and-node
leaf-node

Fig. 4 And-Or graph representation of the
grammar G1.

from Table 1 represented as an And-Or graph using the notation from [52]. Notice

that And-Or graphs are usually drawn for string-grammars, where the order of chil-

dren (left-to-right) represents the order of symbols in the production rule. For multiset

grammars, this order is not preserved. We have chosen to represent the grammar in a

more traditional way - using tables of syntactic rules - as it clarifies the correspondence

between syntactic rules, attribute rules and attribute constraints.

4 Probability distribution over global explanations

To find the best explanation (i.e. parse tree) for a set of detections and a given AMG,

a probability distribution over the space of possible explanations is modelled as a

Bayesian network (BN). This section explains the structure of the BN along with the

procedure for generating this BN.

The BN contains three kinds of node. The first are Boolean ‘event-nodes’ rep-

resenting the presence or absence of possible events in the explanation. There is a

event-node for every primitive or compound event derivable from the set of detections.

These are hidden nodes in the BN, and a global explanation is a complete labelling of

the event-nodes in which the value of a node is true if and only if the corresponding

event is present in the explanation. The joint probability of all event-nodes is factorised

so compound events are only dependent on their constituent events, according to the

given AMG. The second kind are ‘observation-nodes’ representing continuous or dis-

crete synthetic attribute values obtained from the detectors. These are shaded in the

figures to indicate that their values are assumed known. There is an edge connect-

ing each event-node to its associated observation-node. The associated likelihood is a

function of the attribute values for the possible event corresponding to the event-node.

The third kinds of node are Boolean ‘constraint-nodes’ - set as true for explanations

constrained by the AMG. Each constraint-node is connected to the event-nodes over

which the constraint operates. These are deterministic variables in the BN (denoted



9

Fig. 5 A plate and unrolled BN for the simple AMG in Table 1, restricted to the single rule
p3 : B → b, c.

by double-circled nodes), as each is functionally depend on the values of its parents

using a Boolean function. The constraint-node evaluates to true if and only if the cor-

responding constraint specified in the AMG is satisfied. This implies that the joint

probability of the BN is zero if any constraint is broken.

To illustrate, Figure 5 shows the BN generated for the third rule of the simple

AMG in Table 1 (B → b, c), assuming N detections of b and M detections of c using

a plate representation. Also shown is the rolled-out BN for N = 3 and M = 2, with

the different kinds of nodes shown in layers. Note that descendants in a parse tree are

parents in the BN.

input : Grammar G = (N, T, S, A, P), detections set D
output : Bayesian network structure BN

%%% Build Bayesian network structure1
initialise an empty Bayesian Network (BN)2
foreach terminal instance t ∈ D3

add event-node to BN of type t4
if t has synthetic attributes then5

add a related observation-node to hold the synthetic attribute values6

order rules P starting with those containing terminals then bottom-up7
foreach rule p ∈ P (p.r : X0 → X1, X2, ..., Xn); X0 �= S8

Let I(Xi) be the set of event-nodes in BN of type Xi9
comb = I(X1) × I(X2) × ... × I(Xn)10
while comb �= φ do11

multiset b = comb(1) - first multiset in comb12
comb = comb - b13
if b satisfies synthetic attribute constraints p.C0 then14

add event-node R to the BN of type X015
foreach synthetic attribute rule m ∈ p.M016

apply m assigning a synthetic attribute value to observation-node of X017

all event-nodes in the multiset b parent the created event-node18
if recursive rule p then19

Let A(b,Xi) be the set of all ancestors of b of type Xi20
comb2 = {I(X1) − A(b, X1)} × ..× R× ..× {I(Xn) − A(b, Xn)}21
comb = comb ∪ comb222

%%% Find inter-dependent nodes23
Let Nodesn be the set of all event-nodes24
while Nodesn �= φ do25

find Nodesp with inherited constraints limiting the same inherited attribute values26
Nodesn = Nodesn - Nodesp27
if size of Nodesp > 1 then28

add constraint-node c to hold the inherited constraints29
all event-nodes in Nodesp parent the constraint-node c30

Algorithm 1: Mapping a set of detections D to the Bayesian network (BN) representing the probability
distribution over the possible parses, given an AMG G.

Algorithm 1 details the steps for building a BN out of a set of detections D and

an AMG. First, an event-node is created for each detection d ∈ D. Rules are then

considered one-by-one. For each rule, all combinations of available event-nodes that
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can be parsed by that rule is considered. The synthetic constraints are checked, and

when satisfied, an event-node is created for the non-terminal at the left-hand-side of the

production rule. To accommodate for direct recursion in grammars, the if-statement

(line 20) checks for new possible multisets of event-nodes in the BN. The algorithm

cannot deal with indirect recursion. This is not seen as a limitation to defining activities,

because direct recursion is sufficient to define repetitive patterns in the grammar. Lines

23-30 explain how inter-dependent nodes can be found and linked to deterministic

random variables. Algorithm 1 assumes a mapping is known between each inherited

constraint and a Boolean function to evaluate that constraint. In all the examples given

in this paper, inherited constraints are confined to equality and inequality statements

that are mapped to Boolean functions using Boolean operators. For example, in AMG

G1, the inherited constraint b.count �= 1 combined with the inherited rule b.count = 1

implies the rule can be parsed only once for each b detection. In the BN, only one

parent node of each b can thus be labelled true. The corresponding Boolean function

for this constraint, given the parent nodes B1, B2, would be ¬(B1.count ∧B2.count).

