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Abstract. Hand-gesture recognition presents a challenging problem for 

computer vision due to the articulated structure of the human hand and the 

complexity of the environments in which it is typically applied. Solving such a 

problem requires a robust tracking mechanism which in turn depends on an 

effective feature descriptor and classifier. Moment invariants, as discriminative 

feature descriptors, have been used for shape representation for many years. 

Zernike moments have been particularly attractive for their scale, translation 

and rotation invariance. More recently, Zernike moments have been extended to 

a spatio-temporal descriptor, known as the Zernike velocity moment, through 

combining with the displacement vector of the centre of mass of the target 

object between video frames. This descriptor has hitherto been demonstrated 

successfully in human gait analysis. In this paper, we introduce and evaluate the 

application of Zernike velocity moments in hand-gesture recognition, and 

compare with a bank of hidden Markov models with Zernike moments as 

observations. We demonstrate good performance for both approaches, with a 

substantial increase in performance for the latter method. 

Key words: Spatio-temporal description, hand gesture recognition, skin-colour 

segmentation, Zernike velocity moments, HMM 

1 Introduction  

Interest in hand gesture recognition has increased in recent years motivated in large 

part by the range of potential applications for human-machine interaction mediated by 

hand gestures. More generally, the human hand poses a substantial challenge for 

tracking and action recognition due to the way in which it deforms and self-occludes 

and the range of different semantically distinguishable actions it can perform. 

Within the wide range of application scenarios, hand gestures can be classified 

into several categories [1], including conversational gestures, controlling gestures, 

manipulative gestures, and communicative gestures.   For instance, sign language is 

an important example of a domain involving communicative gestures [2]. Our work is 
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aimed at the use of controlling gestures within multimedia applications similar to [3-

5]. 

Recognizing gestures automatically from visual input is a complex task that 

typically involves several stages, including signal processing, tracking, shape 

description, motion analysis, and pattern recognition. Machine learning methods have 

been used widely, particularly in recent years, and inspiration has come from several 

quarters including psychology and human behaviour studies. 

In selecting a method for shape description, a key requirement is to provide 

sufficient discriminative information for successful classification of hand gestures. 

The use of moments for shape description was introduced by Hu [6] in 1962. Hu 

introduced a set of six functions of standard central moments which provide a 

description that is invariant to scaling, translation and rotation, and a seventh function 

invariant to scaling, translation and skew. Another form of moments are the Zernike 

moments (ZM) where the kernel is a set of orthogonal Zernike polynomials defined 

over polar co-ordinates inside a unit circle. ZMs are the projection of the image 

function onto these orthogonal basis functions [14, 16]. This original idea has been 

extended recently by Shutler and Nixon [7] to produce the so-called Zernike Velocity 

Moments ZVMs. These are generated from sequences of images depicting objects in 

motion and were shown in [7] to be effective for human gait analysis. The current 

paper introduces the use of ZVMs coupled with an appropriate classifier for hand-

gesture recognition. We evaluate and compare the performance of this classification 

method based on ZVM with Zernike Moments coupled with a bank of HMMs. 

In Section 2 we review the background that is most relevant to the study. We 

explain the formulation of Zernike Velocity Moments in Section 3, and the dataset 

used in both sets of experiments in Section 4. Section 5 and 6 deal with the two 

experiments, the first on classification using Zernike Velocity Moments and the 

second on classification using a bank of HMMs over Zernike Moments. Finally, in 

Section 7 we draw conclusions from the experiments and briefly address further work. 

2 Background and Related Work 

The literature on hand gesture recognition using computer vision can be categorized 

into those approaches that use a 3-D model for tracking the hand, and those that use 

an entirely image-based representation. An early development in the former category 

used a 3D mesh with vertices embedded in a linear subspace to characterize allowable 

shape variations [8]. The linear subspace was obtained from a set of examples using 

principal component analysis, generalising earlier applications of the same technique 

to sets of point landmarks in the image plane. The model was used to detect the pose 

of a hand in the visual field and subsequently to track this hand from frame to frame. 

