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Abstract

We report a modelling study to investigate the effects of constraining the inversion of Electrical

Resistivity Tomography (ERT) data, from surface arrays, with reference models derived from

supplementary resistivity data such as borehole resistivity logs, resistivity cone penetrometry

(RCPT), and electromagnetic survey. A synthetic resistivity site model of a highly resistive

(200Ωm) sand and gravel lens in a low resistivity (30 Ωm) clay till was constructed to test the

approach. Synthetic Wenner ERT field data were generated from the synthetic site model and

contaminated with fifty sets of Gaussian noise with standard deviation of 2%, and a further

fifty sets of Gaussian noise with a standard deviation of 5% of the measurement value. Five

structured reference models were constructed incorporating top and basal boundaries of the

high resistivity lens, simulating one hit with targeted RCPT, while varying lens width. The

noisy ERT data were inverted with 1. an homogenous reference model (blind inversion), and

2. the structured reference models (guided inversion).

The results show that, for blind inversions, the resistivity of a small lens with a resistivity

of 200Ωm will be typically underestimated by about 100 Ωm, which is half its value, in the

presence of Gaussian noise; this is a consequence of equivalence. Better reconstructions can

be achieved using structured reference models, provided that these are structurally similar to

the synthetic site model representing the true geoelectrical structure. More importantly, the

reference models and resulting solution models that are close approximations to the actual

subsurface structure can be identified without knowledge of the synthetic site model. This is

done by comparing the misfits between the solution and reference models, which act as a proxy

for the misfit between the solution models and the synthetic model, even when the data are

noise-contaminated. Essentially, the approach developed uses the additional (non-ERT) data to

identify a limited set of the possible solutions to the blind inversion, which are also compatible

with that additional data.
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Introduction

Electrical Resistivity Tomography (ERT), in both 2D and 3D, is a geophysical tool used

in geological, hydrological and geotechnical investigations, though 2D ERT is much more

commonly used than 3D ERT. ERT is often used to delineate contaminant plumes and geological

boundaries, e.g. Aristodemou and Thomas-Betts (2000); Baines, et al. (2002); Bernstone, et al.

(2000); Friedel, et al. (2006); Timms and Acworth (2002). ERT data must be inverted to recover

a model of the resistivity of the ground in all but the simplest of cases. The inversion of ERT

data is both non-unique and underdetermined. A common approach to ERT inversion is to

discretise the model by splitting it into a number of rectangular cells, or regions, and use an l2

model regularisation, e.g. RES2DINV (Loke 2004). This leads to smooth, minimum structure

solutions, with graduated boundaries between areas of differing resistivity.

A number of approaches have been taken to guide the inversion of ERT data to a robust,

accurate solution. Different model discretisation schemes have been tried, for example Auken,

et al. (2005) treat ERT data as a series of 1D soundings in their 1D laterally constrained

inversion (1DLCI). Local 1D forward solutions are found for each sounding. The 1D datasets

and models are inverted together, with layer depth and resistivity constraints between adjacent

1D solution models that regularise the inversion. This results in a layered 2D model containing

laterally smooth variations in resistivity and layer depth/thickness. Auken and Christiansen

(2004) extend this approach in the 2D laterally constrained inversion scheme (2DLCI), in which

a 1D model consisting of resistivity/thickness pairs is defined beneath each sounding location.

The interface depths at each location are treated as nodes and connected together to form layer

boundaries, and the resistivity in each layer between adjacent sounding locations is linearly

interpolated. The resulting layered model is interpolated onto a finite difference grid, and a full

2D forward solution is found. As in the 1DLCI, lateral layer depth/resistivity constraints are

used to regularise the inversion. These techniques produce good results when lateral resistivity
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variations are smooth. However, where lateral resistivity changes are rapid, a full 2D inversion

is needed (Auken and Christiansen 2004).

Regularisation of the inversion is used to impose a minimum-structure constraint on the

solution. This is typically done by applying an l2 model regularisation. However, where

resistivity boundaries are sharp, the solution will not be a good representation of the subsurface.

An alternative approach is to use an l1 model regularisation. This produces a blocky solution,

but regions of the subsurface where resistivity varies smoothly will not be well reconstructed

(Ellis and Oldenburg 1994).

A priori information can be included in the inversion to try and offset these problems. Paasche

and Tronicke (2003) invert ERT data collected over shallow aquifers exhibiting low resistivity

contrasts, successfully using structured initial models to guide the inversion towards a good

solution. The initial models are simple layered models, with boundaries derived from borehole

logs and ground penetrating radar data, and resistivities from preliminary inversions of the ERT

data using the apparent resistivity pseudosections as initial models. Cardarelli and Fischanger

(2006) demonstrate that for an ERT survey over a tomb, inversion using structured reference

models based on a priori data produces a good solution model. In this case, the reference

model is based on prior knowledge of the typical shape of the type of tomb being surveyed.

