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ABSTRACT

Context. The Hall effect is an important nonlinear mechanism affecting the evolution of magnetic fields in neutron stars. Studies of
the governing equation, both theoretical and numerical, have shown that the Hall effect proceeds in a turbulent cascade of energy from
large to small scales.
Aims. We investigate the small-scale Hall instability conjectured to exist from the linear stability analysis of Rheinhardt and Geppert.
Methods. Identical linear stability analyses are performed to find a suitable background field to model Rheinhardt and Geppert’s ideas.
The nonlinear evolution of this field is then modelled using a three-dimensional pseudospectral numerical MHD code. Combined with
the background field, energy was injected at the ten specific eigenmodes with the greatest positive eigenvalues as inferred by the linear
stability analysis.
Results. Energy is transferred to different scales in the system, but not into small scales to any extent that could be interpreted as a Hall
instability. Any instabilities are overwhelmed by a late-onset turbulent Hall cascade, initially avoided by the choice of background
field, but soon generated by nonlinear interactions between the growing eigenmodes. The Hall cascade is shown here, and by several
authors elsewhere, to be the dominant mechanism in this system.

Key words. magnetohydrodynamics (MHD) – turbulence – stars: magnetic fields – stars: neutron – stars: evolution –
pulsars: general

1. Introduction

The Hall effect is now acknowledged to be an important mecha-
nism in the evolution of magnetic fields in the crusts of neutron
stars. As derived by Goldreich & Reisenegger (1992), the equa-
tion governing the magnetic field under the influence of both the
Hall effect and Ohmic diffusion is

∂B
∂t
= ∇2 B − ∇ × [(∇ × B) × B] (1)

in which length is scaled by some characteristic length such as
the depth d of the crust, time scaled by the Ohmic decay time
4πσd2/c2, where σ is the conductivity, and c is the speed of
light. The magnetic field is defined so that the Ohmic term, ∇2 B,
and the Hall term, −∇× [(∇ × B) × B], are formally of the same
order; this is accomplished by scaling B by nec/σ, where n is the
electron number density, and e is the electron charge. We note
though that the true magnetic field in neutron stars is typically
several orders of magnitude greater than this, and correspond-
ingly the Hall timescale is several orders of magnitude faster
than the Ohmic timescale. If B0 is the non-dimensional ampli-
tude of B in Eq. (1), and t is measured on the Ohmic timescale,
then t′ = B0t is measured on the Hall timescale. We use both
timescales in this work, as appropriate.

Arguing by analogy with ordinary, hydrodynamic turbu-
lence, Goldreich and Reisenegger then conjectured that Eq. (1)
would generate a turbulent Hall cascade, transferring energy
from large to small scales, with an energy spectrum Ek ∝ k−2

(where k is wavenumber), and a dissipative cutoff occurring at
k ∼ B0. They also suggested that the total energy could decay on
the fast Hall timescale rather than the slow Ohmic timescale –
despite the Hall term conserving energy and thus by itself being

unable to cause decay on any timescale. Instead, by transferring
energy from large to small scales, the Hall cascade enhances the
efficiency of Ohmic decay, conjecturally by enough for the to-
tal energy to decay on the fundamentally different, and faster
timescale.

Following Goldreich and Reisenegger’s seminal work, nu-
merous authors have studied Eq. (1) theoretically and numeri-
cally, in both the original spherical-shell geometry (Hollerbach
& Rüdiger 2002, 2004; Cumming et al. 2004; Pons & Geppert
2007), and the cartesian box geometries (Biskamp et al. 1996,
1999; Dastgeer et al. 2000; Dastgeer & Zank 2003; Cho &
Lazarian 2004; Shaikh & Zank 2005; Cho & Lazarian 2009) usu-
ally used in turbulence studies (because they allow much higher
resolutions than more complicated geometries). The studies in
box geometries in particular all found spectra that are similar to
the classical 5/3 Kolmogorov spectrum, as well as changes in
slope that were interpreted as a dissipative cutoff. Results in two
and three dimensions were also found to be broadly similar. The
turbulent Hall cascade has been found to reach a stable equi-
librium on a timescale of t′ ∼ 0.3−0.5 (Cho & Lazarian 2004,
2009), efficiently transferring energy from large to small scales.