Later, Athitsos and Sclaroff [9] used a 3D model to generate projections of a 3D 

hand in different shapes and from different viewpoints. The projected hands were then 

matched to hands depicted in the incoming video stream, both through edge matching 

and through the use of Hu moments. In related research Sudderth et al. [10] 

introduced probabilistic methods for visual tracking of a three-dimensional geometric 

hand model from monocular image sequences. Model components are represented by 
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their positions and orientations. A prior model is then defined which enforces the 

kinematic constraints implied by the joints of model. They enhanced matching 

between the 3D geometric model and the tracked hand using a redundant 

representation, that measures Chamfer distance for colour and edge-based likelihood 

features. They tracked the hand’s motion using non-parametric belief propagation 

(NBP) algorithm.  

Tracking methods that depend entirely on an image-plane representation of the 

hand have been worked on extensively. Typically such systems are computationally 

less expensive than those methods that use a 3D model. Skin colour segmentation is a 

common method for locating the hand due to its fast implementation, where usually 

skin colour is modelled as a Gaussian distribution in a suitable colour space. Static 

background subtraction and adaptive background models are also commonly used for 

segmentation. Shadows can be a problem for such algorithms, although the worst 

effects can be ameliorated to some extent; for example, by using infrared (IR) 

cameras as in Ahn [11, 12].  

For recognizing gestures, Ng and Ranganath [13] divided the process into two 

stages. The first stage was to find the poses of the gesture in each frame and the 

second stage was to analyse the motion of the gesture. Zernike moments and Fourier 

descriptors were used to generate the feature vectors used to train a Radial Basis 

Function (RBF) neural network combined with an HMM. Park et al. [3] used HMMs 

for gesture classification on 13 different gestures. They divided the gesture into four 

distinctive states: start, intermediate, distinctive and the end of the gesture. They 

assumed that the gestures start and end from the same state. Skin-colour is used for 

hand segmentation. 

3 Zernike Velocity Moments (ZVM)  

The concept of moments comes from physics, where it relates to the force required to 

affect a given angular acceleration on an object of known mass distribution.  For the 

purpose of image analysis, a set of generalized moments is defined for a ‘density’ 

distribution ( , )f x y derived in some fashion from an image and often a binary function 

denoting membership of a target region. The discrete centralized moment of order (p, 

q) is given in equation 1: 

_ _
) )( ( ( , )

pq
y

p q

x
x yx y f x yµ = − −∑∑  (1) 

 

Different degrees of moments represent different features of the target shape. For 

example, moments with p=q=0 (0, 0) compute the summation of all density values of 

the image (e.g. the number of ‘on’ pixels for a binary density function). Moments (1, 

0) and (0, 1) represent the pixel distribution along X and Y axis respectively. Moments 

of degree two represent the variance of the density function, moments of degree three 

represent skewness, and moments of degree four represent kurtosis of the distribution. 
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 The central moments are invariant to translation in the image plane and can be 

normalized for variation in scale by forming the so-called normalized central moment 

pqη  derived from the corresponding central moment as follows (for p and q both 

greater than zero): 
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The original definition has been extended and combined with the theory of 

algebraic invariants to become the mathematical device used today in image analysis.  

 

Zernike moments are a class of orthogonal complex moments, which in contrast to 

Hu moments can be computed for higher degrees, giving more discriminative 

potential – for example, higher order moments characterize the detailed shape of an 

object. The magnitudes of Zernike moments are rotation and reflection invariant [14] 

and can be easily constructed to an arbitrary order [15]. By projecting the image 

function onto the basis set, the Zernike moment pqA of order p and repetition q is 

defined by: 

 

 

Zernike Velocity Moments (ZVM) [7, 16]  are essentially a weighted sum of 

Zernike moments over a sequence of frames (length T), weighted by a real-valued 

scalar function of the displacement of the centre of mass (CoM) between consecutive 

frames: 
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U is the series of weights derived from the displacements of the CoM, and * 

donates the complex conjugate.  Usually ( ,β λ ) are set to (0, 1) or (1, 0) to avoid zero 
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weights derived from the displacement of the CoM when there is only horizontal or 

vertical motion of the hands. 