They conclude that the use of structured reference models is a good way to test the validity

of geological/geoelectrical assumptions about the subsurface. In a further example, Pidlisecky,

et al. (2006) combine ERT and RCPT to image a saltwater plume. An ERT survey was carried

out using the fixed subsurface electrodes as current sources. Potentials were measured at the

surface and using a mobile electrode mounted on an RCPT probe that also collected RCPT

data. The RCPT data informed the initial model for the inversion of the ERT data. Additional

geophysical data can be incorporated by carrying out joint inversion of ERT and these additional

data, such as seismic data (Gallardo and Meju 2003).
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In this study, we seek to improve the solution model of ERT data with which information such

as electromagnetic (EM) ground conductivity data, and resistivity cone penetrometry (RCPT)

and/or resistivity borehole logs is associated. We consider the case of detecting sand and gravel

bodies in clay-rich till sequences in the U.K. Areas of clay-rich tills are potentially good locations

for landfills, as the clay retards groundwater movement and prevents leachate escape. When

large sand and gravel bodies are present, they will be detected by borehole and trial-pit led site

investigation. Smaller bodies that may be missed by such a site investigation may be connected

to underlying aquifers, and act as leachate flow routes. Geophysical surveys can be used to

supplement borehole and trial pit data, and detect such bodies. The sand and gravel bodies

have higher resistivity than the surrounding clay matrix, making then suitable targets for ERT

surveys.

This problem requires an inversion methodology that can be guided to produce solution models

that contain both smoothly varying resistivity (in the clay-rich matrix and within the sand and

gravel bodies) and sharp resistivity boundaries (at the margins of the sand and gravel bodies)

and make use of the RCPT data. We choose inversion of ERT data on a grid of rectangular

cells that uses l2 model regularisation in which the solution model is constrained to a reference

model, which can contain sharp boundaries.

One problem with using ERT to detect such features is that the resistivity contrast between the

body and the surrounding clay matrix tends to be high, and the body may be thin compared to

the depth of investigation of the ERT survey. This introduces the potential for equivalence in

the solution models produced by inverting the ERT data. Kilner, et al. (2005) used modelling

to investigate the effects of equivalence in ERT surveys over clay-rich tills containing sand and

gravel bodies, and showed that in the case of a thin, high resistivity (100 Ωm) sand layer in a

low resistivity (15 Ωm) clay, minimum structure inversion constraints resulted in overestimation

of the thickness and underestimation of the resistivity of the layer.
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We undertook a modelling study that assesses the potential of using structured reference models

based on resistivity log or RCPT data to constrain ERT inversion in this geoelectrical setting,

the results of which are presented in this paper. Our starting point was the construction of a

synthetic site model representing a sand and gravel lens in a clay-rich till. We then forward-

modelled a Wenner ERT survey for this synthetic site and contaminated the resulting synthetic

ERT data with Gaussian noise. A range of reference models, consistent with synthetic resistivity

log data extracted from the synthetic resistivity site model, were then constructed. We used

these reference models to guide the inversion of the noise-contaminated ERT data. By using

reference models that contain high-resistivity anomalies of the correct thickness, resistivity and

depth, we guided the inversion towards the range of possible solution models with the correct

depth and resistivity of anomaly, thus suppressing the effects of equivalence in the inversion.

We show that the best solution model (i.e. that closest to the synthetic site model) can be

determined quantitatively from a range of solution models generated using different reference

models, without reference to the synthetic site model.

Synthetic Data

The synthetic site model is based on observations from the Holderness coast, East Yorkshire,

U.K. The Holderness region is a plain of clay-rich till containing glaciofluvial and glaciolacustrine

sand, silt and gravel deposits. The area has some of the best-developed and best-exposed

deposits of the Devensian glaciation (Berridge and Patterson 1994; Catt 1991a) and can be

considered a suitable analogue for other Devensian till plains in the UK.

The geological model on which the synthetic model is based consists of a sand and gravel lens

within an homogenous clay-rich till. The sand and gravel lens and clay-rich till are assigned

resistivities of 200 Ωm and 30Ωm respectively. These values are based on unpublished 2D ERT
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fieldwork carried out on clay-rich tills at various sites in North-Eastern England. The shape

of the lens is based on cliff exposures from the Holderness sea cliffs that are presented in Catt

(1991b) and Berridge and Patterson (1994) and from the authors’ inspection of the coastal

exposures on the Holderness coast.

Sand and gravel deposits within clay-rich tills are formed as a consequence of meltout and/or

outwash processes laying down coarse deposits at the bed of an active glacier (e.g. Ehlers 1996;

Sugden and John 1976). Englacial and subglacial channels can form within a glacier. Water

flows through these channels, which are oriented predominantly in the direction of ice flow.

These channels are fed by crevasses and seepage from the top of the glacier, and range in

size from small tubes to sinuous, branching channels with the same form as stream networks.

