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A Meta-heuristic Framework for Bi-Level
Programming Problems with MultiDisciplinary
Applications

Andrew Koh

Abstract Bi-level programming problems arise in situations when deeision
maker has to take into account the responses of the users ttetisions. Several
problems arising in engineering and economics can be c#sinvthe bi-level pro-
gramming framework. The bi-level programming model is &sown as a Stack-
leberg or leader-follower game in which the leader choosewvdriables so as to
optimise his objective function, taking into account thepense of the follower(s)
who separately optimise their own objectives, treatingl¢laeler's decisions as ex-
ogenous. In this chapter, we present a unified frameworl fidhsistent with the
Stackleberg paradigm of bi-level programming that allows the integration of
meta-heuristic algorithms with traditional gradient lhsgtimisation algorithms
for the solution of bi-level programming problems. In peutar we employ Differ-
ential Evolution as the main meta-heuristic in our propodéd subsequently apply
the proposed method (DEBLP) to a range of problems from maalgsfisuch as
transportation systems management, parameter estimatirgame theory. It is
demonstrated that DEBLP is a robust and powerful searchstieuor this class of
problems characterised by non smoothness and non convexity

1 Introduction

This paper introduces a meta-heuristic framework for sgj¥he Bi-level program-
ming Problem (BLPP) with a multitude of applications [26].7As a historical
footnote, the term “bi-level programming” was first coinedai technical report by
Candler and Norton in [20] who were concerned with generdtilevel program-
ming problems. The BLPP is a special case of a multilevel ranogning problem
restricted to two levels. Prior to that time, the BLPP waswmnaimply as a math-
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2 Andrew Koh

ematical program with an optimisation problem in the caaists [18] but had al-
ready found military applications [19]. In economics andngaheory, a BLPP is a
Stackleberg [106] or “leader-follower” game (see Fig. IWyimch the leader chooses
his variables so as to optimise his objective but continogske into account the
response of the follower(s) who when independently optirgisheir separate ob-
jectives, treat the leader’s decisions as an exogenous[inpu

| Leader

o

Follower(s)

Fig. 1 Pictoral Representation of a BLPP

BLPPs possess in common the following three charactesigdi, 117]:

e The decision-making units are interactive and exist withinierarchical struc-
ture.

e Decision making is sequential from higher to lower leveleTower level deci-
sion maker executes its policies after decisions are maithe atpper level.

e Each unit independently optimises its own objective fumtdi but is influenced
by actions taken by other units.

The BLPP has been a subject of intense research and sev&hblengolumes
have been published to date [7, 32, 72, 87]. At the same tirpkcations of BLPP
can be found in fields as diverse as chemical engineeringrd@®t motion planning
and control [72], production planning [8] occurring in a titwide of disciplines [7].
In tandem, there has been much work on the development df@oaethodologies
(see [26, 32] for a review of these).

This chapter is structured as follows. In Section 2 we folynadtroduce the
BLPP and provide a brief and by not means exhaustive revieselotion method-
ologies for the BLPP. In Section 3 we discuss the Differeiiialution for Bi-Level
Programming (DEBLP) meta-heuristic introduced in [61] apgly it to problems
in transportation systems management in Section 4. To esigghthe multidisci-
plinary applications to which DEBLP is applicable, Sectioprovides examples of
BLPPs arising from parameter estimation problems. Se&imtroduces a method
for handling constraints integrating recent developmanévolutionary algorithms
to propose a method to handle constraints in the leadettsgaro Having set up this
framework, we are ready in Section 7 to apply DEBLP to sol@@mneralised Nash
Equilibrium Problems (GNEP) which when formulated as BLBRsIn fact charac-
terised by constraints in the leader’s objective. Sectiesn®marises and provides
extensive directions for further research on problemgedito the topic of BLPPs.



A Meta-heuristic Framework for Bi-Level Programming Problems 3

2 The Bi-Level Programming Problem

2.1 A General BLPP

We can write a generic BLPP as the system of equations in Hdpelunique feature
of Eq. 1 is that the constraint region is implicitly deterihby yet another optimi-
sation problerh This constraint is always active. The upper level problemaied
as Program U, is given in Eq. 1a,

Q;IQ}J (x,y)

Programi) { Subjectto (1a)
G(x,y) <0
E(x,y)=0

where for giverx, y is the solution to the lower level program (Prograjrin 1b:

ryglpL(x,y)

ProgramL { Subjectto (1b)
9(x,y)) <0
e(x,y)) =0

In the formulation in Eq. 1 we define the following mappingsL : R™ x R"2 —
RLG:RM xR™ - R%, g:RM xR™ - R% E:RM xR™ R, e: R xR —
R"2. In the general case the objectives and constraints at be¢fslare non-linear.
The setsX andY representing the search domains for 1a and 1b respectively
are defined as followsX = { (X1, Xz, ... %n,)T €RM |} <x <xi=1,..m}
andY = {(yl,yz,....,ynz)T e R™ ’y'j <yj<yj.i= 1,...,n2} with T denoting the
transpose. Arising from the “leader-follower” analogy diBPs, we use the terms
leader’s variables and upper level variables interchavigeehen referring to.

2.2 Mathematical Programswith Equilibrium Constraints

We also define a class of BLPPs known as the Mathematical &regwith Equi-
librium Constraints (MPECs). MPECs are BLPPs where the itdesxel problem
consists of a variational inequality (V1) [26].

1 Hence the original name of mathematical programs with optimisgtioblems in the constraints
chosen by Bracken and McGill in [18].



4 Andrew Koh
Q;IQ}J (Xx,y)
PrograntJ subject to (2a)

G(x,y) <0
E(va) =0

where for giverx, y is the solution of the VI in Prograr 2b:
L(X,y)T(y—y*) = 0,vy € Y(X) (2b)

Another class of problems closely related to MPECs are Maétieal Programs
with Complementarity Constrain{§7] which feature in place of a VI, a Comple-
mentarity Problem instead in ProgrdmHowever since the VI is a generalization
of the Complementarity Problem [56, 82], we will treat thége categories as syn-
onymous for the purposes of this chapter and neglect thedtieal distinctions. We
return in Section 4 to give an example of MPECs that ariseraliyuin transporta-
tion systems management.

2.3 Solution Algorithmsfor the BLPP

When all functions (both objectives and constraints) at bewels are linear and
affine, this class of problems is known as the linear-BLPRvél@r even in this de-
ceptively “simple” case the problem is still nondetermiigigpolynomial time hard
[11]. Even when both the upper level and the lower level are/ex programming
problems, the resulting BLPP itself can be non-convex [Ngn convexity sug-
gests the possibility of multiple local optima. Ben-Ayedidiair [11] demonstrated
the failure of both the Parametric Complementarity Pivag@Xlithm [13] and the
Grid Search Algorithm [5] to locate the optimal solutionn& then, progress has
been made in solving the linear-BLPP and techniques inctugtplicit enumera-
tion [21], penalty based methods [2] and methods based ouskaKuhn-Tucker
(KKT) conditions [41] have been developed. (See [117] foetaded review of the
algorithms available for the linear-BLPP).

Turning to solution algorithms for the general BLPP, seligrtaiguing attempts
have been proposed to solve it. One early proposal was traivie Optimisation
Algorithm (IOA) [3, 107]. This method involved solving thedgramU for fixedy
and using the solution thus obtained to solve the lower lpuablem, Progrant.,
and repeatedly iterating between the two programs untilescomvergence criteria
is met. However the 10A was shown to be an exact method foiirepla Cournot
Nash game [40, 42] rather than the Stackleberg game thatliR® Beflects. The
IOA implicitly assumes that the leader is myopic as he do¢sake into account the
follower’s reaction to his policy [42]. To be consistent wthe Stackleberg model,
the leader must be modelled as endowed with knowledge obtlever’s reaction
function which the leader knows the follower will obey.