Figure 6 shows the Bayesian network for AMG G1 and the specified detection multiset

along with two labellings that reflect the parse trees in Figure 3.

After defining the topology of the BN, priors and conditional probabilities are

specified. To find the best explanation, one needs to infer the MAP labelling ω� of the

event-nodes, given the observation-nodes Y ;

ω� = argmax
ω

p(ω|Y ) (1)

For the BN from one production rule in Figure 5, and set of detections {bi}, {cj}, the
posterior is written as

p(ω|Y ) = 1
G
∏

i

p(obi |bi)p(bi)
∏

j

p(ocj |cj)p(cj)
∏

ij

p(oBij |Bij)p(Bij |bi, cj)p(c|{Bij}) (2)

The posterior can be re-arranged, and the third factor in Equation 2 can be replaced

by a proportional quantity to ensure tractability (Appendix A),

p(ω|Y ) =
1

Q
∏

i

p(bi|obi)
∏

j

p(cj |ocj )
∏

ij:Bij=t

p(Bij = t|bi, cj , oBij )
p(Bij = f |bi, cj , oBij )

∏

ij

p(c|{Bij})

(3)

Accordingly, evaluating the posterior of a single parse tree takes into consideration only

the compound events recognised within the parse tree, and is not concerned with the

remaining unrecognised events. This uses the fact that labelling all the event-nodes as

false is a fixed quantity. For event-nodes labelled true, the ratios of labelling each node

as true to labelling it as false are sufficient to compare the posterior across various

labellings of the Bayesian network.

Fig. 6 The Bayesian network for the grammar G1 along with two labellings that reflect the
parse trees in Figure 3. An event-node is labeled true if the event appears in the parse tree.
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Event-nodes in the BN correspond to possible events in a parse tree derivable from

a given set of detections. Although the explanation until now has focused on BNs with

Boolean event-nodes, nothing restricts the approach from extending to multi-labelled

event-nodes (MLEN). A MLEN can be labelled with one of possible event types, or a

false labelling which implies none of the possible events has occurred. This is suitable

for AMGs where there exists more than one consistent setting for inherited attributes

associated with structurally identical compositions of primitive events. In this case,

the labels for the node in the BN are augmented to denote these different possible

settings in addition to ‘false’. MLENs are used in the AMG for the Bicycles problem

in Section 6.

5 Searching the Bayesian Network

We explore four methods for finding the MAP explanation for a given BN. Three of

these are approximate methods: Greedy search (G), Multiple Hypothesis Tree (MHT)

and sampling the distribution using Reversible Jump Markov Chain Monte Carlo

(RJMCMC). One method is guaranteed globally optimal which is formulating the

search as an Integer Program (IP). While IP delivers better explanations, an increase

in the search space makes IP intractable and the heuristic methods come into their

own (Section 6). This section explains how each of these search techniques searches the

BN built in Section 4.

Greedy search (G) assigns labels to event-nodes working from the bottom layer up

and checking constraints at each stage. At each level, the nodes at that level {xi} are

sorted by lxi ,

lxi =
p(xi = t|pa(xi), oxi)
p(xi = f |pa(xi), oxi)

(4)

where pa(xi) is the (labelled) set of parents of the node xi. If lxi ≥ 1 then xi is labeled

true, unless the explanation becomes inconsistent. The evaluation continues up the

hierarchy until all nodes are labeled.

Multiple Hypotheses Tree (MHT) [37], propagates a tree of multiple hypotheses

(explanations). It assumes an ordering (usually temporal) and starts from the first

detection working through to the last. Each level in the search tree is expanded into

nodes representing the different hypotheses explaining the detection in hand. Each

path, from root to leaf, in the search tree corresponds to an explanation. Due to the

ambiguities in the visual data, the current best path may not be part of the best path to

lower levels of the search tree as it propagates into the future. The search tree is pruned

at each step to keep the search tractable by retaining only the best k hypotheses. The

number of retained branches, k, is selected based on a trade-off between number of

calculations and accuracy.

Markov Chain Monte Carlo (MCMC) samples the posterior distribution π(ω) using

a Markov chain. A conditional proposal distribution Q(ω′|ω) defines the probability of

proposing state ω′ given the current state is ω. After a state is proposed using Q,

the move to that state is made with the probability α(ω′|ω) known as the acceptance

probability. A thorough review of MCMC techniques can be found in [3]. The space of

possible explanations is a discrete space, thus moves are designed to change a certain

explanation ω into a slightly different one, preserving the constraints. Green suggested

using Reversible Jump MCMC for sampling the joint distribution of both the model

dimension and the model parameters [16]. By analogy, given a set of detections, the

search is for the number of events and which detections belong to each event. RJMCMC
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Fig. 7 Four move types to link events, break links, change linked events and switch links.

