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A Meta-heuristic Framework for Bi-Level
Programming Problems with MultiDisciplinary
Applications

Andrew Koh

Abstract Bi-level programming problems arise in situations when thedecision
maker has to take into account the responses of the users to his decisions. Several
problems arising in engineering and economics can be cast within the bi-level pro-
gramming framework. The bi-level programming model is alsoknown as a Stack-
leberg or leader-follower game in which the leader chooses his variables so as to
optimise his objective function, taking into account the response of the follower(s)
who separately optimise their own objectives, treating theleader’s decisions as ex-
ogenous. In this chapter, we present a unified framework fully consistent with the
Stackleberg paradigm of bi-level programming that allows for the integration of
meta-heuristic algorithms with traditional gradient based optimisation algorithms
for the solution of bi-level programming problems. In particular we employ Differ-
ential Evolution as the main meta-heuristic in our proposal. We subsequently apply
the proposed method (DEBLP) to a range of problems from many fields such as
transportation systems management, parameter estimationand game theory. It is
demonstrated that DEBLP is a robust and powerful search heuristic for this class of
problems characterised by non smoothness and non convexity.

1 Introduction

This paper introduces a meta-heuristic framework for solving the Bi-level program-
ming Problem (BLPP) with a multitude of applications [26, 74]. As a historical
footnote, the term “bi-level programming” was first coined in a technical report by
Candler and Norton in [20] who were concerned with general multilevel program-
ming problems. The BLPP is a special case of a multilevel programming problem
restricted to two levels. Prior to that time, the BLPP was known simply as a math-

Andrew Koh
Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, United Kingdom e-mail:
a.koh@its.leeds.ac.uk

1



2 Andrew Koh

ematical program with an optimisation problem in the constraints [18] but had al-
ready found military applications [19]. In economics and game theory, a BLPP is a
Stackleberg [106] or “leader-follower” game (see Fig. 1) inwhich the leader chooses
his variables so as to optimise his objective but continues to take into account the
response of the follower(s) who when independently optimising their separate ob-
jectives, treat the leader’s decisions as an exogenous input [72].

Fig. 1 Pictoral Representation of a BLPP

BLPPs possess in common the following three characteristics [86, 117]:

• The decision-making units are interactive and exist withina hierarchical struc-
ture.

• Decision making is sequential from higher to lower level. The lower level deci-
sion maker executes its policies after decisions are made atthe upper level.

• Each unit independently optimises its own objective functions but is influenced
by actions taken by other units.

The BLPP has been a subject of intense research and several notable volumes
have been published to date [7, 32, 72, 87]. At the same time applications of BLPP
can be found in fields as diverse as chemical engineering [49], robot motion planning
and control [72], production planning [8] occurring in a multitude of disciplines [7].
In tandem, there has been much work on the development of solution methodologies
(see [26, 32] for a review of these).

This chapter is structured as follows. In Section 2 we formally introduce the
BLPP and provide a brief and by not means exhaustive review ofsolution method-
ologies for the BLPP. In Section 3 we discuss the Differential Evolution for Bi-Level
Programming (DEBLP) meta-heuristic introduced in [61] andapply it to problems
in transportation systems management in Section 4. To emphasise the multidisci-
plinary applications to which DEBLP is applicable, Section5 provides examples of
BLPPs arising from parameter estimation problems. Section6 introduces a method
for handling constraints integrating recent developmentsin evolutionary algorithms
to propose a method to handle constraints in the leader’s problem. Having set up this
framework, we are ready in Section 7 to apply DEBLP to solvingGeneralised Nash
Equilibrium Problems (GNEP) which when formulated as BLPPsare in fact charac-
terised by constraints in the leader’s objective. Section 8summarises and provides
extensive directions for further research on problems related to the topic of BLPPs.
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2 The Bi-Level Programming Problem

2.1 A General BLPP

We can write a generic BLPP as the system of equations in Eq. 1.The unique feature
of Eq. 1 is that the constraint region is implicitly determined by yet another optimi-
sation problem1. This constraint is always active. The upper level problem denoted
as Program U, is given in Eq. 1a,

ProgramU















min
x∈X

U(x,y)

subject to
G(x,y)≤ 0
E(x,y) = 0

(1a)

where for givenx, y is the solution to the lower level program (ProgramL) in 1b:

ProgramL



















min
y∈Y

L(x,y)

subject to
g(x,y))≤ 0
e(x,y)) = 0

(1b)

In the formulation in Eq. 1 we define the following mappings:U,L :Rn1 ×R
n2 →

R
1,G :Rn1 ×R

n2 →R
q1, g :Rn1 ×R

n2 →R
q2, E :Rn1 ×R

n2 →R
r1, e:Rn1 ×R

n2 →
R

r2. In the general case the objectives and constraints at both levels are non-linear.
The setsX and Y representing the search domains for 1a and 1b respectively
are defined as follows:X =

{

(x1,x2, ....,xn1)
⊺ ∈ R

n1
∣

∣xl
i ≤ xi ≤ xu

i , i = 1, ...,n1
}

andY =
{

(y1,y2, ....,yn2)
⊺ ∈ R

n2

∣

∣

∣yl
j ≤ y j ≤ yu

j , j = 1, ...,n2

}

with ⊺ denoting the

transpose. Arising from the “leader-follower” analogy of BLPPs, we use the terms
leader’s variables and upper level variables interchangeably when referring tox.