The primary difficulty with solving MPECs is that they fail $atisfy certain tech-
nical conditions (known as constraint qualifications) at faasible point [23, 102].
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The penalty interior point algorithm (PIPA) was proposed78]. Unfortunately
a counterexample in [67] demonstrates that PIPA can coaverg nonstationary
point. Subsequent research has led to the development of otlaer techniques to
solve the MPEC such as the piecewise sequential quadratijzgmming in [72],
branch-and-bound [6], nonsmooth approaches [32, 87] andthiimg methods [38].

Wrapping up this section, we summarise briefly the use of nusthased on
meta-heuristics. Meta-heuristics including stochasptinoisation techniques are
recognised as useful tools for solving problems such as ttePB which do not
necessarily satisfy the classical optimisation assumgtiof continuity, convex-
ity and differentiability. Techniques include Simulatesi#ealing (SA) [1], Tabu
Search (TS) [48], Genetic Algorithms (GA) [47], Ant Colonyftdnisation (ACO)
[34], Particle Swam Optimisation (PSO) [57] and DifferahtEvolution (DE)
[94, 95, 108].

SA was used to optimise a chemical process plant layout al@saplem formu-
lated as a BLPP in [101] and a Network Design Problem fornedlas an MPEC
[43]. ACO techniques for BLPPs are found in [93]. GAs haverbased to solve
BLPPs ininter alia [73, 86, 111, 114, 122]. PSO was applied to BLPPs in e.qg.
[126]. DE was used for BLPPs in [61] where an example dematestithe inability
of the TS method implemented in [96] to locate the globalroptiof a test func-
tion. Despite their reported successes in tackling verfycdif problems, it must
be emphasised that heuristics provide no guarantee of @mvee to even a local
optimum. Despite this heuristics have been succesfullyl tsesolve a variety of
difficult problems such as the BLPP.

3 Differential Evolution for Bi-Level Programming (DEBLP)

Differential Evolution for Bi-Level Programming (DEBLP)ag initially proposed
in [61] to tackle BLPPs arising in transportation systemsagement. It is devel-
oped from the GA Based Approach proposed in [111, 122] bustitukes the use
of binary coded GA strings with real coded DE [95] as the nietaristic instead.
DE is a simple algorithm that utilises perturbation and rebimation to optimise
multi-modal functions and has already shown remarkableesscwhen applied to
the optimisation of numerous practical engineering pnoisi¢94, 95, 108]. On the
other hand, many years of research have resulted in theaemeht of a plethora
of robust gradient based algorithms for tackling many oji@na research questions
posed as non-linear programming problems (NLP) [9, 70, B%e momentarily
ignore the upper level problem, then for fixedEq. 1b is effectively an NLPwhich
can be tackled by dedicated NLP tools such as sequentialafimgrogramming
[9, 70, 85]. Such considerations motivated the developroéthe DEBLP meta-
heuristic which sought to synergise DE’s well-documentedal search capability
to optimise the upper level problem with the dedicated NLd*téocused on solving

2 Note that for fixedx, the lower level problem in the MPEC in Eq. 2b can also be sohsiogu
deterministic methods. See e.g. [82] for a review of determinsstiation algorithms for VIs.
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the lower level problem. More importantly, as we shall engibe later, DEBLP
continues to maintain the crucial “leader-follower” paigad upon which the BLPP
is founded.

In the rest of this section, we provide an overview of the apen of the DEBLP
algorithm and discuss some of its limitations. However wegerarily neglect con-
sideration of they; +r1 upper level constraints in Progrdun Our discussion of the
procedure used to ensure satisfaction of the upper levguaiiy and/or equality
constraints is postponed till later (see Section 6).

3.1 Differential Evolution

Conventional deterministic optimisation methods gemgrglerate on a single trial
point, transforming it using search directions computeskbaon first (and possibly,
second) order conditions until some criteria measuringye@ence to a stationary
point is satisfied [9, 70, 85]. On the other hand, populatiased meta-heuristics
such as DE operate with a population of trial points instdd idea here is that
of improving each member throughout the operation of therélgm by way of an
analogy with Darwin’s theory of evolutidn

Let there berr members in such a population of trial points. Specifically we
denote the population at iteratidh as 2. An illustration of such a popula-
tion is given in Eq. 3. Each member o representing a single trial point
X = (Xeq,- X, ),k = {1,..., 7}, also known as an individual, ism dimen-
sional vector that represents the upper level variables Esge 1a). To avoid nota-
tional clutter, we drop thé superscript as long as it does not lead to confusion.
Without loss of generality, we will assume minimization.eTREBLP algorithm is
outlined in Algorithm 1 which we elaborate upon in the enguparagraphs of this
section.

i it it it
X} X1 X2 0 X1
it it | it it it
PE=1% | = | %1 %2 Keny (3)
it it it it
Xn Xml Xn,2 er,nl

3 Hence some of these methods are sometimes referred to as evolutitizmaithms in the litera-
ture.
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Algorithm 1 Differential Evolution for Bi-Level Programming (DEBLP)

1. Randomly generate parent populatighof rtindividuals.
2. Evaluate?
set iteration countdat = 1
3. While stopping criterion not met, do:
For each individual in?", do:
(a) Mutation and Crossover to create a single child from indiaid
(b) Evaluate the child using a hierarchical strategy.
(c) Selection: If the child is fitter than the individual, tbeild replaces
the parent. Otherwise, the child is discarded.
End For
it=it+1
End While

3.1.1 Generate Parent Population

When the algorithm begins, real parameters in each dimensibeach membek
of &2, that comprise the parent population, are randomly gee@raithin the lower
and upper bounds of the domain of the BLPP as in Eq. 4.

i = rand(0,1)(x —x) +x, ke {1,...,m},i € {1,...,n }. ()

In Eq. 4rand(0, 1) is a pseudo random number generated from an uniform dis-
tribution between 0 and 1.

3.1.2 Evaluation

The evaluation process to determine the fithe$s trial point in the population has
to be developed within the Stackleberg model [106] since axeetio specifically
model the leaders taking into account the response (regafdhe followers to his
strategyx. One way to accomplish this is via a “two stage” or hierarahgtrategy
which is achieved as follows.

In the first stage, for each individuklvector of the leader’s decision variables
Xk, We solve Prograrh i.e. Eq. 1b to obtaity by using deterministic methods such
as linear programming or sequential quadratic programif@ngO, 85]. Withy so
obtained, we are then able to carry out the second stage Wwiviclves computing
the value of the upper level objectie corresponding to each individual vector of
the leader’s decision variables input in the first stage.

It is worth highlighting that this procedure @fferentfrom the IOA described
earlier in Section 2 as DEBLP obviates any iteration betwbetwo levels. Instead,
entirely consistent with the “leader-follower” paradigine leader’s vectaoxy being

4 The term “fithess” used in such evolutionary meta-heuristics isohad from its analogy with
evolution where Darwin’s concept of survival of the fittest iscmerstone. In minimization prob-
lems, when comparing two individuals, the fitter individual ig thne that evaluates tolawer
upper level objective.
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manipulated by DE is offered as an exogenous input to therléswel program
to be solved in the first stage. One obvious drawback of ddirgis the resulting
increase in computational burden which has been significeeduced by advances
in computing power.

3.1.3 Mutation and Crossover

The objective of mutation and crossover is to produce a afglttorwy from the
parent. This is accomplished by stochastically adding ¢opi#wrent vector the fac-
tored difference of two other randomly chosen vectors frioenqgopulation as shown
in Eq. 5.