Fig. 8 Four moves are applied in sequence. The label at each arrow shows the number of
possible moves of each type. The rectangle indicates the chosen move type.

generalises the acceptance probability to include the probability of selecting the move

type, and a move-specific probability [17].

α(ω′|ω) = min
(
1,
π(ω′)
π(ω)

jmR(ω′)
jm(ω)

gmR(u′)
gm(u)

∣∣∂(ω
′, u′)

∂(ω, u)

∣∣) (5)

In Equation 5, assume ξ represents the set of all move types, then jm(ω) is the prob-

ability of selecting the move type m ∈ ξ given the current explanation is ω. For each

move type m, mR refers to the reverse move type. Some move types are self-reversible,

which means a move of the same type is applied to revert the change. The random

variable u is a parameter for applying the move type m and transforming the current

explanation ω to the new explanation ω′. The last factor in Equation 5 is the absolute

determinant of the Jacobian matrix of this diffeomorphism, which equals the identity

matrix for the moves proposed here (Refer to Smith [43] for proofs).

For binary event hierarchies where each production rule in the AMG replaces a

symbol by a multiset of two symbols, four move types were designed to traverse the

search space (Figure 7). It should be noted that this is not the minimal set of move

types. Adding ‘change’ and ‘switch’ move types enables efficient search of the space

and faster convergence.

For the grammar G1 and an initial configuration ω0, Figure 8 shows a typical

Markov chain. At each step, a list of possible move types with the number of possible

moves of each type is shown on the arrow. A subscript indicates the layer at which

the move is applied. connectB , for example, recognises a compound event of type B.

In presenting the figure, the parse tree is shown rather than the labeled BN. Recall

that there is a one-to-one mapping between a labeled BN and a parse tree. When

searching the space of explanations using MCMC, the BN need not be actually built.

RJMCMC jumps between the different explanations, and avoids unlikely explanations,

without requiring the BN structure. Once a move is applied, the attribute values are

re-evaluated for affected parts of the tree. Similar to the order in Section 3, synthetic

attribute rules are first evaluated bottom-up, followed by inherited attribute rules.

For reaching the maximum faster, simulated annealing (SA) is added to the MCMC

sampling.

Finally, we use integer programming (IP), which is an exhaustive search technique.

The list of all partial explanations � is first accumulated. Assume there are r partial

explanations, the explanation ω is then an r-dimensional vector of 0s and 1s. In the

case of global explanations for activities, a partial explanation is one event from the

possible set of events (primitive or complex) along with all its constituent events (in

the case of compound events). For the detection set D = {a1(time = 1), a2(time =
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2), b1(time = 2), c1(time = 3), c2(time = 4)}, the list is:

λ0 : a1 λ4 : B1, b1, c1 λ8 : A3, a1, B2, b1, c2
λ1 : a2 λ5 : B2, b1, c2 λ9 : A4, a2, B2, b1, c2
λ2 : c1 λ6 : A1, a1, B1, b1, c1
λ3 : c2 λ7 : A2, a2, B1, b1, c1

The probability of each partial explanation can be calculated independently. Assume v

is an r-dimensional real-valued vector where vi = log(p(λi)). The search for the MAP

solution using IP would be to find max v′ω. This is because

v′ω =
∑

i:ωi=1

vi =
∑

i:ωi=1

log(p(λi)) (6)

Accordingly, ω1 = [0 1 0 1 0 0 1 0 0 0]′ and ω2 = [1 1 1 0 0 1 0 0 0 0]′ correspond to

the parse trees in Figure 3. The posterior of each explanation is v′ω1 and v′ω2.
While maximising v′ω, some of the r-dimensional binary vectors are an inconsis-

tent or incomplete set of events. IP includes constraints that ensure the resulting set of

events makes up a global explanation. Three constraints are defined for global expla-

nations: all terminals need to be explained (c1), sharing constraints satisfied (c2), and

occurrence of events in multiple partial explanations preserved (c3). For c1 a matrix τ

of size d × r, where d = |D| is the number of detections, is constructed so τij = 1 if

terminal i is explained by the partial explanation j. Similarly for c2, a matrix θ of size

m × r is constructed, where m is the number of deterministic nodes in the BN, and

θij = 1 if any inter-dependent node parenting the deterministic node i is explained in

the partial explanation j. For c3, a matrix κ of size n× r, where n is the total number

of event-nodes in the BN, is constructed so κij = 0 if node i is not labelled in the

partial explanation j, κij = 1 if it is labelled as ‘true’ and κij = 2 otherwise. The

linear optimisation problem is then:

Given matrices τd×r, θm×r, κn×r and cost vector vr, find max v′ω such that

τω ≥ 1, and

θω ≤ 1, and

κωω′κ′ = 0

ω ∈ Z
r

This integer program has one nonlinear constraint that can be converted into a set

of linear inequalities [46]. We use XPRESS-MP to solve the standard linear optimisa-

tion [12]. The search techniques presented in this section are experimentally compared

in the next section on two activities.