Our recent work (Wareing & Hollerbach 2009a,b) has high-
lighted a limitation of previous box simulations, in that they all
employed hyperdiffusivity, replacing the Ohmic term by (∇2)ηB,
where η is typically 2 or 3. As we noted, this masks the equiv-
alence of the terms in the governing equation. Both contain the
same number of derivatives so it is conceivable that the nonlin-
ear term will always dominate, even on arbitrarily short length-
scales. As demonstrated by Hollerbach & Rüdiger (2002), one
obtains a dissipative cutoff only if one assumes that the cascade
is local in Fourier space.
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The argument is as follows: the ratio of the Hall term to the
Ohmic term is given by the field strength B0, independent of any
lengthscales. Implicitly a dependence on lengthscales may still
exist: if the coupling is purely local in Fourier space, then the
relevant field strength is only the field at that wavenumber. For
sufficiently large k, this local field is then reduced sufficiently
for the Ohmic term to dominate the Hall term, resulting in a
dissipative cutoff at that k. It is clear however how crucially this
argument depends on the coupling being purely local in Fourier
space; if this is not the case, then the same global B0 applies to
all lengthscales, and the Hall term always dominates the Ohmic
term.

Our 3D simulations (Wareing & Hollerbach 2009b) reach
a stable equilibrium by t′ ∼ 0.2 and produce a smooth energy
spectrum extending over the whole range of Fourier space. For
large B0, this tends towards the Ek ∝ k−2 scaling suggested by
Goldreich and Reisenegger. We found no evidence, in either 2D
or 3D, of a dissipative cutoff, implying that the Hall term is able
to dominate on all scales and that the coupling is nonlocal in
Fourier space. Additional evidence of the nonlocal nature of the
Hall cascade comes from the strong anisotropy in the presence of
a uniform field found by ourselves and others (Cho & Lazarian
2004, 2009); if the coupling were purely local in Fourier space,
then including a uniform field would have no effect at all on
small scales, in contrast to what is observed.

In a very different approach, Rheinhardt & Geppert (2002)
(henceforth referred to as R&G) performed a linear stability
analysis of Eq. (1), and showed that for a particular choice of
background field, growing eigenmodes exist at small wavenum-
bers 0 < kx, ky < 5. They conjectured that the transfer of mag-
netic energy from a background (large-scale) field to small-scale
modes may therefore proceed in a non-local way in phase space,
resulting in a Hall instability. This instability could be identified
on the basis of its energy spectrum that does not decline mono-
tonically (e.g. as in a turbulence spectrum) but instead exhibits
an increasingly large peak at some large k, corresponding to a
transfer of energy directly from the largest scale to this small-
scale peak.

We note that no calculation to date shows any such peak, so
it already seems very likely that any these instabilities are sim-
ply overwhelmed by the turbulent Hall cascade. Nevertheless,
we test this idea here in greater detail, by carefully selecting the
initial conditions to favour the development of a Hall instabil-
ity, and inhibit the development of a Hall cascade (at least ini-
tially). However, we find that even under these optimised cir-
cumstances, there is no evidence that Hall instabilities play any
significant role in Eq. (1).

2. The R&G linear stability analysis

R&G begin by considering a large-scale background field B0,
which has no Hall term, that is, it must satisfy

∇ × [(∇ × B0) × B0] = 0, (2)

which is of course already a rather restrictive assumption. They
next linearise Eq. (1) about this background field to obtain

∂b
∂t
= ∇2 b − ∇ × [(∇ × B0) × b + (∇ × b) × B0] , (3)

describing the behaviour of small perturbations b. If one finally
ignores the very gradual Ohmic decay of B0, and instead treats
it as being constant in time, then Eq. (3) becomes a standard
linear eigenvalue problem, with solutions that either decay or
grow exponentially.

Furthermore, whereas in Eq. (1) the Hall term conserves
magnetic energy

∫ |B|2dV , in Eq. (3) the now two linearised Hall
terms do not conserve

∫ |b|2dV . It is indeed possible therefore
to obtain exponentially growing solutions, corresponding to a
transfer of energy from the background field to the perturbation.
What we wish to consider in this work is the subsequent nonlin-
ear evolution of these perturbations, including also the no longer
constant-in-time background field.

R&G consider a plane layer geometry, periodic in x and y
and bounded in z, with either vacuum or perfectly conducting
boundaries at the top and bottom. For their background field,
they specify B0 = f (z) ex. This satisfies Eq. (2) for any choice
of f (z), and also has the additional advantage of decoupling the
horizontal wavenumbers kx, ky for b (because B0 is independent
of x and y). Equation (3) has therefore been reduced to a linear,
one-dimensional eigenvalue problem, in which only the z struc-
ture still has to be solved.