Xs1i+ A (Xgi —Xs3i) if rand(0,1) < x ori =intr(1,ny)

Wi = s . (5)
Xk i otherwise

In Eq. 5,s1,s2 ands3 € {1,2,..., 1} are randomly chosen population indices
distinct from each other and also distinct from the currespiyation member in-
dexk. rand(0,1) is a pseudo random real number between 0 and lirdndL, ny)
is a pseudo random integer between 1 apdThe mutation factoA € (0,2) is a
parameter which controls the magnitude of the perturbatiaty < [0,1] is a prob-
ability that controls the ratio of new components in the ffilsg. The or condition
in Eq. 5 ensures that the child vecteg will differ from its parentx, in at least one
dimension.

We stress that the mutation and crossover strategy showa. i i§ not the only
possible strategy available though this is the one usedsmibrk. Other strategies
are found in [94, 95, 108]. Nevertheless all the strategid3Ereflect a common
theme: the creation of the child vectay via the arithmetic recombination of ran-
domly chosen vectors along with addition of difference vg@) typified in Eq. 5.

3.1.4 Enforce Bound Constraints

Mutation and crossover can however produce child vectaas Ith outside the
bounds of the original problem specification. There arers¢veays to ensure satis-
faction of these constraints. One could set the parametex émjthe limit exceeded
or regenerate it within the bounds. Alternatively, follogi[94], we reset out of
bound values in each dimensiohalf way between its pre-mutation value and the
bound violated as shown in Eq. 6.

Xk.i +X=

5 Wi < X
Wi = § XD gy sy (6)

W ; otherwise
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3.1.5 Selection

Once the hierarchical evaluation process is carried ouherchild vectomwy pro-
duced, we can compare the fithess obtained with that of isnpag. This means
that comparison is against the sakparent vector on the basis of whichever of
the two gives a lower value for Prograth Assuming minimization the one that
produces a lower value survives to become a parent in thenfily generation as
shown in Eq. 7.

(ol _ Jwi iFUWEL(e) SURKL(e)) Ko
K Xt otherwise

These steps are repeated until some user specified teromcaiteria is met, and
this is usually when it reaches the maximum number of iterati although other
criteria are possible [95].

3.2 Control Parameters of DE

Unless otherwise stated, for all experiments reportedutiinout this chapter we
used a Mutation Factoi, of 0.9 and a Probability of Crossovey, of 0.9. The
population sizejr, and the maximum number of iterations allowed varied foheac
of the BLPPs we investigated and these will be clearly statéte relevant sections.
Because DEBLP is a stochastic meta-heuristic, we alwayg oat 30 independent
runs with different random seeds. All numerical experirsemére conducted using
MATLAB ™ 7.8 running on a 32 bit Window¥ XP machine with 4 GB of RAM.

3.3 Implicit Assumptions of DEBLP

Through the rest of this paper we will demonstrate in examfiiem various dis-
ciplines that DEBLP is a powerful and robust solution metiiody for handling a
variety of problems formulated as BLPPs. However we are izagi at the outset
two key limitations of our approach:

1. DEBLP is a heuristic: with its strength arising from it &liog reliance on the ob-
jective functions being differentiable and/or satisfyicmnvexity properties and
hence able to handle a large class of intrinsically non smpotblems. How-
ever it should recognised that for this very reason, it isgesterally possible to
establish convergence of the algorithm to even a local aptim

2. DEBLP implicitly assumes that the Progrdnis convex for fixedx and can be
solved to global optimality by deterministic methods arat flailure to solve the

5 This is sometimes referred to as “one to one” comparison in [941 @8,
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lower level problem to global optimality does not affect gwution of Program
u.

This section has focused on defining the motivation for, amtirong, the DE-
BLP meta-heuristic which sought to synergise the exployapower of DE with
robust deterministic algorithms focused on solving thedovevel problem. Rec-
ognizing its limitations, in the next section, we apply DEBLo control problems
arising from Transportation Systems Management formdlateBLPPs where the
lower level program is shown to be convex for a given tupléefleader’s variables.

4 Applications to Transportation Systems Management

In this section, we study two problems in transportatiortesys management. In
applications, the leader in Progrduncould be thought of as a regulatory authority
applying control strategies (policy) that influence the@tahoices of the followers
who are the highway users on the road network. It will be showder certain
assumptions, the followers problem can be established dstlau¥ the problems
under consideration are MPECSs.

4.1 The Lower Level Program in Transportation

In the transportation systems management literature,r@mb has an interpre-
tation in that it is the mathematical formulation representhe follower’s (road

user’s) route choice [15] on a highway network. This is oftefierred to as the Traf-
fic Assignment Problem (TAP). Traffic assignment aims to wheiige the number of
vehicles and the travel time on different road sections cdffi¢ network, given the
travel demand between different pairs of origins and dastins [60].

Definition 1 [115] The journey times on all the routes actually used areagand
not greater than those which would be experienced by a sigiele on any unused
route.

The TAP is founded on the behavioral premise of Wardrop’s Bsgiilibrium as
given in Definition 1. In effect this states that user equilin is attained when no
user can decrease his travel costs by unilaterally chamgirtgs. The TAP provides
the link flow vector ¢) when user equilibrium is attained.

To facilitate exposition of Prograrh, consider a transportation network repre-
sented as a graph withh nodes and links/arcs, and let:

P: the set of all paths/routes in the network,

H: the set of all Origin Destination (OD) pairs in the network,

B,: the set of paths connecting an OD plan € H,

Fp: the flow on route/patip,p € P,
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Va: the link flow on linkav = [va],a € A,

ca(Va) : the travel cost of utilising the link, as a function of link flow, on that
link only, c(v) = [ca(Va)].a€ A

cp: the travel cost of patip,p € P,

Gap : @ dummy variable that is 1 if the paghip € P uses linka ,a € A, 0 otherwise
and

Q: the set of feasible flows and demands.

On the demand side, we assume that there is an amount of dedpdnd H
(dn > 0) wishing to travel between OD pdirandup, is the minimum travel cost that
OD pairh,h e H.

4.1.1 TAP as a Variational Inequality

Lemma 1. Wardrop’s Equilibrium Condition of route choice impliesattat equilib-
rium the following conditions are simultaneously satisfied

Fper, > 0% Cpep, = h  VheH,Vpe P,

Fper, =0 Cpep, > Uh  VheH,VpeP;

dh= 3y Fy VheH,vpeP;

peh
Lemma 1 states that pathconnecting OD paih will be used by the travellers

if and only if the cost of travelling on this route is the minim travel cost between
that OD pair. The Variational Inequality (V1) in Eq. 8 resatWardrop’s Equilib-
rium Condition.

Findv* € Q such that(v*)T(v—v*) >0,V € Q (8)

Proposition 1. The solution of the Variational Inequality defined in Eq. 8ukts
in a vector of link flows demands* € Q) that satisfies Wardrop’s Equilibrium
Condition of route choice given by Lemma 1.

Proof. For a proof of Proposition 1, see [28, 105]3

4.1.2 Convex Optimisation Reformulation

In the particular instance (and in the cases consideredsighiapter) when the travel
cost of using a link is dependent only on its own ffpwhere exists an equivalent
convex optimisation program for the VI (Eq. 8) as shown in &9.

minL =Yy /'ca(z)dz (9a)

Vao

6 This is known as the separability assumption.
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Subject to:
Z:th:dh,hEH (9b)
pe
Va= S Fpdap,acA (9c)
a pgp pQap
Fo>0,peP (9d)

The objective of the program in Eq. 9 is a mathematical constwith no be-
havioral interpretation, employed to solve for the equilim link flows that satisfies
Wardrop’s Equilibrium Condition [103]. In this program gtliirst constraint states
that the flow on each route used by each OD pair is equal to takdemand for
that OD pair. The second constraint is a definitional coirgtrghich stipulates that
the flow on a link comprises flow on all routes that use that liftke last constraint
restricts the equilibrium flows and demands to be non negalitaese linear con-
straints defin&2. SinceQ is closed and convex, the equilibrium link flows € Q
are unique [15]. In practice, it is usually the case thafitrassignment algorithms
(see examples in texts such as [89, 103]) are used to solgedPnd.