2.2 Mathematical Programs with Equilibrium Constraints

We also define a class of BLPPs known as the Mathematical Programs with Equi-
librium Constraints (MPECs). MPECs are BLPPs where the lower level problem
consists of a variational inequality (VI) [26].

1 Hence the original name of mathematical programs with optimisation problems in the constraints
chosen by Bracken and McGill in [18].
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ProgramU















min
x∈X

U(x,y)

subject to
G(x,y)≤ 0
E(x,y) = 0

(2a)

where for givenx, y is the solution of the VI in ProgramL 2b:

L(x,y)⊺(y−y∗)≥ 0,∀y ∈ϒ (x) (2b)

Another class of problems closely related to MPECs are Mathematical Programs
with Complementarity Constraints[67] which feature in place of a VI, a Comple-
mentarity Problem instead in ProgramL. However since the VI is a generalization
of the Complementarity Problem [56, 82], we will treat thesetwo categories as syn-
onymous for the purposes of this chapter and neglect the theoretical distinctions. We
return in Section 4 to give an example of MPECs that arise naturally in transporta-
tion systems management.

2.3 Solution Algorithms for the BLPP

When all functions (both objectives and constraints) at bothlevels are linear and
affine, this class of problems is known as the linear-BLPP. However even in this de-
ceptively “simple” case the problem is still nondeterministic polynomial time hard
[11]. Even when both the upper level and the lower level are convex programming
problems, the resulting BLPP itself can be non-convex [12].Non convexity sug-
gests the possibility of multiple local optima. Ben-Ayed and Blair [11] demonstrated
the failure of both the Parametric Complementarity Pivot Algorithm [13] and the
Grid Search Algorithm [5] to locate the optimal solution. Since then, progress has
been made in solving the linear-BLPP and techniques including implicit enumera-
tion [21], penalty based methods [2] and methods based on Karush -Kuhn-Tucker
(KKT) conditions [41] have been developed. (See [117] for a detailed review of the
algorithms available for the linear-BLPP).

Turning to solution algorithms for the general BLPP, several intriguing attempts
have been proposed to solve it. One early proposal was the Iterative Optimisation
Algorithm (IOA) [3, 107]. This method involved solving the ProgramU for fixed y
and using the solution thus obtained to solve the lower levelproblem, ProgramL,
and repeatedly iterating between the two programs until some convergence criteria
is met. However the IOA was shown to be an exact method for solving a Cournot
Nash game [40, 42] rather than the Stackleberg game that the BLPP reflects. The
IOA implicitly assumes that the leader is myopic as he does not take into account the
follower’s reaction to his policy [42]. To be consistent with the Stackleberg model,
the leader must be modelled as endowed with knowledge of the follower’s reaction
function which the leader knows the follower will obey.

The primary difficulty with solving MPECs is that they fail tosatisfy certain tech-
nical conditions (known as constraint qualifications) at any feasible point [23, 102].
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The penalty interior point algorithm (PIPA) was proposed in[72]. Unfortunately
a counterexample in [67] demonstrates that PIPA can converge to a nonstationary
point. Subsequent research has led to the development of many other techniques to
solve the MPEC such as the piecewise sequential quadratic programming in [72],
branch-and-bound [6], nonsmooth approaches [32, 87] and smoothing methods [38].

Wrapping up this section, we summarise briefly the use of methods based on
meta-heuristics. Meta-heuristics including stochastic optimisation techniques are
recognised as useful tools for solving problems such as the BLPPs which do not
necessarily satisfy the classical optimisation assumptions of continuity, convex-
ity and differentiability. Techniques include Simulated Annealing (SA) [1], Tabu
Search (TS) [48], Genetic Algorithms (GA) [47], Ant Colony Optimisation (ACO)
[34], Particle Swam Optimisation (PSO) [57] and Differential Evolution (DE)
[94, 95, 108].

SA was used to optimise a chemical process plant layout design problem formu-
lated as a BLPP in [101] and a Network Design Problem formulated as an MPEC
[43]. ACO techniques for BLPPs are found in [93]. GAs have been used to solve
BLPPs in inter alia [73, 86, 111, 114, 122]. PSO was applied to BLPPs in e.g.
[126]. DE was used for BLPPs in [61] where an example demonstrated the inability
of the TS method implemented in [96] to locate the global optima of a test func-
tion. Despite their reported successes in tackling very difficult problems, it must
be emphasised that heuristics provide no guarantee of convergence to even a local
optimum. Despite this heuristics have been succesfully used to solve a variety of
difficult problems such as the BLPP.