6 Applications and Results

The proposed framework has been applied in two case studies. The first is in recognising

the activity in a bicycle rack, and the second is in associating people and any objects

they might be carrying into and out of a building.

6.1 The Bicycles Problem

In the Bicycles problem, a CCTV camera overlooks a bicycle rack where people lock

their bicycles and retrieve them later. We refer to the act of leaving the bicycle in the

rack as a drop, and the act of retrieving the bicycle as a pick. The task is to correctly

associate people to the bicycle they have dropped or picked, and to link picks to earlier
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Fig. 9 An activity unit showing 5 individuals (left) and 3 bicycle-clusters (right).

drops when the corresponding events are both observed. Due to the highly-interleaved

activities, previous approaches like string grammars or HMMs result in overly complex

representation. For three interleaved drop and pick events the number of rules (or

states) required equals 10, and the increase is exponential. For these types of interleaved

events, multiset grammars introduce a significant simplification in representation over

available approaches. Two types of detections are considered; the first is of people

entering and leaving the rack area, and the second is of changes within the racks

that indicate the appearance and disappearance of bicycles. These are referred to as

‘bicycle-clusters’, as each may contain multiple bicycles.

The Bicycles problem is challenging because bicycles are parked very close to each

other and are sometimes ‘piled’ on top of one another. Association ambiguities increase

when there are several people in the rack area at the same time. We refer to the intervals

during which one or more people are in the rack area as ‘activity units’, consistent with

the terminology in [15] for plane refueling scenes. Figure 9 illustrates an activity unit

by highlighting the detected people and bicycle-clusters. Within an activity unit, each

person can be linked to one bicycle-cluster at most, as we assume a person cannot drop

or pick more than one bicycle per visit to a rack. On the higher level, each drop can

be connected to one pick at most from a later activity unit, and vice versa.

To detect people entering and leaving the rack, an off-the-shelf blob tracker is

used [32]. We define a person detection as starting from the first appearance of a

moving blob within the field of view and ending when the blob departs the scene or is

fully occluded. The same person returning to the rack is treated as a new detection.

To detect bicycles, reference images of the rack area are compared, revealing changed

pixels, representing objects that have been deposited and removed. The changed image

pixels are grouped into connected regions representing bicycle-clusters. Further details

on the two detectors can be found in [5].

The AMG for the Bicycles problem, using the notation from Section 3, is given in

Tables 2 and 3. Simple features have been used to recognise the events at the different

levels of the hierarchy. In this work, we have not attempted to find the best feature(s)

for recognising the events, as we focus on the global explanation. For example, the

size of the blob across the trajectory as the person passes through the racks is used to

distinguish people dropping from those picking bicycles or simply passing through the

racks. The probability for the presence or absence of a compound event is a function of

the attribute values for that hypothetical event. For example, the likelihood p(oV |V )

is defined as a pair of half-Gaussian distributions of the synthetic attribute clustO =

ψco(Z1.fMap, Z2.fMap), measuring the degree of overlap between a dropped bicycle-
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Terminals (T): x person dropping or picking a bicycle
y dropped or picked bicycle cluster (i.e. one or more bicycle)
u Unobserved drops or picks

Nonterimanls (N): S Start symbol representing the global explanation
V Drop-Pick: relates a drop event to a later pick
Z Drop or pick: person drops/picks a bicycle to/from a bicycle-

cluster

Attributes (A):
att. name type domain description

x id A0 Z a unique id differentiating people detections
au A0 Z activity unit during which the person was detected

traj A0 Z
4n bounding boxes representing the extent of the person in each frame

sizeR A0 R ratio of the mean number of pixels representing the foreground be-
fore the person enters the rack area to the mean number after de-
parting

count A1 {0,1} number of events in which the person participates
action A1 {drop (d), pick (p), pass-by (f)}

y au A0 Z activity unit at which the cluster was detected

pos A0 Z
4 bounding box of the cluster

fMap A0 Image map of foreground pixels representing the cluster
edgeR A0 R ratio of new to removed edges within the cluster
count = 0 A1 Z

∗ inferred number of bicycles in the bicycle-cluster
action A1 {drop (d), pick (p), noise (f)}

Z id A0 Z = x.id

pos A0 Z
4 = y.pos

au A0 Z = x.au

traj A0 Z
4n = x.traj

edgeR A0 R = y.edgeR
fMap A0 Image = y.fMap
dist A0 R spatial proximity between x and y
count A1 {0,1} number of drop-picks in which this event participates
action A1 {drop (d), pick (p), f}