4.2 Continuous Optimal Toll Pricing Problem (COTP)

The continuous optimal toll pricing problem involves seilieg an optimal toll level
for each predefined tolled link in the network [11]. With awi® controlling con-
gestion, there has been renewed interests by transpartatibhorities globally to
study this “road pricing " problem (e.g. Singapore, Lond8tgckholm).

4.2.1 Model Formulation

In addition to the notation defined at the start of this segtiee introduce the fol-
lowing notation to describe the COTP. Let:

ta(va) : the travel time on linka, as a function of link flowv, on that link only,

T: the set of links that are tolled C A

7: the vector of tollsg = [14), a€ T

T3 7Min: the upper and lower bounds of toll charge on liplac T

Total travel cost, conventionally measured as the sum mitaafithe travel times
and traffic flows on all links in the network, may be interptesss the social cost of
the transport sector and acts as a proxy for the resourcecctist economy of the
highway system. The objective of the upper level decisiokena the COTP is to
minimise this by encouraging more efficient routing of ti@biy levying tolls on the
road users in the network. The upper level program is thesyst Eq. 10.
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mrin U= Z\vata(va) (10a)
ac

Subject to: _
< <™ acT

7,=0, a¢T (10b)

Note however that can only be obtained by solving Progrdmn Eq. 9. Thus
in terms of Figure 1, the policy variablesis the toll vectorr and the follower’s
response is the traffic routing that manifests in the vectdink flows on the road
networkyv that in turns affect the leader’s objective.

Recall that in defining the lower level program in Eq. 9, thadaiser was as-
sumed to consider the travel cost of utilising anara € A. Eg. 11 maps the travel
timeta(va) ON an ara, into the equivalent travel costg(Vva).

~ fta(Va)+T1a ifaeT
Ca(Va) _{ ta(va)  otherwise (11)

4.2.2 Previous Work on the COTP

Various solution algorithms have been proposed for the C@airg and Lam pro-
posed a linearisation based method that uses derivativemiation to form approx-
imations to the upper level objective [118] known as a seftsitbased analysis
algorithm (SAB). However it has been pointed out [122] thebgll optimality of

the SAB algorithm is not assured and that obtaining a locairapn is indeed pos-
sible. Another derivative-based method was derived fromstraint accumulation
[66]. A review of algorithms for the COTP is found in [111].

4.2.3 Example

We illustrate the use of DEBLP to solve the COTP with an exanipm [118].
Fig. 2 shows the network which has 6 nodes and 7 links. Linklmeniare written
above the links and node numbers are indicated accordifiglre are two OD pairs
between nodes 1 and 3 and between 2 and 4 of 30 trips each. Sitad tke nodes
represent junction/intersections of the road network aadet is in the direction
indicated by the arrows. The link travel timg$v,) take the explicit function forms
as given in Eq. 12.

Va
Cam
In Eq. 12t is the free flow travel time of the link andCap, is the capacity of

link a. The parameter details for the network and the upper bouridlist]™® are
found in [118] and given in Table 1. Note thef"" = 0,vae T.

ta(Va) = t(1+0.15( ———)*) (12)
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For this example, we use a population sizeof 20 and allowed a maximum
of 50 iterations in each of 30 runs. Table 2 compares the tees@IDEBLP with
that of two deterministic algorithms (direct from [118] aadr implementation of
the algorithm of [66] together with a GA based method from2[L2JPO refers to
the value of (Upper level) Objective in Eq. 10. It can be sgemfTable 2 that the
four different algorithms provided different tolls undgrg the multimodal nature
of this problem. However the upper level objective functiatues are the same in
all cases. This bears testimony to the multimodal naturé@fQOTP where many
different toll vector tuples could potentially result irtaibing the same upper level
objective function value.

Table 2 Comparison of existing against DEBLP
results for COTP Example
Table 1 Network Parameters for COTP Example  jethod Deterministic Stochastic

Link a 0 Cap, T1'& Tolls [118] Method of [66] [122] DEBLP

18 20 5 Link1 3.82 2.667 4.324 3.824
29 20 5 Link 2 4.265 3.548 4976 3.92
32 20 2 Link 3 0.472 0.038 0.035 0.564
46 40 2 Link4 0.476 0.154 1.759 0.462
53 20 2 Link 5 0.294 0.116 0.016 0.145
63 25 2 Link 6 0.472 0.038 0.127 0.396
74 25 2 Link 7 0.294 0.116 0.013 0.111

UPO 628.6 628.6 628.6 628.6

Fig. 2 Network for COTP Example [118] Fig. 3 Network for CNDP Example 1 [27]

4.3 Continuous Network Design Problem

The continuous network design problem (CNDP) aims to ddtexrthe optimal
capacity enhancements of existing facilities of a traffiswek [43]. Care has to be
taken when solving the CNDP because additional capacitgcanter productively
increase the total network travel time and this is a phena@ménknown as Braess'’s
paradox [17]. Braess’s paradox has been known to occurnspatation [17] and
telecommunication networks [63].
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4.3.1 Model Formulation

To proceed with this example, we introduce additional notaas follows (others
as previously defined):

K: the set of links that have their individual capacities exdeal, k C A.

B: the vector of capacity enhancemergisr [B4], a € k

BMax Bmin: the upper and lower bounds of capacity enhancemarnts.

da: the monetary cost of capacity increments per unit of endiaenta € k.

Cap: existing capacity of linka, a € A.

6: conversion factor from monetary investment costs to tre@st units.

In the CNDP, the regulator aims to minimise the sum of thd tcamel times and
investment costs with constraints on the amount of capaditjtions while Program
L determines the user’s route choice, for a gijferonce again based on Wardrop’s
principle of route choice as mentioned previously. Henee @NDP seeks #&|
dimension vector of capacity enhancements optimal to thewing BLPP in Eq.
13:

mnU =Y Vata(va) + 6d. (13a)
T a; VazeK :
subject to: ‘
B;mn S Ba S B;nax ac K;
Ba=0 a ¢ K

wherev is the solution of a lower level TAP (Progradm Eq. 9, parameterised in
the vector of capacity enhancements for the fixed demand ¥ésenap the travel
times to the travel costs by means of Eq. 14.

(13b)

t9(140.15( =—2—)%) j
Calve _{a( (cagim) ) ifack

t9(1+ 0.15(C;apg)4) if ad k

(14)

4.3.2 Previous Work on CNDP

The CNDP has been investigated by many researchers andizvaatution algo-
rithms have so far been proposed. Meng et al transformed igRGnto a single
level continuously differentiable problem using a margjficaction and solved the
resulting formulation with the Augmented Lagragian metliés]. Chiou investi-
gated several variants of the descent based Karush-KhckeT(KKT) approaches
[24]. Stochastic meta-heuristics have also been used; G applied in [27] and
the use of SA has been reported in [43].
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4.3.3 Example 1: Hypothetical Network

The network for the first example is taken from [27] and repicatl in Fig. 3. This
network has 6 nodes and 2 OD pairs; the first between nodes & ahdO trips
and the second, between nodes 6 and 1 of 20 trips. Pleas¢a¢?di for the link
parameter details. Note thaf"" = 0 andB]"= 20,Va € k,k C Aas in [27]. We
assumed a population size,of 20 and allowed a maximum of 150 iterations. Table
3 summarises the results that have been reported previandlgompares it with
the results reported in our paper. UPO refers to the valuapgddr level) objective
in Eq. 13. NFE is the number of function evaluations. Noté the number of lower
level programs solved equal to population size multipligdHe maximum number
of iterations allowed. SD is the standard deviation over @&@sr Our results are
based on the mean of these 30 runs. Though the SD of the GA dchethouch
lower, [27] also reported using local search method to adstrarch process which
accounts for the higher NFE as well.