Depending on the relative strength of the glacier and its substrate (bedrock or till), subglacial

channels may erode into the till, forming ‘canals’, or into the ice, forming ‘R-channels’, or a

combination of both, forming ‘tunnels’, as shown in Figure 1(a) (Hart 1996). As water flows

in these channels, fines are carried in suspension, but coarser clasts are deposited. These

coarse sediments are preserved within the lodgement till and retain the shape of the original

drainage features in plan view. These relict channels are termed ice-directed features, as they

are orientated in sympathy with the direction of ice flow. If such features are not substantially

affected by later glaciotectonic processes, they are locally approximately 2D, due to their large

extent in the direction of ice flow compared to their comparatively small cross section. This

makes them suitable targets for 2D ERT surveys. A typical sand and grave body is shown in

Figure 1(b).

[Figure 1 about here.]

The Wenner array was chosen for the synthetic ERT survey. Zhou and Dahlin (2003) and

Dahlin and Zhou (2004) carried out a comprehensive comparison of the noise sensitivity and

resolving power of ten common electrode arrays, in which they compared the results of l1
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inversion of synthetic datasets for five different geoelectrical models. Overall, they found that

the gradient, pole-dipole, dipole-dipole and Schlumberger arrays produced the best results over

the geoelectrical models tested, and that the Wenner and Wenner-γ arrays were least susceptible

to noise. For the case of a buried relict river channel (200 Ωm) in clay (30Ωm), analogous to the

model used in this study, they found that the half-Wenner, pole-dipole and gradient arrays gave

the best results, with the Wenner, Schlumberger and midpoint-potential-referred arrays also

doing well. The pole-dipole and half-Wenner arrays were discounted due to their requirement

for a remote electrode, which is not always practical. Of the remaining arrays, although the

gradient array produced the best reconstruction overall, the Wenner and Schlumberger arrays

better resolved the base of the channel, due to their superior depth resolution. Given that we

constrain depth boundaries in the solution models with RCPT, and that the Wenner array has

marginally less sensitivity to noise of the two, the Wenner array was chosen for this modelling

study.

The dimensions of the lens are normalised to an electrode spacing of n =1, for a 41 electrode

Wenner array ERT survey. Horizontally, the centre of the body is at 20n and at a depth of

6.5n, which is the approximate median depth of investigation of the 41 electrode Wenner ERT

survey (Barker 1979). The lens has a width of 6.5n and a thickness of 3.25n. The synthetic

model is shown in Figure 2.

[Figure 2 about here.]

Forward modelling to obtain synthetic field data is carried out using the University of British

Columbia Geophysical Inversion Facility (UBC-GIF) code DCIPF2D (UBC-GIF 2001). The

synthetic model is interpolated onto the grid to be used in inversion. Using the same grid

for forward modelling and inversion allows direct comparison of the synthetic model and the

solution models produced by inversion. The synthetic model is smoothed with a radial running

average filter of length 1.5n, as shown in Figure 3(a) (testing on a subset of noise-contaminated
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synthetic data showed that this led to slightly faster convergence in inversion without altering

the misfit relationships discussed in the section on guided inversion). The grid is constructed

with 0.5n wide model blocks and block height starting at 0.25n and increasing with depth, and

has 3132 cells. The synthetic dataset contains 260 data points on 13 data levels. The apparent

resistivity (ρa) pseudosection is shown in Figure 3(b).

The synthetic data, dsyn , were then contaminated with Gaussian noise. The noisy synthetic

data was generated using

dnsyn = dsyn + G (p · dsyn + cI), (1)

which relates the noise-contaminated synthetic 2D ERT data to the uncontaminated data. I is

the identity matrix, G is a diagonal matrix whose elements are drawn from a Gaussian random

distribution with zero mean and unit standard deviation, p is a constant equal to a small fraction

of the noise-free value of each data point, and c is a small constant that acts as a lower limit to

ensure that smaller value data points do not have proportionally lower errors than larger value

data points.

Fifty independent manifestations of G were generated. Using these, fifty noisy data sets were

created using p = 0.05 (5% noise datasets), and a further fifty with p = 0.02 (2% noise datasets).

c = 0.001 was used in both cases. Synthetic data contaminated with 2% and 5% noise for one

manifestation of G are shown in Figure 3(c) and Figure 3(d).

[Figure 3 about here.]

Blind Inversion

Commonly, there is little or no a priori geoelectrical or structural information associated with

ERT data. In such cases, blind inversion is carried out. In order to assess the ‘goodness’ of
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solution models produced by inversion with structured reference models, we must first carry

out blind inversion. This gives a baseline value of goodness of fit on which we must improve

using inversions guided by structured reference models.

Inversion is carried out using the UBC-GIF code DCINV2D (UBC-GIF 2001). The global

objective function used in this code is (Oldenburg and Li 1994),

Ψ =
∫ 

αsws

(
m−mref

)2
+ αxwx

{
∂

(
m−mref

)

∂x

}2

+ αzwz

{
∂

(
m−mref

)

∂z

}2

 dA

+ λ

[
D∑

i=1

(
di − dobs

i

σdobs
i

)2

−Ψ∗
d

]
, (2)

where D is the number of data, m and di (i = 1, ..., D) are the model and associated data

for the current iteration, dobs
i (i = 1, ..., D) are the observed data, σdobs

i (i = 1, ..., D) are the

standard deviations of the data points, Ψ∗
d is the target data misfit (with an expected value of

D), and mref is the reference model. λ is a Lagrange multiplier. The user chooses the constraint

parameters αs, αx, and αz to control the closeness of m to mref in terms of the smallness of m

and the flatness of m in the x and z directions respectively. When discretised, ws, wx and wz

weight individual model blocks.