V clustO A0 R pixel overlap between the dropped and the picked bicycle-clusters

pos A0 Z
4 bounding box of the intersection area between the dropped and the

picked bicycle-clusters
psDDist A0 R post-segmented distance for the drop event
psPDist A0 R post-segmented distance for the pick event
psDEdges A0 R post-segmented edge ratio for the drop event
psPEdges A0 R post-segmented edge ratio for the pick event
action A1 {drop-pick (dp), drop-only (dx), pick-only (xp), f}

Attribute Functions
ψdist(x.traj, y.pos) calculates the spatial proximity between a person and a bicycle-

cluster
ψco(Z1.fMap,Z2.fMap) calculates the overlap in foreground map between the dropped

and the picked bicycle-clusters
ψeR(y.edgeR, y.pos) calculates the ratio of new to removed edges within a particular

rectangular area

Table 2 AMG for the Bicycles problem: terminals, non-terminals, attributes and attribute
functions

cluster in Z1 and a picked bicycle-cluster in Z2:

ψco(Z1.fMap, Z2.fMap) =
M(Z1.fMap&Z2.fMap)

min(M(Z1.fMap),M(Z2.fMap))
(7)

Here M(·) returns the number of non-zero pixels in a given binary image, and the

operator & is the pixelwise Boolean ‘and’. The mean and standard deviation of the half-

Gaussian distributions are the MAP estimates for the conditional probability of clustO

values obtained from hand-labelled examples of true and false associations between

drops and picks (Figure 10).

The AMG contains 5 production rules. Each syntactic rule is associated with at-

tribute rules and constraints. In p2, possible drops are only linked to picks in later

activity units (Z1.au < Z2.au in p2). In p5 drop and pick events between people

and bicycle-clusters should be detected within the same activity unit (x.au = y.au in

p5). An inherited constraint expects that each trajectory passing through the lab can

drop/pick only one bicycle (x.count �= 1).
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Production Rules (P)

Syntactic Rule (r) Attribute Rules (M) Attribute Constraints (C)

p1 S → V�, x�, y� y.action = “noise” y.count < 1
x.action = “pass-by” x.count �= 1

p2 V → Z1, Z2 V.action = “drop-pick” Z1.au < Z2.au
Z1.action = “drop” Z1.count �= 1
Z2.action = “pick” Z2.count �= 1
V.clustO = ψco (Z1.fMap, Z2.fMap)
V.pos = Z1.pos ∩ Z2.pos
V.psDDist = ψdist (Z1.traj, V.pos)
V.psPDist = ψdist (Z2.traj, V.pos)
V.psDEdges = ψeR (Z1.edgeR, V.pos)
V.psPEdges = ψeR (Z2.edgeR, V.pos)
Z1.count = 1
Z2.count = 1

p3 V → Z, u V.action = “drop-only” Z.count �= 1
Z.action = “drop”
Z.count = 1
V.pos = Z.pos
V.psDDist = Z.dist
V.psPDist = 1
V.psDEdges = Z.edgeR
V.psPEdges = 1

p4 V → u, Z V.action = “pick-only” Z.count �= 1
Z.action = “pick”
Z.count = 1
V.pos = Z.pos
V.psDDist = 1
V.psPDist = Z.dist
V.psDEdges = 1
V.psPEdges = Z.edgeR

p5 Z → x, y x.action = Z.action x.au = y.au
y.action = Z.action x.count �= 1
Z.au = x.au
Z.traj = x.traj
Z.pos = y.pos
Z.edgeR = y.edgeR
Z.fMap = y.fMap
Z.dist = ψdist (x.traj, y.pos)
x.count = 1
y.count = y.count+1

Table 3 AMG for the Bicycles problem: production rules

(a) (b) (c) (d) (e) (f) (g)
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Fig. 10 Consecutive reference image pairs (a,b) and (d,e) are compared to reveal changes (c,f).
By comparing the changed blobs (g), the clusters overlap V.clustO is evaluated (Equation 7).
Visually, yellow pixels represent the dropped clusters while pink pixels represent the picked
cluster. Correct and incorrect values of clustO (from manual ground-truth) are shown along
with MAP estimate for half-Gaussians

Algorithm 1 is used to build the Bayesian network given the set of detections.

The Boolean node ‘u’ is labeled true if an open world assumption 1 is considered.

1 An open world implies that some bicycles are deposited into the racks before the video
sequence starts, and some could still be in the rack at the end of the sequence.
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Alternatively, if ‘u’ is labeled false, all drop and pick events are forced to be linked

and the world is assumed closed. Figure 11 shows a parse tree of the AMG along

with a labeled Bayesian network. Studying the AMG and the BN reveals exponential

complexity in the number of nodes for the Bicycles problem.

Fig. 11 A sample parse tree and the corresponding labelled BN.

When searching the global explanations using RJMCMC, the initial explanation ω0
specifies that all people are passing by the rack area and all bicycle-clusters are noise.