Normalized Zernike velocity moments mnA βλ  are defined in equation 8: 

.

pq

pqA
A

AT

βλ
βλ =  (8) 

Where A is the average area (in pixels) of the moving object, T is the length of the 

video segment. 

4 Dataset and Experiment Setup  

For our comparative study of classification performance, we captured a video stream 

depicting a series of hand gestures using a normal webcam (30 fps, 320x240 pixels) 

in an office environment, as illustrated in figure 1. The video consists of 80 instances 

for each of five distinct gestures (referred to as A-E), performed in total by 10 

different people (i.e. 8 instances of each gesture by each person). The five gestures 

used are shown in figure 2. More information about our dataset is available online
1
. 

We marked the start and end of each gesture manually for the entire dataset to provide 

a ground-truth for training and testing, experiments were conducted on a machine of 

2.2 GHz dual-core cpu speed, 2 GB RAM. 

A Gaussian skin-colour model [17] is used to produce a map of skin likelihood 

values for each frame, and we then track the hand using a CAMShift tracker [18, 19]. 

The CAMShift output is cleaned up automatically to remove small isolated regions 

and finally the result is binarised to give a final segmented hand region. For our hand 

gesture dataset, the procedure gives a well segmented hand region in each frame. 

 

  
The start of gesture ”A” The end of gesture ”A” 

 

Figure 1.  Start and end of gesture “A” (see figure 2) as an example of gesture. It 

shows the webcam input and the output of the CAMShift tracker in office 

environment after skin-colour segmentation. First frame is input stream and the 

second is the projection of HSV colour after weighting. 

                                                           
1 http://www.comp.leeds.ac.uk/moaath/gHand/DS/  
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5 Classification using CvR and ZVM  

In the first experiment, we used a ZVM descriptor to characterise the video segment 

corresponding to each gesture instance. The speed at which a gesture is performed 

results in video segments of different lengths within the dataset (between 45 and 150 

frames). We did not attempt to interpolate gestures to a fixed number of frames, since 

the weighted mean computed by the ZVM is invariant to the overall speed of a 

gesture, although not to non-linear variations in the temporal execution. Computing 

the ZVM on a typical video segment takes up to 1 sec. 

 

 

 
 

Gesture “A” Gesture “B” 

   

Gesture “C” Gesture “D” Gesture “E” 

Figure 2.   Training and testing gestures. Each of these gestures can be utilized to perform 

different actions. For example, in photo albums application,  Gesture “A” may be used to 

change the album; Gesture “B” for rotating a photo; Gesture “C” for zooming a photo by 

moving the hand towards/away from the camera; Gesture “D” for navigating to the next photo; 

Gesture “E” for switching the application on/off.   

For this experiment, we used a feature vector obtained from three Zernike 

Velocity Moments, defined by setting the four parameters ,( , , )p q β λ  to (12,4,0,0), 

(12,4,0,1), and (12,4,1,0) (see equation 6). 

We experimented with a number of standard classifiers and obtained the best 

overall performance using the ‘Classification via Regression’ (CvR) classifier 

reported in [20] and implemented as part of the WEKA package [21]. This builds a 

decision tree with a linear regression function at the leaves. We used ten-fold cross 

validation on our entire dataset and obtained the results laid out in the confusion 

matrix shown in Table 1, giving a mean accuracy of 84.22%. It can be seen that the 

greatest confusion is between gestures “A” and “E” where hand poses in the first part 

of the gesture and the horizontal displacement are similar.  
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A potential problem with the ZVM is that low displacement components of the 

centre of mass will result in clustering of feature vectors around the origin in feature 

space. For classifiers, this may impact on the ability to discriminate between gestures 

that involve little horizontal or vertical motion – for example, gesture B.  