To implement a blind inversion using algorithms such as DCINV2D that require a reference

model, the flatness and smallness of the solution model, msol , must be similar to a homogenous

reference model, mref . In this case, it is usual to choose the constraint parameters such that

(αx ≈ αz) > αs. For each of the fifty 2% noise datasets and fifty 5% noise datasets, the

resistivity of mref is the average of the apparent resistivity pseudosection for that dataset. The

constraint parameters were αx = αz = 1 and αs = 0.01 in all cases. After testing with different

values of target data misfits to ensure the data were neither under- nor over-fitted, target data

misfits of 0.68D for the 2% noise datasets and 0.64D for the 5% data misfits were chosen.
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The fifty solution models for the 2% noise datasets and fifty solution models for the 5% noise

datasets produced by the blind inversions were then interpolated onto a regular 0.25n× 0.25n

grid and cross-correlated with a template of the high-resistivity anomaly in the original synthetic

site model, also interpolated onto the regular grid. For each solution model, msol , the offset

of the reconstructed anomaly centre from the true lens centre in x and z (xoff , zoff ) and the

resistivity offset at the point of maximum correlation, ρoff , was calculated. The resistivity offset

is negative if the resistivity at the point of maximum correlation is less than 200Ωm, the true

resistivity at the centre of the high-resistivity anomaly, and positive if it is more than 200 Ωm.

The average values for xoff , zoff , ρoff , their standard deviations and maximum and minimum

values, where appropriate, are given in Table 1.

[Table 1 about here.]

Figure 4(a) shows ρoff plotted against xoff and zoff for each of the fifty blind inversions of the

2% noise datasets. Figure 4(b) shows the same plot for the fifty blind inversions of the 5% noise

datasets.

[Figure 4 about here.]

Figure 4 shows the centres of the reconstructed anomalies clustering about the true location

of the lens in the synthetic model. The average x offset, x̄off , is approximately 0n for both

set of inversions. This is the expected value, as the synthetic model is symmetric about x

= 20 n. The scatter in xoff is greater for the 5% noise datasets, with the standard deviation

σxoff = 0.67n and maximum x offset xoff = 1.75n. This is compared to σxoff = 0.30n and

maximum xoff = 1.00n for the inversions of the 2% noise datasets. For a 4m electrode spacing

and a 26m-wide by 13 m thick lens at a depth of 13m these correspond to a possible maximum

lateral mislocation of 4m and 7m respectively. The average z offset, z̄off , is approximately
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zero in both cases, and the scatter in z is much smaller than in x. Again, there is greater

scatter for the 5% noise datasets, with σzoff = 0.27n compared to σzoff = 0.14n for the

inversions of the 2% noise datasets. The resistivity of the lens is greatly underestimated by

both sets of inversions; the resistivity offsets are ρoff = -113± 40Ωm for inversions of the 2%

noise datasets and ρoff = -109± 20Ωm for inversions of the 5% noise datasets (errors quoted

are ± one standard deviation).

Figure 5 shows a selection of the solution models, which illustrate the effects of noise on the

solution models. These blind inversions show that, even when only 2% random Gaussian noise

is present, the location of the lens may be incorrectly identified. The resistivity of the lens may

be underestimated by over half its value. Of the range of possible equivalent solution models

that would all honour the data, the inversion has produced those that have lower resistivity and

broader boundaries than the original synthetic site model. The underestimation of the anomaly

resistivity and errors in reconstructing its location could lead to interpretation of the lens as a

sandy clay instead of a sand and gravel, or of the lens being saturated when it is dry. These

problems highlight the need for a way of guiding the inversion to a better solution model.

[Figure 5 about here.]

Guided Inversion

Consider a hypothetical field survey, in which an electromagnetic (EM) ground conductivity

survey is used to estimate the areal extent and strike of an anomalous, linear high-resistivity

feature. The synthetic ERT data simulate the results of a 2D ERT line passing across the strike

of an anomaly such as the one in this hypothetical survey. Some additional data is collected,

that has a high vertical resolution and a small sample volume, such as a geophysical borehole

log or resistivity cone penetrometry (RCPT) data. In order to use these data to constrain ERT
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inversion, it is assumed that these data are an accurate record of the resistivity variation with

depth, i.e. that there are no scaling effects and that they are uncontaminated by noise, and that

the resistivity probe has been targeted on and passed through the high resistivity anomaly. In

our synthetic site study, these high-resolution data are simulated by extracting one column of

the synthetic resistivity model. For simplicity, the synthetic vertical resistivity logs were taken

from the centre of the high resistivity anomaly. In a real survey, it should be possible to target

resistivity logs using EM ground conductivity survey data.