4.3.4 Example 2: Sioux Falls Network

The second example is the CNDP for the Sioux Falls (South 2ad&A) network
with 24 nodes, 76 links and 552 OD pairs. The network paramseted OD details
are found in [75]. Only 10 links out of the 76 are subject to ioygments.

While this network is clearly larger and arguably more re@lighe problem
dimension (i.e. leader’s variables simultaneously osted) is smaller than in Ex-
ample 1, since 10 links are subject to improvement rather tha 16 links in the
former. This offers an explanation as to why the number otfiam evaluations
(NFE) reported in all studies compared is less than for tts¢ ékample. The re-
sults are compared in Table 4. Our results show the mean afr8with different
random seeds.

It can be deduced from Table 4 that DEBLP is able to locate litieadjoptimum;
again with a lesser number of iterations than the SA methdd3h More inter-
estingly, DEBLP required less iterations than the deteistimmethod of [75]. The
standard deviation is also very low which suggests thathbigistic is reasonably
robust as well.

Table 3 Comparison of existing against DEBLP Table 4 Comparison of existing against DEBLP

results for CNDP Example 1 results for CNDP Example 2

Method: Deterministic Stochastic Method: Deterministic ~ Stochastic
Source [24] [75] [43] [27] DEBLP Source [24] [75] [43] DEBLP
UPO 534 532.71 528.49 519.03 522.71 UPO 82.57 81.75 80.87 80.74
NFE 29 4,000 24,300 10,000 3,000 NFE 10 2,000 3,900 1,600

SD —Not Reported—  0.403 1.34 SD —-Not Reported—- 0.002
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5 Applications to Parameter Estimation Problems

In this section we derive the Error-In-Variables model ahdve that it can be for-
mulated as a BLPP and apply it to 2 examples from [49]. Parangstimation is
an important step in the verification and utilization of neattatical models in many
fields of science and engineering [37, 49, 59]. In the clas&ast-squares approach
to parameter estimation, it is implicitly assumed that #teo§independent variables
is not subject to measurement errors [46]. On the other htaederror-in-variables
(EIV) approach assumes that there are measurement eriatwariables [16, 98].

5.1 Formulation of EIV Model

We consider models of the implicit form as in Eq. 15.

f(x,y)=0 (15)

In Eq. 15 xis the vector oh; unknown parameterg,is the vector oh, measure-
ment variables and is the system of algebraic functions. The measured vadgable
are the sum of the true valuég which are unknown and the additive error tegm
at the data pointnas shown in Eq. 16.

Ym = {m+ &m (16)

We assume that the error is normally distributed with zeramend possessing
a known covariance matrix. The vector of unknown parameteean be estimated
from the solution of the constrained optimisation problenkg. 17.

M
min 5 (Ym—Ym) ™A (Im—Ym)
XY m=1
subject to
f(Ym,X) =0, m=1,....M

(17)

As mentioned, we do not know the true valueg@f However they are approxi-
mated from the optimisation as the fitted varialjigsAssuming that the covariance
matrix A\ is the same in each experiment and diagonal, we write Eq. Efa%8.

min 3 % Omi-ymi)?
Xy m=1i=1 9
subject to (18)

£, X) =0, m=1,....M

In Eq. 18,0; is the standard deviation of variaklén all the experiments. Fol-
lowing [49], we can write the EIV model as a BLPP of the form of E9.
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n
ProgramJ {mm s 22 Umi y’“'> (19a)
X m=1li=
where for giverx, y is the solution to the lower level program (Prograjn
M Moo
m iAn 2 (Ym, |02ym,| )
XY m=1i=1 i
ProgramL subject to (19b)

fYmi,X) =0, m=1,... M,i=1...,n

For a survey of the alternative optimisation based fornmuatof the EIV model,
the reader is referred to [59].

5.2 Examples

We present 2 examples of the EIV model that were solved ustegohinistic meth-
ods in the cited references. Note that we consider only desitgmmon variance
term for all variables and we can eliminate it from furthensieration. In all our
experiments of DEBLP we assumed a population sizef 20 and allowed a max-
imum of 100 iterations.

5.2.1 Example 1: “Kowalik Problem”

Consider the model due to Moore et al in [76] known as the “Kdw@aroblem”
where we estimate the equation of the form in Eq. 20.

X1y2 4 X1X2Ym 2
Y2, + Ym2Xa + X4
We have 11 data points for this model (see [49] for the dafa ket assumed
thatym 1 contains errors, angh» is error-free. The resulting BLPP is shown in Eq.

21. Notice that the lower level equality constraint in Eqithe model formulation
hypothesised in Eg. 20.

Ymi1 = (20)

11
min 3 (f’m,l—ym,l)2
X m=1
subject to 21)
mym z (yml_)’ml)

Yma( y2 + Ym2X3 +Xa) — X1y2 , — X1XoYm2 = O

30 runs of DEBLP were performed for this problem with a maxinmmf 100 iter-
ations allowed per run and a population sizef 20. Following [49], the parameter
bounds are assumed to be between -0.2892 and 0.2893 forfethehaupper level
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variablesxy ,xo,x3 andxs. Table 5 shows the results which clearly agrees with that
reported in [49]. In this table UPO refers to the objectivelaf upper level in Eq.
21. Note that the standard deviation of the UPO over the 38peddent DEBLP
runs conducted was less thax 105,

5.2.2 Example 2: “Linear Fit”

The model we intend to estimate is a linear equation of the fiorEq. 22. The 10
data points are from [49]. Compared to Example 1, here wenassbat measure-
ment errors are presentfioth y, 1 andym2, m= {1,...,10}.

Ym2 = X1+ Xo¥m1 (22)

Assuming a common variance for each data typie1.ymz2}, we can estimate
the vector of unknowmx parameters via the BLPP in Eq. 23.

1002 )
mn y 3 (Ymi—Ymi)
Xb_rThlI:1
subject to
10 2 5 (23)

miny 3y (Ymji — Ym,i)

Y m=li=1
Ym2 — X1 —X¥m1 =0
The results of 30 runs of DEBLP (with a maximum of 100 iterasi@llowed per
run and a population size of 20) for this problem are shown in Table 6. Again the
standard deviation over the 30 runs was less tharl@°. As with Example 1, the
results obtained by DEBLP agrees with those reported in [49]

Table 5 Parameter Estimation Example 1

(“Kowalik Problem”) Table 6 Parameter Estimation Example 2 (“Lin-
Variable DEBLP _ [49] ear Fit")
X1 0.1928 0.1928 Variable DEBLP  [49]
X2 0.1909  0.1909 X1 5.7840 5.784
X3 0.1231 0.1231 X2 -0.544556 -0.54556
0.1358 0.1358 UPO 0.61857 0.61857

X4
UPO 0.000307 0.000307

6 Handling Upper Level Constraints

The keen reader would notice that up to this point our disonssand our numeri-
cal examples have neglected mention of constraints in therdpvel problems (cf.
Eqgn. 1a). We have in fact thus far only assumed the presenoeunid constraints
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and described a technique to ensure that the populationmemithin the search
domain which was sufficient for the problem examples ingaséd. Before pro-
ceeding to our next application area for BLPPs, we outlirnthimsection, necessary
modifications to DEBLP to enable it to handle them effectivel

6.1 Overview of Constraint Handling Techniqueswith
Meta-Heuristics

In their most basic form, meta-heuristics do not have thel#ipy to handle gen-
eral constraints aside from bound constraints. Howeveresiaal world problems
generally have linear and nonlinear constraints, a largeuamof research effort
has been expended on the topic of constraint handling with algorithms. In the
past few years many techniques have been proposed. Amoegs dtiese include
penalty methods [121], adaptive techniques [104], tealesdased on multiobjec-
tive optimisation [25, 65] etc.