For suitable choices of f (z) in particular with at least
quadratic curvature, so that the second derivative f ′′ � 0,
they then find that one can indeed obtain exponentially grow-
ing modes b, that is, instabilities of the large-scale field B0.
However, these instabilities only occur for horizontal wavenum-
bers kx and ky up to around 5 or so, which is nowhere nearly
large enough to be considered truly small-scale. The z structure
is also not really small-scale, except for a narrow boundary layer
that forms at large B0. On the scale of the whole neutron star,
the crust is only a thin layer, so the large scales of R&G could
already be considered to be relatively small. But in the context
of Hall cascades versus instabilities, which is of interest here,
R&G’s own linear stability analysis simply does not present any
evidence of a direct transfer from large to genuinely small scales.

Furthermore, even for these moderate-scale modes that do
grow, the growth rate is rather small, always less than 0.6 when
measured on the Hall timescale t′. It would take several Hall
timescales therefore for these instabilities to grow by any ap-
preciable amount. In contrast, the traditional Hall cascade is so
efficient that t′ ∼ 0.2 is already enough to establish the full tur-
bulence spectrum.

3. Our linear stability analysis

Our previously used 3D code (Wareing & Hollerbach 2009b) is
periodic not just in x and y, but in z as well, extending in all
three directions from −π to +π. Our function f (z) must there-
fore also be periodic, but otherwise exactly the same linear sta-
bility analysis as applied by R&G can be applied in this case.
After experimenting with various choices, we found that whilst
functionally dissimilar to R&G, the form f (z) = B0[1 + sin(2z)]
yielded results that are qualitatively similar. Forms of f (z) that
qualitatively very closely resemble the choices of R&G, e.g.,
f (z) = B0[cos(z/2)] compared to R&G’s f (z) = B0[1 − z2], have
not enabled us to identify unstable eigenmodes in our analysis.
Figure 1 shows the results for B0 = 1000 (the same value as used
by R&G). The highest growth-rate, corresponding to our selec-
tion criteria for f (z), is ∼400, at kx = 2 and ky = 11, comparable
to R&G’s peak value of ∼550, at kx = 1, ky = 0 (with both
growth-rates measured on the Ohmic timescale t). For ky = 0,
the most unstable eigenmodes are non-oscillatory; for ky > 0,
they are oscillatory. This is the pattern also obtained by R&G.

The main difference between our results and R&G’s is that
ours extend over a wider range of kx, ky values. This of course
corresponds to shorter lengthscales than they obtained, which if
anything should then enhance the Hall instability mechanism.
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Fig. 1. Growth rates for those kx, ky combinations that yield exponen-
tially growing modes, for f (z) = 1000[1 + sin(2z)].

As we, however, now show there is no evidence that these “in-
stabilities” play any significant role in the dynamics of Eq. (1).

4. Nonlinear evolution

To study the nonlinear evolution of these eigenmodes, we
considered the ten most rapidly growing ones, and adjusted the
energy in each to be either 1% or 10% of the energy in the back-
ground field B0. In total, the energy that is initially in the per-
turbations is therefore either 10% or 100% of the energy in the
background field. These two setups, background field plus either
small or large perturbations, were then used as the initial condi-
tions in the original, nonlinear Eq. (1). Both simulations were
performed at resolutions of 1283 and 2563, with no difference in
the results.

Figure 2 shows the results for the small perturbations, 1%
energy in each of the top ten eigenmodes. At very early times,
the energy in these modes does indeed grow, and at the rates pre-
dicted by the linear stability analysis. However, this phase is so
short, only up to t′ ≈ 0.01, that there is virtually no growth in this
time; with growth rates of ∼0.4 on this Hall timescale, the per-
turbations grow by only a factor of exp(0.01 · 0.4) = 1.004. One
could of course make this linear growth phase much longer, sim-
ply by assuming the initial perturbations to be smaller. However,
as soon as they approach the ∼1% energy level, the linear growth
phase ends, and one is once again in the regime shown here.

As indicated in Fig. 2, by t′ ≈ 0.025, the nonlinear inter-
actions among these modes are clearly beginning to spread the
energy to different kx, ky combinations. This is most easily seen
in the ky spectrum, where the ky ≈ 10 initial condition generates
higher harmonics at e.g., ky ≈ 20, 30. In the kx spectrum, the
higher harmonics of the kx = 2, 3, 4 initial conditions immedi-
ately blend together to form the beginning of the standard Hall
cascade.