Reference models were generated as follows. Some arbitrary anomaly widths are chosen; in

this case widths of 0.5, 1, and 1.5 times the true anomaly width, in order to create a suite of

reference models in which the width of the high resistivity anomaly is over- and under-estimated.

In reality, widths would be based on the results of an areal EM ground conductivity survey.

The top and base of the high resistivity anomaly are fixed according to the synthetic vertical

resistivity logs. The background and anomaly resistivity are also defined by the synthetic

vertical resistivity logs. Two different geometries of the high resistivity anomaly to be placed

in each reference model were chosen; a block and a lens. The block anomalies were constructed

by using the RCPT to fix the top and bottom boundary, with widths set to 0.5, 1, and 1.5

times the true anomaly width. The lens anomalies were constructed by fitting arcs of circles to

the anomaly boundaries, as shown in Figure 6.

[Figure 6 about here.]

The reference models were smoothed with a running average filter of length 1.25n, so the

inversion would not be forced to try and reconstruct very sharp boundaries, to which l2 model

regularisation is not suited. The five structured reference models mA through mE are shown in

Figures 7(a) through 7(e). The synthetic model msyn is included in Figure 7(f) for comparison.

[Figure 7 about here.]
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Model mA contains a lens-shaped anomaly, and is most similar to the synthetic model, being

constructed by smoothing the synthetic model. The anomaly in mB is also lens-shaped, like the

synthetic model, but is wider than the lens in the synthetic model. Models mC to mE contain

block-shaped anomalies. Model mC has a block half the width of the lens in the synthetic

model. Model mD has a block of the same width as the lens in the synthetic model. Model mE

contains a block 1.5 times the width of the lens in the synthetic model.

When a priori information is used to construct the reference model we wish to place more

emphasis on fitting the smallness of the reference model than we do in blind inversion, since we

have incorporated information about the geoelectrical structure of the ground into the reference

model. This means we need to use a different set of constraint parameters than we did for the

blind inversions. Using αs = αx = αz = 1 allowed the construction of good msol that honoured

both the data and the reference model through stable inversions. These constraint parameters

were used in all further inversions.

Guided inversions were carried out for both the 2% and 5% noise datasets. The same approach

was applied successfully for the 2% and 5% noise datasets; the results for the 5% noise datasets

only are presented here in detail (the results of the 2% inversions are summarised in the section

on determining the best solution model). The same target data misfits were used for the 2%

and 5% noise datasets as were used for the blind inversions.

As for the solution models produced by blind inversion, the x and z offsets (xoff and zoff ) of

the reconstructed high-resistivity anomalies from the true centre of the lens in the synthetic

model were calculated, as was the resistivity offset, ρoff . The average values for xoff , zoff , ρoff ,

their standard deviations and maximum and minimum values, where appropriate, are given in

Table 2.

[Table 2 about here.]
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The x offset, xoff , z offset, zoff , and resistivity offset at the centre of the anomaly, ρoff , for

each set of fifty inversions with each of the five reference models is plotted in Figures 8(a)

through 8(e). The blind inversion plot is included in Figure 8(f) for comparison.

[Figure 8 about here.]

Figure 8 shows how the solution models compare to the synthetic model in terms of anomaly

location and resistivity in the centre of the anomaly. These figures show that guided inversions

with models mA to mD reduce the scatter in the location of the centre of the reconstructed high-

resistivity anomaly compared to the blind inversions. For inversions that use mA, the model

closest to the synthetic model, and mD, which contains the block anomaly of the same width as

the lens in the synthetic model, all inversions result in solution models that place the anomaly

at the correct depth. Inversions using models mA to mD do a much better job of reconstructing

the resistivity of the anomaly than the blind inversions. This is because reference models of

approximately the correct anomaly thickness, depth and resistivity have been used, thus guiding

the inversion towards the subset of possible equivalent solution models that have the correct

resistivity and thickness. In this way, the effects of equivalence in the inversion process have

been reduced. Inversions using reference models mA, mB and mD produce solution models

that best reconstruct the true anomaly resistivity and location. These are models containing

the two lens-shaped anomalies and the model containing a block-shaped anomaly that is the

same width as the lens in the synthetic model. Inversions using mC tend to overestimate the

resistivity of the anomaly, but do well at locating the lens. Inversions using model mE tend

to underestimate the anomaly resistivity and there is a high scatter in the x offset xoff ; these

solution models are comparable to the solution models produced in the blind inversion.

The solution models for one noisy data set with the five reference models is shown in Figure 9.