The penalty method transforms the constrained problemantanconstrained
one. However one of the drawbacks of this method when appliid meta-
heuristics is that the solution quality is sensitive to tkaglty parameter used. The
penalty parameter itself is problem dependent [99]. Thishioe also encounters
difficulties when solutions lie at the boundary of the felesdnd infeasible space.

Recall the selection criteria of the DEBLP in Algorithm 1. tlme presence of
constraints, when we are deciding whether to accept ortréjecchild,wy, it is no
longer a case of comparing the values of objedthagtained. The key consideration
is how one would say, decide between a infeasible individuti low U and a
feasible individual but highdy.

Intuitively one could conclude that a feasible individusbietter than the infea-
sible individual because the aim is to ultimately seek sohg that minimise the
objective function and satisfy all the constraints. Thiewpoint however ignores
the fact that the meta-heuristics are generally stochbgtéesign. There exists the
possibility that the infeasible individuals could in fa& better than the feasible one
at some iterations during the algorithm [124]. The questi@m is how to strike the
right balance between objective and constraints.

6.2 Stochastic Ranking

Runarsson and Yao [99, 100] proposed an alternative camstrandling method
known as stochastic ranking (SRp aid in answering this question. To use SR, the
first step is to obtain a measure of the constraint violatixy), of vectorxy using

7 The source code of SR is available ftt p: // not endur . hi . i s/ tpr/index. php?
page=sof t war e/ sres/ sres, accessed Oct 2011.
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Eqn. 24. The first term on the RHS of Eq. 24 sums the maximumtloéed or the
value of the inequality constraii@®;(x), j € {1,...,01}8. The second term sums
the absolute value of each of the equality constraiisy), j € {1,...,r1}.

a1 Iy
V(xi) =y max{0,Gj(xi)}+ 3 |Ej(x)| (24)
=1 =1

The key operation of SR involves counting how many compassaf adjacent
pairs of solutions are dominated by the objective functiod eonstraint violations.
This is accomplished in SR through a stochastic bubble g@rtprocedure that is
used to rank the population. This comparison is illustrated in Algonitt2 where
rand(0,1) is a pseudo random real number between 0 and 1. The methdcesequ
probability factorn which should be less than 0.5 to create a bias against ibfeasi
solutions [99].

Suppose we have two individuakg; and Xy, k1 # k2. If both do not violate
constraintsor if a pseudo random real number is less than or equgl, tee swap
their rank order based on the objective function obtaindth the lower one be-
ing assigned a higher rank. Otherwise we swap their ranksdoais the constraint
violations, again with the lower constraint violation bgiassigned a higher rank.
Working our way through the population to be ranked, we cargicomparing ad-
jacent members according to Algorithm 2 and swapping ravwtsen no change in
rank order occurs, SR terminates.

Algorithm 2 Stochastic Ranking
if V(Xk1) = 0 andv(xy2) = 0 orrand(0,1) < n then
rank based on objective function value only
else
rank based on constraint violation only
end if

6.3 Revised DEBLP with Stochastic Ranking

DEBLP-SR, as presented in Algorithm 3, is the result of ipooating SR in DE-
BLP. Italics highlight the changes between DEBLP in Algorithm 1 and DEERR
in Algorithm 3. These are summarised as follows:

1. Evaluation of both the upper level objective and constraiolation for each
member of the parent and child population.

81n Eq. 1a, all the upper level inequality constraints are ftirm “< 0”.
9 With 7T population members, ranking results in the best ranked 1 (highek) and the worst
rankedr (lowest rank).
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2. Instead of the one to one selection criteria discussecatic 3, we propose
to pool the parent and child population (along with the cgpmnding objective
values and constraint violations) together as an input$Ro

3. Combining parents and children will lead to a populatie ®f 2it. Hence the
selection process will only retain the tapranked individuals output by SR to
constitute the population at the next iteration. The rechairare discarded.

Algorithm 3 DEBLP with Stochastic Ranking (DEBLP-SR)

1. Randomly generate parent populatighof mindividuals.
2. EvaluateZ? and obtain constraint violations using Eq. 24
set iteration countat = 1
3. While stopping criterion not met, do:
For each individual in't, do:
a) Apply Mutation and Crossover to create a single child fronividdal.
b) Evaluate childand obtain constraint violations using Eq. 24
End For
4. Combine parents and children violations and objectives
5. Apply stochastic ranking
6. Selectionretain the toprt ranked individuals to form new populatig#!+1
it=it+1
End While

In the next section, we apply DEBLP-SR to a examples of BLPRS dre in
fact characterised by the presence of upper level congratrwill be shown that
DEBLP-SR continues to be a robust meta-heuristic in suchcgtions.

7 Applications to Generalised Nash Equilibrium Problems

Game theory [116] is a branch of social science that provitethodologies to study
behaviour when rational agents seek to maximise persoina gathe presence of
others symmetrically doing the same simultaneously. Tiheisa concept of such
games was devised by Nash in [83, 84]. The game attains a NpslbEum (NE)

if no one player can unilaterally improve her payoff giver #irategic decisions of
all other players. While establishing that an outcome is nNEa(by establishing
that a player can profitably deviate) is usually not difficldtating the NE itself is
more challenging. In this section we show how the processtdrchining NE in
some games can be formulated as a BLPP and illustrate trerpenfice of DEBLP
on some example problems from the literature.
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7.1 The Generalised Nash Equilibrium Problem

We are concerned with a specific Nash Game known as the Giseerblash Equi-
librium Problem (GNEP). In the GNEP, the players’ payoffsl éimeir strategies are
continuous (and subsets of the real line) but most criicdle GNEP embodies
the distinctive feature that players face constraints déijng on the strategies their
opponents choose. This distinctive feature is in conti@ast $tandard Nash Equi-
librium Problem (NEP) where the utility/payoff/reward thtayers obtain depend
solely on the decisions they make and their actions are sticed as a result of
the strategies chosen by others. The ensuing constraitieth apace in GNEPs
makes them more difficult to resolve than standard NEPs sisszliin monographs
such as [116]. As will be demonstrated in this section, tbri@ue here can nev-
ertheless be applied to standard NEPs.

The GNEP under consideration is a single $hgame with a sef’ of players
indexed byi € {1,2,...,p} and each player can play a strategy X which all
players are assumed to announce simultaneoXsly.the collective action space

P
for all players. In a standard NER,= [] X;, i.e. X is the Cartesian product.

In contrast, in a GNEP, the feasiiale strategies for playier I depend on the
strategies of all other players [4, 39, 53, 112]. We denatdehsible strategy space
of each player by the point to set mappifid:: X ' — X! ,i € ' that emphasises the
ability of other players to influence the strategies avzbazlab player [39, 51, 112].
The distinction between a conventional Nash game and a GMMERe viewed as
analogous to the distinction between unconstrained ansti@ned optimisation.

To give stress to the variables chosen by play&e sometimes write = (X, X_;)
wherex_; is the combined strategies of all players in the gawreludingthat of
playerii.e.x_j = (X,...,X Xipays e ). Note that the notatiq;, x_i) does not
mean that the components xfare somehow reordered such thlatbecomes the
first block. In addition, letg(x) be the payoff/reward to playeyi € I if x is played.