 

 

Predicted Gesture  
“A” “B” “C” “D” “E” 

“A” 66 2 3 1 8 

“B” 5 64 3 5 3 

“C” 5 2 70 1 2 

“D” 0 1 2 72 5 

A
c
tu

a
l G

e
s
tu

r
e
 

“E” 6 2 2 4 66 

 

Table 1. The confusion matrix using CvR classifier and ZVM descriptor with 

( , , , )p q β λ  set to (12,4,0,0), (12,4,0,1), (12,4,1,0), see equation 6. 

6     Classification using HMMs and ZM  

In the second experiment, we used hidden Markov models (HMMs) for classification 

[23], with observations defined by a vector of Zernike moments with parameters (p, 

q) set to (10, 2), (10, 4), (12, 2) and (12, 4) - see equation 3. We used Matlab HMM 

code from [22]. Prior to training and testing, we linearly interpolate each gesture 

sequence to a fixed number of frames. The reported results are for HMMs with four 

hidden states and a Gaussian observation density.  

We train a separate HMM for each of the five gestures. Given an observation 

sequence O, the likelihood of the observation sequence given the model λ  is 

obtained by summing the likelihood over all possible state sequences S: 

 

_

( | ) ( | , ) ( | )
all S

P O P O S P Sλ λ λ=∑  (9) 

We then select the model with maximum likelihood as the chosen gesture: 

arg max( ( | ))k
k

P Oλ λ=  (10) 

 

The optimal number of hidden states chosen for each of the five HMMs was four- 

see figure 3(a). In training the HMM (as in gesture A), the increase in observation 

likelihood with each iteration is shown in figure 3(b). As for the first experiment, we 

use ten-fold cross validation giving a mean accuracy of 94.45%. Table 2 shows the 
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confusion matrix using Hidden Markov Models which can be compared to table 1. 

Computing the ZMs on a typical frame of the video segment takes 30 ms. 

 

  

(a) (b) 

Figure 3.   (a) shows that 4 is the optimal number of states for each  of the HMM models. (b)

shows the increasing likelihood of gesture A against the number of iterations during training. 

 

 

Predicted Gesture  
“A” “B” “C” “D” “E” 

“A” 70 8 0 2 0 

“B” 0 78 0 2 0 

“C” 0 1 79 0 0 

“D” 4 1 0 75 0 

A
c
tu

a
l G

e
s
tu

r
e
 

“E” 0 0 0 0 80 

 

 

Table 2. Confusion matrix presents the obtained results using the ZMs as shape 

descriptor to generate the training and testing sequences that been used to train and 

test 5 HMM models for the gestures.  

 

7 Discussion and Conclusion 

From the confusion matrices and relative accuracies obtained in the two experiments, it is clear 

that the ZM+HMM combination used in the second experiment has given substantially better 

results than the ZVM+CvR combination used in the first.  However, it seems intuitively 

plausible that the displacement of the centre of mass between frames carries discriminative 

information on the set of gestures. To explore this further, we carried out a third experiment in 
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which this displacement is added to the feature vector of Zernike moments used in the HMM. 

This increased the mean accuracy obtained to 98.3%, although this only represents a small 

number of additional examples being correctly classified. 

In this paper, we have introduced and investigated hand gesture recognition with Zernike 

Velocity Moments, previously used successfully for human gait analysis. The results yield a 

potential use for their simplicity, but not as good as Zernike moments coupled with a bank of 

HMMs.  We aim to explore further the use of ZVMs spanning a short time interval to replace 

the ZMs in the HMM-based classifier. This would in principle provide an alternative way of 

introducing displacement into the HMM+ZM formation together with the discriminative 

abilities of an HMM for sequential data.  
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