[Figure 9 about here.]
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From observation of the solution models, it can be seen that the guided inversions are not

simply reproducing the reference models; the solution models are a function of both the reference

models and the ERT data. Inversion with mA, the reference model that is closest to the synthetic

model, has produced the solution model that is closest to the synthetic model. The solution

model produced by inversion with mB is also close to the synthetic model. Inversions with

the blocky reference models mC and mD both produce solution models that retain the blocky

characteristics of the reference models, but do not reproduce them exactly. In both cases, the

resistivity of the lens has been recovered much better than in the case of blind inversion. Solution

models produced using mD reconstruct the high-resistivity anomaly location and resistivity a

little better than those produced using mC , as shown by Figure 9. However, observation of

the solution models shows that the latter set of solution models reconstruct the shape of the

anomaly better than those produced using mD. The guided inversion with mE has produced a

solution model that is the least close to its reference model; the resistivity of the block shaped

anomaly in the solution model is about 100 Ωm compared to 200 Ωm in the reference model.

This solution model is actually worse than the solution model produced by the blind inversion.

The solution attribute plots in Figure 8 agree with these observations.

Determining the Best Solution Model

We have shown that, in the synthetic case, guided inversion of ERT data using reference models

based on complementary resistivity information can produce a solution model that is closer to

the synthetic model than that produced by blind inversion. In field surveys, we carry out ERT

surveys and geophysical logging precisely because we do not know the synthetic model. We can

still generate a range of reference models that are equally valid given the additional resistivity

information that has been collected (for example, ground conductivity mapping and vertical

resistivity logs) and carry out multiple inversions of the ERT data, but we need a quantitative
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measure of the closeness of the solution model to the true geoelectrical structure that does not

require prior knowledge of that structure.

From (2), recall that we attempt to minimise the misfit between the reconstructed model, m,

and the reference model, mref , (the model misfit) while achieving a specified target data misfit.

In the absence of noise, if a reference model is used that is not close to the true geoelectrical

structure, we can only reduce the model misfit past a certain level at the expense of increasing

the data misfit, and vice versa. If a reference model that is close to the true geoelectrical

structure is used, the model misfit can be reduced while keeping the data misfit small. If only

the reference model changes for the inversion of a given dataset, then the model misfit between

the solution model and the reference model, ΨR
m, can be used as a proxy to the misfit between

the solution model and the true geoelectrical structure, which in our study is represented by

the synthetic model, ΨT
m.

When dealing with noisy data, the importance placed on fitting the data must be reduced, to

avoid over-fitting the noise and adding noise artefacts into the solution model. We need to

know if the proxy relationship described in the previous paragraph still holds when the data

are contaminated with noise. In order to investigate this, the model misfit between the solution

model and the true model, ΨT
m, and the model misfit between the solution model and the

reference model, ΨR
m, are calculated for all fifty guided inversions with each of the five reference

models of the 5% noise datasets, and the fifty blind inversions of the 5% noise datasets. ΨR
m

is plotted against ΨT
m. If the proxy relationship holds, the two misfits should be positively

correlated.

The quantitative measure of the misfit needs to take account of the fit between only that part

of the model that is well-resolved by the Wenner array, so the solution models were masked off

to this area before calculation of the misfit. Various measures of misfit were tested to see which

could best identify the best solution models for each of the fifty noisy data sets. The misfit
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between the final and true models, ΨT
m, was defined and calculated for all solution models. The

average of ΨT
m for all fifty inversions with each reference model, Ψ̄T

m, was calculated, and a

subset of the models was inspected by eye to see if to see the correct models had been identified

as being ‘best’ (closest to the true model).

The initial form of ΨT
m, designed to take into account the smallness and x- and z-flatness misfits

between the solution and synthetic models, was

ΨT
m =

N∑

j=1

M∑

k=1

q2
j,k∆xj,k∆zj,k

+
N∑

j=1

M−1∑

k=1

[
(qj,k+1 − qj,k )

2

(
∆zj,k

δxj,k

)]
+

N−1∑

j=1

M∑

k=1

[
(qj+1,k − qj,k )

2

(
∆xj,k

δzj,k

)]
, (3)

where the solution and reference models have N by M area elements, qj,k =
(
msol

j,k −msyn
j,k

)

(j = 1, ..., N , k = 1, ..., M), ∆xj,k and ∆zj,k (j = 1, ..., N , k = 1, ..., M) are the element widths

and heights, and δxj,k (j = 1, ..., N , k = 1, ...,M-1 ) and δzj,k (j = 1, ...,N-1 , k = 1, ..., M) are

the distances between horizontally and vertically adjacent elements respectively. However, this

definition of the misfit did not reliably identify the ‘best’ models. Various additional definitions

of misfit were tested. These definitions ranged through l1 and l2 misfits, removing the smallness

or flatness terms and changing units of m (log σ, σ or ρ). The misfit that best identified the

best solution models was simply

ΨT
m =

N∑

j=1

M∑

k=1

q2
j,k∆xj,k∆zj,k (4)

where q is a conductivity model (in mSm-1). ΨR
m with the same form was then calculated and

plotted against ΨT
m, as shown in Figure 10(a). The plot shows a positive correlation, showing

that the proxy relationship holds for this form of the misfit for data contaminated with Gaussian

noise. The same plot for the 2% noise datasets is shown in Figure 10(b). Again, a positive

correlation is observed, though the relationship appears further from linear, especially for the
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blind inversions.

[Figure 10 about here.]