Definition 2 [112] A combined strategy profike" = (x;,x’,...,x;) € X is a Gener-
alised Nash Equilibrium for the game if:

(ﬂ(xi*vxii) > (ﬂ.(xi7Xti)v (25)
VX €€ (X)), iel

At a Nash Equilibrium no player can benefit (increase indigicpayoffs) by uni-
laterally deviating from her current chosen strategy. @layre also assumed not to
cooperate and in this situation each is doing the best shgiean what her com-
petitors are doing [45, 62, 116]. For a GNEP, the strategfilprg” is a Generalised
Nash Equilibrium (GNE) if it isbothfeasible with respect to the mappifd and if
it is a maximizer of each player’s utility over the constedrfeasible set [51].

101t is one-off and not played repeatedly in a dynamic sense.
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7.2 Nikaido | soda Function

The Nikaido Isoda (NI) function in Eq. 26 is an important cioast much used in
the study of Nash Equilibrium problems [39, 52, 53]. Its iptetation is that each
summand shows the increase in payoff a player will receiveriiyaterally deviating

and playing a strategy € ¢ (x_i) while all other players play according xo

P
Y(x,y) = Z[(ﬂ(yiax—i) — @ (%, %) (26)

The NI function is always non-negative for any combinatiéx andy. Further-
more, this function is everywhere non-positive when eithery is a NE by virtue
of Definition 2 since at a NE no one player should be able tceimee their payoff
by unilaterally deviating. This result is summarised in Diion 3.

Definition 3 [53] A vectorx* € X is called a Generalised Nash Equilibrium (GNE)
if ¥(x,y)=0.

7.3 Solution of the GNEP

Proposition 2 establishes the key result that the GNEP céorbilated as a BLPP.

Proposition 2. The Generalised Nash Equilibrium is the solution to the BLFPP
Eq. 27.

min - f(x,y) = (y—x)"(y—x) (27a)
(xy)
subjecttax € ¢'(x ') Vierl. (27b)

wherey solves

max@(y X )+t X)) =

n (283.)
Qg’%xi;m(yi,xfi) — @ (%, %-i)]
subjecttoy' € €' (x ') ,Vierl. (28b)

Proof. For a proof of Proposition 2, see [112]0

The upper level problem (Eqg. 27a) is a norm minimization pgobsubject to
strategic variable constraints (Eq. 27b). The objectivection of the lower level
problem (Eq. 28) is exactly the Nikado Isoda function (Eg. 26
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Proposition 3. The optimal value of the upper level objective in Eq. 27&, ¥), is
0 at the Generalised Nash Equilibrium.

Proof. For a proof of Proposition 3, see [14, 112]3

Proposition 3 serves the critical role of being the ternioratriteria of the DE-
BLP. Although DEBLP and DEBLP-SR are heuristic in naturegggasition 3 en-
ables us to detect that we have found the solution to the GNEP.

7.4 Examples

In this section, we present four numerical examples of GN&Rsced from the
literature. The first case study is in fact a standard NEP ts&tves to demonstrate
that the BLPP formulation proposed here can also be appli¢his situation. We
then impose a constraint which transforms the standard MEPai GNEP which
serves as the second example. The third example has omgiadlution abatement
modeling while the last example is an internet switching etddm [58].

7.4.1 Example 1

Example 1 is a non-linear Cournot-Nash Game with 5 players fi81]. As men-
tioned, this is a standard NEP i.e. where the feasible giet®f each player is un-
constrained. The profit function for player< {1,...,5}, comprising the difference

5
between revenues and production costs, is giveqlfy) = (50001.1*1 (> X )’(Tlﬂ)xi -
i=1
=1 a+l

WX + (%)y. % % 4 . The player dependent parametess, {4 anda;) are found
in[81, 87].

The feasible space for this problem is the positive axisesproduction cannot be
negative. The solution of the NEPx$=[36.9318 41.817543.706Q0 42.6588 39.17867
[50, 81].

7.4.2 Example 2
Using the same parameters as in Example 1, and introducirggagtion constraint

on total output of all player$! as in [87], Example 1 is transformed into a GNEP.
The feasible space for the resulting GNEP is defined by [87]:

5
X ={xeR®%x >0Vic{l..,5} le. <100}
i=

11 One can think of this as simulating a cartel limiting productiotkeep prices high.
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X* is [14.050,17.798 20.907,23.111,24.133T [54].

7.4.3 Example 3

This problem describes an Environmental Pollution Corfralblem known as the
“River Basin Pollution Game” studied by Krawczyk and co-kens [52, 64]. There
are 3 players with a single decision variable each. Eaclepiaye {1,2, 3} attempts

to maximise his profits, while others are doing the same $anabusly. Playeirs

3
payoff function is given ag (x) = (3—0.01( ¥ Xi))X — (C1i + C2i)X;. The first term
i1

in the payoff function is the revenues fr(;m the sale of thedpob. The second
term is the production costs. The cost valegsandcy; are given in [52, 64]. The
feasible space reflecting mandatory limits on allowed effluéscharges into a river
is defined according to:

3.25¢; + 1.25% + 4.125¢3 < 100
2.2915¢ + 1.5625 + 2.8125¢ < 100
x >0,i€{1,23}

The last constraint reflects the fact that production cabeategative. The GNE is
X; = 21.14,x5 = 16.03,x3 = 2.927 [52, 64, 54].

7.4.4 Example 4

This problem describes an internet switching model with 5 grs originally pro-
posed in [58] and also studied in [54]. The cost function flaypri,i € {1,...,10}

is given by@(x) = —( ey ) (1 - Lat-1X0)) The feasible space ¥ = {x

X1 +-+X10)

10
R%% >0.0Li € {1,...,10}, T % <1}. The NNEisxf =0.09,i = {1,..., 10} [53].
i=1

7.5 Discussion

As highlighted earlier, Proposition 3 states that when thpeu level objective
(UPO) (cf. Egn. 27a) f (x,y), in ProgranlJ reaches 0, we have successfully solved
the GNEP. Hence this allows us to provide a termination icaitef the DEBLP-SR
algorithm. In all other examples, we have always stopped™tEBLP after a user
specified number of maximum iterations. In practice, we teate each run when
the UPO attains the value of110-8 or less, which we judge to be sufficiently close
to 0.

In all these examples, we used DEBLP-SR i.e. Algorithm 3 withopulation
size, m= 50 and allowed a maximum of 250 iterations. Following [990]1@he
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probability factor,n used in SR was set ta4b. Table 7 reports the mean,median
and standard deviations (SD) of the number of function etans (NFE) over
the 30 independent runs of DEBLP-SR to meet the convergaiteei@ (i.e. UPO
attains the value of at least110~8).

Table 7 Summary of Performance of DEBLP-SR on GNEP Examples

Example 1 2 3 4
mean NFE 3993 7378 2825 10098
median NFE 4075 7325 2850 10025
SD 410 2758 273 1659
Constraint Violation NA 0 0 0

While it is clear that all the examples are easily solved uSiaLP-SR, three
observations are pertinent from Table 7. Firstly, commgainoblem 3 and 4 for
example, we can see that as the dimensions increase, the édfgifed to meet
the convergence criteria also increase significantly. T manifestation of the
so called “curse of dimensionality” [10] which plagues omsation algorithms in
general and meta-heuristics in particular. Secondly themasd median NFE re-
quired to solve the GNEP (Example 2) is almost twice thatiregito solve the NEP
(Example 1). This should not come as a surprise becauseramest problems are
known [121] to be harder to solve than unconstrained oneslllyj the constraint
violation of all examples at termination is 0 as shown in thst row of Table 7.
Thus we can conclude that the SR method for handling consiras effective for
the examples given.