This is a valid explanation, though unlikely to be the MAP solution. At each step of

the Markov chain, a move is applied to the current explanation. Figure 12 shows a

sequence of moves.

The proposal distribution Q picks a move-type jm then a specific move gm. The

weighted distribution jm is estimated from the number of distinct moves of each type

that can be applied to the current explanation ωi. The type-specific distribution is

dependent on the ambiguity in the data. For example, the ambiguity in connecting

a person xi to a bicycle yj is calculated from the number of possible bicycle-clusters

B(xi), and the number of people who come close to the bicycle-cluster T (yj). The

weighting for selecting moves of type connectz is defined in Equation 8.

δconnectz (xi) =
∑

yj∈B(xi)

1

|T (yj)| (8)

The type-specific distributions gm for the remaining move types are explained in [5].

The prior conditional probabilities are manually estimated without observing the

testing data, and are kept fixed for all experiments. This is because estimating them

from training data requires a significant amount of data and is a computationally hard

optimisation problem due to the dependencies between the production rules that arise

from the constraints [1].

Two bicycle rack locations have been chosen for testing. The first is within the

University of Leeds, and the second outside Cambridge train station. Table 4 contains

a summary of statistics for both datasets. The MAP explanation is compared across all

Fig. 12 A sequence of {connectv → connectz → changev → disconnectz} moves was applied.
The last move affects both layers as disconnecting a pick cancels the drop-pick.
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sequences for G, MHT, RJMCMC and IP searches (Table 5, Figure 13) 2. IP finds the

MAP explanation for all sequences, yet takes longer and requires more memory. RJM-

CMC achieved better results than MHT in 4 out of the 7 sequences, and comparable

results in the remaining sequences. RJMCMC-SA achieved the best results amongst

heuristic methods.

Leeds Cambridge
sequence 1 2 3 4 5 6 7

Duration 1h 1h 11h 12h 12h 15h 15h

|{x}| 58 27 128 126 137 112 197

|{y}| 59 25 72 175 128 206 1847

Drops 24 11 20 20 14 28 39

Picks 20 12 19 20 13 17 41

Drop-Picks 20 11 18 20 13 14 22

Table 4 Dataset statistics

G MHT RJMCMC RJMCMC-SA IP
k=50 k=100 k=500 μ σ μ σ

1 102.25 58.78 58.78 57.86 57.90 0.11 57.86 0.00 57.86
2 23.54 4.64 4.64 4.64 4.64 0.00 4.64 0.00 4.64
3 609.66 493.18 468.80 468.80 429.30 3.23 423.98 2.36 416.64
4 6272.69 6149.95 6144.98 6144.30 6079.88 3.43 6078.40 3.23 6065.00
5 5034.46 4998.39 4982.86 4975.82 4943.71 3.59 4939.33 1.87 4937.08
6 860.37 812.96 812.96 812.96 814.71 1.69 811.50 2.36 797.29
7 934.36 608.92 607.39 - 451.92 9.29 433.50 7.76 283.51

Table 5 − log(p) compared across G, MHT, 40 runs (nmc = 5000) of RJMCMC and
RJMCMC-SA (linear cooling) and IP using XPRESS-MP. The results are not available for
MHT (k=500) on sequence 7 due to the implementation running out of memory.

Figure 14 shows an example of convergence for both RJMCMC and RJMCMC-SA

chains under various choices of the proposal distribution. The first choice is when both

the move type and the individual move are chosen uniformly-at-random (u.a.r). The

chains are far from convergence in both cases. Alternatively, if the move type choices

are weighted using estimated move counts, while the actual move within that type is

selected u.a.r., the algorithm converges but requires a longer Markov chain. Weighted

choices in both proposal distributions are capable of converging significantly faster.

Figure 15 shows how the optimisation changes as more detections are being con-

sidered. We process the detections in their temporal order, so at each point in time the

output is a valid explanation given the detections from the start of the video sequence

up to that point in time. The figure shows that some detections introduce higher ambi-

guity in the global explanation, while the others resolve ambiguities by increasing the

MAP (decrease in -log(p)). It should though be noted that the figure does not take the

normalising factor in the posterior into consideration.

The ground truth was manually obtained for each sequence, labelling each person

with the event accomplished, then connecting picks to earlier drops. The accuracies

for the MAP explanations from Table 5 are shown in Table 6. The last column in the

table indicates the accuracy of the best global explanation. The global explanation

does not match the ground truth when detections are missing altogether or feature

values are incorrect. For example, when a bicycle-cluster is not found by the detector,

2 Each RJMCMC chain executes within 3-7 minutes (3GB). MHT executes within 20 min-
utes for k = 500 (4GB). IP using XPRESS-MP takes 5-30 minutes for these sequences (10GB).
Note that the code was not optimised for performance comparison.
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a person can be connected to an incorrect cluster, or thought to be passing by the

bicycle rack. In the 7th sequence for example, the scene often changed from shadow to

sunlight, and the bicycle-clusters detector often failed to correctly detect the changes

in the background. The table also compares local and global analysis. A local solution

is a complete but possibly inconsistent set of events, allowing the same drop to link

to several pick events and vice versa. The results show higher accuracy for global