Table 3 shows the average misfits Ψ̄T
m and Ψ̄R

m for each reference model.

[Table 3 about here.]

The misfits are in agreement both with each other and with the visual assessment of the solution

models. Guided inversions with mA, the reference model closest to the synthetic model, produce

the best solution models and the smallest Ψ̄T
m and Ψ̄R

m. Guided inversions with mE , the reference

model least similar to the synthetic model, produce solution models that are worse than those

produced by blind inversions, and produce greater Ψ̄T
m and Ψ̄R

m than the blind inversions.

Discussion

We have shown that when data are contaminated by noise, the solution models produced by

blind inversion of these data can mislocate a small, high resistivity anomaly in a conductive

matrix, and will severely underestimate the resistivity of that anomaly. Using typical resistivity

values for sands and gravels in clay-rich tills, we have quantified the degree to which the anomaly

can be mislocated (a 26m wide by 13 m thick lens at a depth of 13 m may be mislocated by up to

7m in the presence of 5% Gaussian noise) and to which the resistivity may be underestimated

(the resistivity of a 200Ωm anomaly can be underestimated by over 100 Ωm). Inversion of some

of the noisy datasets can produce solution models that are very dissimilar to the synthetic

model. This demonstrates the need to find some way of improving the solution model.

For noise-free synthetic data, we would expect that the use of a reference model more similar
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to the true geoelectrical structure would lead to a better solution model. However, when noise

is added to the data, the solution model is a product of the interaction between the inversion

algorithm, the data, the reference model and the noise. Previously, we have shown that even

when we have ensured that we are not over-constraining the solution model to the reference

model, the solution model is better than that produced by blind inversion, even for noisy data.

We showed this by comparing the final model to the synthetic (true) model. The inversion

has been guided toward the subset of equivalent solution models that contain high-resistivity

anomalies of the correct thickness, resistivity and depth.

Real ERT data are collected from sites where we do not know the true geoelectrical structure

of the ground (the equivalent of our synthetic model). In this situation, we could construct

reference models based on ground conductivity and vertical resistivity log data, as we did for

the hypothetical survey in which we carried out guided inversion. All these reference models

would be equally valid guesses. Without knowledge of the true geoelectrical structure of the

ground, there would be no way of telling which solution model was best. However, we have

shown that in such a situation it is possible to determine the best reference model and solution

model pair. This is done by calculating the misfit between the solution model and the reference

model, which acts as a proxy for the fit between the solution model and the true model, or the

geoelectrical structure of the ground.

The next step in our work has been to test the guided inversion approach using field data.

Errors in field data are not necessarily Gaussian. The set of equally valid reference models that

we would generate from the ground-conductivity and resistivity log data (the a priori data) may

not be as well constrained as in this synthetic study. More complex deposit geometries may be

encountered in the field than the single lens studied here; this may cause the overall misfit over

the entire survey area to be large even when it is locally reduced in the region where we possess

complementary data. In order to address these issues, a field study has been undertaken at a

field site on the East Yorkshire coast, U.K. The field site is well characterised from nearby cliff
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exposures, deposit sampling and grain-size analysis and multiple RCPT logs (both electrical and

geotechnical). An EM ground conductivity survey was carried out, and multiple 2D ERT lines

were collected. In addition to the RCPT logs, these data form a comprehensive geoelectrical

dataset. The data were processed according to the approach outlined in this paper. Preliminary

results of this field study indicate that this method is successful when used on real data. These

results have been presented at international meetings (Catt, et al. 2006).

Conclusions

In this study, we sought to improve our ability to locate sand and gravel lenses in clay-rich tills

using ERT. We approached this problem by looking at the analogous geoelectrical model of a

high-resistivity anomaly within a low resistivity matrix. We have shown that it is possible to use

guided inversion to achieve solution models that reconstruct the resistivity, shape and depth of

such high resistivity anomalies better than is possible with blind inversion. We have shown that

it is possible to identify the best solution model from a number of solution models generated

using equally valid reference models, even when the data are contaminated with Gaussian noise.

The reference models represent guesses of the true geoelectrical structure, being based on a

priori data from resistivity logs and EM ground conductivity data. We have also shown that

it is possible to quality-control the guided inversions by using a proxy relationship identified.

This allows us to determine if the solution model produced by the guided inversion is better or

worse than that produced by blind inversion. Although this method is based on l2 regularised

inversion, it can be used in areas where we may encounter both smooth and sharp variations

in the subsurface, since we can constrain the solution models to a reference model containing

smooth or sharp resistivity variations.