There are two points to note regarding the kz spectrum. First,
the very strong peak (off the scale) at kz = 2 is the sin(2z) com-
ponent of the background field. Second, the perturbations have a
particular symmetry in z, containing only odd kz. Because the
background field contains only sin(2z), but no sine or cosine
component of just z, the perturbations decouple into even/odd
kz, and the odd kz modes turn out to be the more unstable. This
initial condition of only odd kz in the perturbations is the origin
of the “zig-zag” pattern in the kz spectrum.

As time progresses, the spectra then evolve exactly as one
might expect based on the standard Hall cascade picture. For
example, the initially distinct peaks of the higher harmonics in
ky are increasingly smoothed out to form the standard turbulent
cascade. We note also the existence of an inverse cascade, in
which the regime ky < 10 is quite effectively filled in.

By t′ = 3, the memory of the particular initial condition has
been largely erased, and one is left simply with the standard cas-
cade. There is certainly no evidence of any growing peaks, ei-
ther at the moderate scales of the original instabilities, or the
small scales speculated by R&G. At even later times, the solu-
tions eventually simply decay, again not exhibiting any growing
peaks at any particular lengthscale. In Wareing & Hollerbach
(2009b), solutions were obtained all the way to t′ = 15, still
with no peaks emerging from the turbulent cascade.

Figure 3 shows the results for the large perturbations, which
contain 10% of the background field energy in each of the top ten
eigenmodes, that is, we have forced these eigenmodes to retain
their distinct identities for amplitudes considerably larger than
they would have according to Fig. 2. Even this though does not
allow them to remain independent in their subsequent evolution.
In contrast, the nonlinear spreading to other modes, and devel-
opment of the Hall cascade, simply proceeds even faster than
in Fig. 2, until by t′ = 3 one once again obtains the standard
Hall cascade, the details of the initial conditions having been al-
most completely erased, and there certainly being no trace of any
growing peaks.

5. Discussion

We propose that the entire concept of Hall instabilities has two
significant weaknesses even in the purely linear regime consid-
ered by R&G. First, it depends on having a rather special back-
ground field, satisfying Eq. (2). Second, the resulting instabilities
are not small-scale at all; they are only slightly smaller in scale
than the background itself.

Furthermore, we have demonstrated that even if one care-
fully constructs the initial conditions to reproduce unstable
eigenmodes of the background field, which may lead to small-
scale instabilities, the hypothesis of R&G’s work, the most one
can accomplish is to slightly delay the onset of the usual Hall
cascade. None of the fully nonlinear calculations, of ourselves
or numerous other authors (Biskamp et al. 1996, 1999; Dastgeer
et al. 2000; Dastgeer & Zank 2003; Cho & Lazarian 2004;
Shaikh & Zank 2005; Cho & Lazarian 2009), which have a broad
variety of different initial conditions including sufficiently strong
magnetic fields, have ever found anything other than a standard
Hall cascade.

Cumming et al. (2004) also consider the possibility of a
Hall instability, and its relevance for the evolution of neutron
star magnetic fields. They clarify the nature of the instability:
a background shear in the electron velocity drives growth of
long-wavelength, i.e., large-scale, perturbations. They explicitly
remark that short-wavelength modes are unaffected. They also
note that if the picture of a turbulent Hall cascade is correct,
then this Hall instability probably does not change the long-term
evolution of the field, since intermediate scales will “fill in” as
the cascade develops. This filling-in is precisely what we have
demonstrated here.

We conclude therefore that Hall instabilities may exist in
the sense that one can do the linear stability analysis and obtain
growing modes, but if one considers the full nonlinear evolution
according to Eq. (1), one finds that these modes are completely
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Fig. 2. The evolution of the field with a small perturbation. Power spectra are shown at early times t′ = 0.025, 0.1, 0.2 and 0.4 in the top row and
at late times t′ = 1, 2 and 3 in the bottom row. The total energy is collapsed onto the kx axis (left), ky axis (middle), and kz axis (right). Asterisks
indicate the initial conditions at t = t′ = 0.

Fig. 3. The evolution of the field with a large perturbation. Spectra are shown at the same times, and in the same format as in Fig. 2.

subsumed into the standard Hall cascade, and “instabilities” play
no significant role in the dynamics of Eq. (1).
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