Local G MHT RJMCMC RJMCMC-SA IP
k=50 k=100 k=500 μ σ μ σ

1 74.13 72.41 91.38 91.38 91.38 88.36 1.09 87.46 1.79 91.38
2 85.19 85.19 100.00 100.00 100.00 100.00 0.00 100.00 0.00 100.00
3 64.06 58.59 84.38 84.38 84.38 87.68 0.89 83.36 1.65 87.5�

4 74.60 73.81 74.60 75.40 75.40 83.93 1.09 83.15 1.31 83.33�

5 86.13 89.05 82.48 84.67 88.32 91.90 0.79 92.65� 0.90 94.16
6 65.18 66.07 60.71 60.71 60.71 68.53 1.68 70.98 1.04 73.21
7 46.18 45.69 44.67 45.69 - 47.28 1.18 47.61 0.88 46.70

Table 6 The accuracy results (%) for the MAP solutions. � denotes that for the same MAP,
two or more explanations are found, and only the one with the maximum accuracy is recorded.
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explanations, as global explanations can resolve ambiguities that cannot be resolved

by local analysis.

6.2 The Entry-Exit Problem

This section presents a different problem that requires tracking people, and any objects

they might be carrying, as they enter and exit a building. A global explanation links the

person entering the building, possibly with some carried objects, to a later departure of

a person, with or without carried objects. It also can link the departing person to their

return later. The linking depends on comparing the person and the baggage biometrics

between both appearances. Natural constraints govern the possible explanations, e.g. a

person entering the building can be observed departing only once, and at a later point in

time. This problem is similar to the task of tracking people between non-overlapping

cameras, yet the person is not restricted to emerge again within a certain amount

of time, which increases the number of interleaved events making the explanations

intractable in most cases. As before, pedestrian trajectories are detected using the

same off-the-shelf tracker [32]. For each trajectory, protrusions representing candidate

carried objects are retrieved using the method in [6].

Similar to the Bicycles problem, an AMG is designed and some features are selected

(details available in [5]). Simple features were again chosen; people tracked in and out

of the building were matched by their projected height and clothing colour. Testing was

performed on 12 hours of video recorded outside a building entrance. 326 trajectories

close to the entrance were detected after manually rejecting groups of people walking

together. The baggage detector from [6] resulted in 429 candidate bags. The BN ob-

tained from these detections contains 190849 event-nodes. Table 7 compares the MAP

for the BN. The IP solvers could not exhaustively search the space of explanations in

reasonable time 3 as the constraints in this problem are more complex than those in

the Bicycles problem. In the entry-exit activity, the enter event can be linked to an

earlier exit as well as a later one. Conflict checking (Section 5) is thus required, which

considerably increases the number of constraints to be satisfied by the solver. For a

smaller-scale problem, the table shows the MAP solution for the first 25 people (out

of 326 in the dataset) and their corresponding candidate bags. RJMCMC-SA is once

again the best heuristic search technique. It’s the only technique that was able to find

the MAP explanation (at some chains).

G MHT RJMCMC RJMCMC-SA IP
k=1 k=20 k=500 μ σ μ σ

25 traj 85.61 85.49 84.97 84.47 85.55 0.13 84.29 0.03 84.27

326 traj 1143.47 1146.58 1137.70 - 1143.09 0.40 1123.02 1.12 -

Table 7 − log(p) compared across G, MHT, 40 runs of 10 parallel chains RJMCMC and
RJMCMC-SA and IP using XPRESS-MP. MAP is shown for the 25 people detections and
the corresponding candidate bags as well as all detections. For the larger-scale problem, result
were not available for MHT search with larger k and IP due to the implementation running
out of memory.

When compared to ground-truth data, the global explanation achieves a recall of

30%, yet a precision of only 12%. This is because the features used to link events are

weakly discriminative. A high number of false links originate from people of similar

3 using 20GB of memory for about 10 hours
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Fig. 16 Correctly associated detections when global explanations are considered.

height and clothing colour. Figure 16 shows three sequences that were correctly re-

trieved only when the global explanation is searched using RJMCMC-SA. The figure

shows the framework’s ability to correctly discover an ‘exit-enter-exit-enter’ sequence.

7 Conclusion

This paper proposes a framework for finding a consistent set of events that covers all

detections, referred to as a global explanation. Using a Bayesian approach, the Maxi-

mum a Posteriori (MAP) explanation is selected as the best explanation. In achieving

the task, the activity and its constraints are described using Attribute Multiset Gram-

mars (AMG). Each production rule in the grammar rewrites a nonterminal into an

un-sequenced collection of simpler events (i.e. a multiset). AMGs allow specifying at-

tribute rules, as well as constraints that confine the grammar’s parses to consistent

ones.