The processing flow outlined in this paper has been designed to be applicable to the collection

of field data. Preliminary results from a field study in the U.K. have shown this method to be

19



successful with real data.
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(a) (b)

Figure 1: (a) Subglacial channel geometries, after Hart (1996), and (b) a typical sand and gravel body exposed
in cross-section on the north-east England coast, photographed by R. H. L. Catt (person for scale). The body is
outlined by the white, transparent, dashed line.
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Figure 2: The synthetic model.
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(a) (b)

(c) (d)

Figure 3: (a) The synthetic model (the model in Figure 2) interpolated onto the inversion grid and smoothed;
(b) the apparent resistivity pseudosection of the synthetic data; (c) the apparent resistivity pseudosection of
the synthetic data, contaminated with 2% Gaussian noise and (d) the apparent resistivity pseudosection of the
synthetic data contaminated with 5% Gaussian noise. The dots in (b) through (d) are the plotting positions of
the individual data points. Note the different resistivity scale in (a).
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(a) (b)

Figure 4: Solution model attributes for (a) the fifty solution models, 2% noise datasets and (b) the fifty solution
models, 5% noise datasets; both generated using αx = αz = 1, αs = 0.01. The size of the circle shows the
resistivity of the solution model at the point of maximum correlation. The crosses represent a resistivity of
200Ωm, the true resistivity of the lens in the synthetic model. The intersection of the dotted lines is the true
location of the centre of the lens. Note that where the circles appear filled-in, several reconstructed anomalies
have the same offset from the true lens centre but have different resistivities.
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(a) (b)

(c) (d)

Figure 5: Some solution models generated by blind inversions (using best-fit homogenous reference models). (a)
2% noise datasets, worst solution model. The resistivity of the lens is underestimated. (b) 2% noise datasets,
best solution model. The lens is in the correct location. (c) 5% noise datasets, worst solution model. The
resistivity of the lens is underestimated and it is shifted to the sideways and downwards. (d) 5% noise datasets,
best solution model. The shape of the lens is distorted, but it placed in the correct location and has the correct
resistivity.
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Figure 6: Construction of the high resistivity anomalies in the reference models.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Reference models used in guided inversions. (a) mA, (b) mB , (c) mC , (d) mD, (e) mE . (f) The
synthetic lens is shown for comparison.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Attributes of the solution models produced by inverting the 5% noise datasets with (a) mA, (b) mB ,
(c) mC , (d) mD, and (e) mE with αs = αx = αz = 1. (f) The results of inversion with the homogenous reference
model mhomog with αs = 0.01 and αx = αz = 1 are also shown, for comparison. The size of the circle shows
the resistivity of the solution model at the point of maximum correlation. The crosses represent a resistivity of
200Ωm, the true resistivity of the lens in the synthetic model. The intersection of the dotted lines is the true
location of the centre of the lens.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Solution models after guided inversions of one set of noisy data with (a) mA, (b) mB , (c) mC , (d) mD,
(e) mE , using αs = αx = αz = 1, and (f) mhomog , using αs = 0.01 and αx = αz = 1.
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(a) (b)

Figure 10: Misfit of the solution model to the reference model plotted against the misfit of the solution model to
the true model for the two hundred and fifty guided inversions and for the fifty blind inversions for both (a)the
5% and (b) the 2% noise data sets. Note the different scales in (a) and (b).
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2% noise 5% noise
xoff (n) 0.04± 0.33 0.02± 0.67

xmax
off (n) 1.00 1.75
zoff (n) -0.04± 0.14 -0.06± 0.27

zmin
off (n) -0.25 -0.50

zmax
off (n) 0.25 0.50
ρoff (Ωm) -113± 21 -109± 40

ρmin
off (Ωm) -144 -152

ρmax
off (Ωm) -55 48

Table 1: Final model attributes for the fifty blind inversions of the 2% noise datasets and the fifty blind inversions
of the 5% noise datasets, using αs = 0.01 and αx = αz = 1.
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mA mB mC mD mE mhomog

xoff (n) 0.03± 0.22 0.03± 0.30 0.03± 0.25 0.03± 0.33 0.07± 0.70 0.03± 0.67
xmax

off (n) 1.00 1.25 1.00 1.50 2.00 1.75
zoff (n) 0.00± 0.00 -0.02± 0.06 -0.09± 0.12 0.00± 0.00 -0.02± 0.07 -0.06± 0.27

zmin
off (n) 0.00 -0.25 -0.25 0.00 -0.25 -0.50

zmax
off (n) 0.00 0.00 0.00 0.00 0.00 0.50
ρoff (Ωm) 25± 44 -7± 41 47± 55 -32± 35 -64± 32 -109± 40

ρmin
off (Ωm) -42 -75 -26 -94 -113 -152

ρmax
off (Ωm) 190 140 234 97 48 48

Table 2: Final model attributes for inversions with 5% noise. The fifty noisy data sets were inverted with
reference models mA to mE with αs = αx = αz = 1. The results of inversion with the homogenous reference
model mhomog with αs = 0.01 and αx = αz = 1 are also shown for comparison.
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mA mB mC mD mE mhomog

Ψ̄T
m 7400 8060 8810 8840 13330 12040

Ψ̄R
m 7080 7730 8100 8810 14270 14180

Table 3: Average solution model misfits for guided inversions of all 5% noise datasets with each of the reference
models and for the blind inversions. Guided inversions with mA to mE used αs = αx = αz = 1. Blind inversion
with mhomog used αs = 0.01 and αx = αz = 1.
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