8 Summary and Conclusions

8.1 Summary

In this chapter, we have outlined a meta-heuristic algoritDEBLP to solve bi-
level programming problems. These hierarchical optimasaproblems are typi-
cally characterised by non convexity and non smoothnes8LPES designed to
synergise the well-documented global search capabilitifierential Evolution
with the application of robust deterministic optimisatitethniques to the lower
level problem. Most importantly, DEBLP is fully consistenith the Stackleberg
framework upon which the BLPP is founded where the leadestako account the
follower’s decision variables when optimizing his objgetand where the follower
treats the leader’s variables as exogenous when solvirg dlidem.

DEBLP was subsequently demonstrated on a number of BLPS§isgfiom sev-
eral disciplines. These include control problems in Trangtion Systems where
we studied the Continuous Optimal Toll Pricing and the Guus Network De-
sign Problem. In these situations we postulated that thdeléapper level player
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was the regulatory agency and the followers were users offifievay network.
The BLPPs from this field were shown to be MPECs as the lowesl leroblem
arises naturally as a Variational Inequality. We also exaiexamples from Pa-
rameter Estimation Problems, a key step in the developnfemiodels in science
and engineering applications, which could also be fornedlats BLPPs. In order
to enable DEBLP to solve BLPPs where the upper level probles also subject
to general constraints, we integrated the stochastic mgrédgorithm from [99] into
DEBLP to produce DEBLP-SR. Stochastic ranking is a constriaandling tech-
nique that seeks to balance the dominance of the objectt/e@mstraint violations
in the search process of meta-heuristic algorithms. We dstreted the operation
of DEBLP-SR on a series of Generalised Nash Equilibrium Rrab which could
be formulated as BLPPs characterised by upper level camstr®evelopments in
the literature of GNEPs also enabled us to even specify afgpeemination crite-
ria for the proposed BLPP and hence provides additionafigegion for the use of
a meta-heuristic for these problems.

Due to space constraints, we could not illustrate BLPPs avties leader’s deci-
sion variables and/or the follower’s variables were retd to be discrete or binary.
However there exists a large body of literature of DE beirgpusr such problems,
albeit single level ones [91, 92]. Thus we conjecture thbrigpes proposed therein
could be integrated into DEBLP to solve such problems as. weltlitionally dis-
crete and mixed integer lower level problems can alreadyplyed using established
techniques available in the deterministic optimisati¢eréture [9, 70, 85].

8.2 Further Research

In this chapter, we have demonstrated that DEBLP is an @féegteta-heuristic for
a variety of BLPPs. Nevertheless there are several topatstiti require additional
research before robust methodologies can be developeditiddheof some of these
problems is still in its infancy but we argue that meta-h&tigiparadigms such as
Differential Evolution can provide a viable alternativéigmn framework for these.

8.2.1 Multiple Optimisation Problems at Lower Level

The BLPP we have formulated assumes the existence of a siptjhisation prob-
lem at the lower level. Both DEBLP and DEBLP-SR are unableandfe the sit-
uation ofmultiple followersi.e. presence of multiple optimisation problems at the
lower level. See e.g. [69, 114] for examples of these. Howexehave neglected
consideration of such problems in this paper but should besthbject of further
research.
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8.2.2 Bi-Level Multiobjective Problems

Recall that in our formulation of the BLPP in Eq. 1 we assuniedftinction map-
pings:U,L : R™ x R"™ — R, In other words, the objectives in both the upper and
lower levels are restricted to be scalar. However there @ @roblems where
the objectives are vectors. Such problems are known asahjdttive (MO) prob-
lems i.e. where the decision maker has multiple, usuallylicting, objectives. In
such problems the Pareto Optimality criteria is used totiflenptimum solutions
[30, 90]. One of the major advantages of using populatioetaseta-heuristic al-
gorithms for MO Problems is that because of their populatiased structure, they
are able to identify multiple Pareto Optimal solutions irireg&e run [29].

Two categories of these problems have been discussed iitdteure. Firstly
there is the case where only the upper level objective isovdsdased or secondly
whereboth the upper and lower level objectives are vector based. Fallgms
occurring in the first category, advances in meta-heusigicsolve MO problems
(e.g. [30]) could be easily integrated into DEBLP to tramsfat into an algorithm
able of handle MO-BLPPs of the type described in e.g. [44, 128]. Problems of
the second category are relatively novel in the literatagtlzave only recently been
investigated [31]. Further research should introduce nethodologies to enable
DEBLP to solve problems in this latter category.

8.2.3 Multiple Leader Follower Games

In Section 4 we provided an example of the COTP which modelglaway reg-
ulatory agency optimising the total travel time on the highveystem by levying
toll charges. With the trend in recent years towards pieditbn together with con-
strained governmental budgets, it is quite possible theitad of a welfare maxi-
mizing authority setting the tolls in future, this task abylotentially be consigned
to private profit maximising entities. The latter obtain cessions to collect tolls
from users on these private toll roads [36, 119] in returngiaviding the capital
layout of investments in new road infrastructure. Whenisgtsiuch tolls, these pri-
vate firms could also be in competition with others doing #i@e on other roads in
the network.

The problem just described is in fact an example of a clasgjafliérium prob-
lems with Equilibrium Constraints (EPEC). In EPECs, theisiea variables of
the private firms are constrained by a variational inequaléscribing equilibrium
in some parametric system [62]. For example in the case opetition between
the private toll road operators just highlighted, the @qtiillm constraint is just
Wardrop’s User Equilibrium condition. The study of EPECs hecently been given
greater emphasis by researchers in many disciplines [5578880, 119, 125].
Though it is still in a period of infancy it has emerged as mamea of research
[22, 35, 109] in applied mathematics.

Formally an EPEC is a mathematical program to find an eqilibpoint that
simultaneously solves a set of MPECs where each MPEC is péeaised by de-
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cision variables of other MPECs [125]. Compared to the MP#€,focus in the
EPEC is shifted away from finding minimum points to findieguilibrium points
[78, 79]. Figure 4 gives a multi-leader generalization & BLPP that constitutes a
Multi-leader-follower game [68] where there are npwp > 1 leaders instead.

In this multi-leader generalization of the Stackelberg gaesearchers have con-
jectured that there could be two possible behaviours ofghddrs at the upper level
[78, 88]. At one end, leaders could cooperate which resutismultiobjective prob-
lem subject to an equilibrium constraint at the lower leve&l(]. At the other end,
the leaders could act non-cooperatively and play a Nash ganoegst themselves
resulting in a Non Cooperative EPEC (NCEPEC). EPECs aremeiy difficult
to solve and the current emphasis has been on the use of notilsmethods and
nondifferentiable optimisation techniques [78, 79]. Wéidwe that meta-heuristic
algorithms offer a powerful alternative solution methaupt for EPECs in both
cases. In the case when leaders are assumed to cooperagyeygoimted out that
because they operate with populations, population baséathegiristics are able to
identify multiple Pareto Optimal solutions in a single siation run. This is key
to solving multiobjective problems. For the NCEPECSs, a DEedokalgorithm ex-
ploiting a concept from [71] was proposed and demonstratea ange of EPECs
occurring in transportation and electricity markets in][62

Most importantly, whatever solution algorithms are prambsn future, when
searching for an equilibrium amongst the players at the ulgwel they must con-
tinue to take the reaction of the followers at the lower lémt account. This serves
to ensure that proposals are entirely consistent with thek&tberg paradigm which
remains applicable in EPECs.

[t s o, [y |

POLICY

Follower(s)

Fig. 4 Pictoral Representation of an EPEC
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