For each input video, detectors retrieve the set of detections, which represents

terminal symbols along with the synthetic attribute values. An algorithm then auto-

matically builds a Bayesian Network (BN) to model the probability distribution over

the set of global explanations for these detections. The set of possible labellings of the

BN corresponds to the set of all global explanations. Search techniques are proposed to

find the MAP, as the combinatorial search becomes intractable when the complexity

and duration of the activity increase. The approach was tested on two case studies. Re-

sults show that RJMCMC along with Simulated Annealing is the best heuristic search

technique, that is scalable when the complexity increases.

7.1 Types of Activities

Any activity can indeed be represented by an AMG and recognised using the framework

proposed in this paper. Nothing restricts the approach from extending to multi-agent

activities, and this is left for future work. The framework is expected to outperform

other representations and recognition approaches in cases of

– Highly interleaved events: In this case the usage of ‘multisets’ simplifies the rep-

resentation. The BN models all possible interleaved events, and the MAP enables

recognising the most probable explanation. The two cases introduced in this paper

are examples of higly interleaved events.

– Temporal flexibility: When events can occur in any order, and only a few temporal

constraints need to be enforced, AMG provides a concise representation. For exam-

ple, cooking activities are typically flexible, and would benefit from this framework.

– Expected ambiguity in detections: Global explanations prove valuable in cases

where constraints can disambiguiate low-level measurements.

Alternatively, when the events are highly-strucutred, least-interleaved and occur in

order like activities on a factory production line, then string grammars provide equally

simple representation, and parsing approaches can be applied.
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7.2 Learning AMGs

In the current framework, the AMG is manually built for each activity. This includes

building the hierarchical structures, deciding on the features that could distinguish the

different event types, and listing the constraints. Though Zhu and Mumford emphasise

that learning a compositional structure depends on the objective of the composition,

and cannot be merely based on statistical data [52], recent advancements in learning

hierarchies from unlabelled, or weakly-labelled data are worth highlighting.

The leading work of [20] uses mining techniques to extract spatio-temporal re-

lationships from unlabelled data. Causal relationships are concluded from multiple

occurrences, and might be hallucinated. Alternatively, weakly-labelled data can be

used to build or adapt grammars. Textual annotations were used in [18] to build an

initial And-Or graph. Given the annotation, actions and their temporal relationships

are mapped to nodes and temporal constraints. As weakly-labelled data is parsed, the

graph is iteratively modified and extended to best explain the underlying observations

while maintaining the representation’s simplicity. These approaches could be utilised

to extract hierarchies for different domains.

After the hierarchy is built, attributes and attribute rules can be learnt from fea-

tures that best distinguish events at every layer of the hierarchy. Feature selection is

of primary interest to the machine learning community. Examples in activity recog-

nition include selecting from a pool of available features [38], and boosting [44]. The

combined learning of hierarchies, features and constraints from unlabelled, or weakly-

labelled data requires further research.

A Derivation

p(ω|Y ) = 1
G
∏
i
p(obi |bi)p(bi)

∏
j
p(ocj |cj)p(cj)

∏
ij

p(oBij |Bij)p(Bij |bi, cj)p(c|{Bij}) (9)

Using Bayes, the first product can be substituted p(bi|obi ) =
p(obi

|bi)p(bi)
p(obi

)
. The denominator

is a constant that can be part of the normalizing factor G. Similarly for the other terms. The
posterior (Equation 9) can be re-arranged as

p(ω|Y ) = 1
Z

∏
i
p(bi|oci)

∏
j
p(cj |ocj )

∏
ij

p(Bij |bi, cj , oBij )p(c|{Bij}) (10)

The third factor in Equation 10 becomes intractable to compute as the number of detec-
tions increases. Fortunately, this can be avoided by computing a proportional quantity instead
(p(Bij |bi, cj , oBij ) is abbreviated to p(Bi|·) in the derivation).

∏
i
p(Bi|·) =

∏
i:Bi=f

p(Bi = f |·) ∏
i:Bi=t

p(Bi = t|·) (11)

=
∏

i:Bi=f
p(Bi = f |·) ∏

i:Bi=t
p(Bi = t|·)

∏

i:Bi=t
p(Bi=f |·)

∏

i:Bi=t
p(Bi=f |·) (12)

=
∏
i
p(Bi = f |·) ∏

i:Bi=t

p(Bi=t|·)
p(Bi=f |·) (13)

∝ ∏
i:Bi=t

p(Bi=t|·)
p(Bi=f |·) (14)

This derivation specifically enables finding a quantity, proportional to the original posterior,
that is independent of all false-labelled nodes. The posterior p(ω|Y ) is rewritten to be

p(ω|Y ) =
1

Q
∏

i

p(bi|obi)
∏

j

p(cj |ocj )
∏

ij:Bij=t

p(Bij = t|bi, cj , oBij )
p(Bij = f |bi, cj , oBij )

∏

ij

p(c|{Bij}) (15)
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