3 Differential Evolution for Bi-Level Programming (DEBLP)

Differential Evolution for Bi-Level Programming (DEBLP) was initially proposed
in [61] to tackle BLPPs arising in transportation systems management. It is devel-
oped from the GA Based Approach proposed in [111, 122] but substitutes the use
of binary coded GA strings with real coded DE [95] as the meta-heuristic instead.

DE is a simple algorithm that utilises perturbation and recombination to optimise
multi-modal functions and has already shown remarkable success when applied to
the optimisation of numerous practical engineering problems [94, 95, 108]. On the
other hand, many years of research have resulted in the development of a plethora
of robust gradient based algorithms for tackling many operations research questions
posed as non-linear programming problems (NLP) [9, 70, 85].If we momentarily
ignore the upper level problem, then for fixedx, Eq. 1b is effectively an NLP2 which
can be tackled by dedicated NLP tools such as sequential quadratic programming
[9, 70, 85]. Such considerations motivated the developmentof the DEBLP meta-
heuristic which sought to synergise DE’s well-documented global search capability
to optimise the upper level problem with the dedicated NLP tools focused on solving

2 Note that for fixedx, the lower level problem in the MPEC in Eq. 2b can also be solved using
deterministic methods. See e.g. [82] for a review of deterministicsolution algorithms for VIs.
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the lower level problem. More importantly, as we shall emphasise later, DEBLP
continues to maintain the crucial “leader-follower” paradigm upon which the BLPP
is founded.

In the rest of this section, we provide an overview of the operation of the DEBLP
algorithm and discuss some of its limitations. However we temporarily neglect con-
sideration of theq1+ r1 upper level constraints in ProgramU . Our discussion of the
procedure used to ensure satisfaction of the upper level inequality and/or equality
constraints is postponed till later (see Section 6).

3.1 Differential Evolution

Conventional deterministic optimisation methods generally operate on a single trial
point, transforming it using search directions computed based on first (and possibly,
second) order conditions until some criteria measuring convergence to a stationary
point is satisfied [9, 70, 85]. On the other hand, population based meta-heuristics
such as DE operate with a population of trial points instead.The idea here is that
of improving each member throughout the operation of the algorithm by way of an
analogy with Darwin’s theory of evolution3.

Let there beπ members in such a population of trial points. Specifically we
denote the population at iterationit as P it . An illustration of such a popula-
tion is given in Eq. 3. Each member ofP it representing a single trial point
xit

k = (xit
k,1, . . . ,x

it
k,n1

),k = {1, . . . ,π}, also known as an individual, is an1 dimen-
sional vector that represents the upper level variables (see Eq. 1a). To avoid nota-
tional clutter, we drop theit superscript as long as it does not lead to confusion.
Without loss of generality, we will assume minimization. The DEBLP algorithm is
outlined in Algorithm 1 which we elaborate upon in the ensuing paragraphs of this
section.

P
it =

















xit
1
...

xit
k
...

xit
π

















=

















xit
1,1 xit

1,2 · · · xit
1,n1

...
...

. . .
...

xit
k,1 xit

k,2 · · · xit
k,n1

...
...

. . .
...

xit
π,1 xit

π,2 · · · xit
π,n1

















(3)

3 Hence some of these methods are sometimes referred to as evolutionary algorithms in the litera-
ture.



A Meta-heuristic Framework for Bi-Level Programming Problems 7

Algorithm 1 Differential Evolution for Bi-Level Programming (DEBLP)
1. Randomly generate parent populationP of π individuals.
2. EvaluateP
set iteration counterit = 1
3. While stopping criterion not met, do:

For each individual inP it , do:
(a) Mutation and Crossover to create a single child from individual.
(b) Evaluate the child using a hierarchical strategy.
(c) Selection: If the child is fitter than the individual, thechild replaces
the parent. Otherwise, the child is discarded.

End For
it = it +1
End While

3.1.1 Generate Parent Population

When the algorithm begins, real parameters in each dimensioni of each memberk
of P, that comprise the parent population, are randomly generated within the lower
and upper bounds of the domain of the BLPP as in Eq. 4.

xk,i = rand(0,1)(xu
i −xl

i )+xl
i ,k∈ {1, ...,π}, i ∈ {1, ...,n1}. (4)

In Eq. 4rand(0,1) is a pseudo random number generated from an uniform dis-
tribution between 0 and 1.

3.1.2 Evaluation

The evaluation process to determine the fitness4 of a trial point in the population has
to be developed within the Stackleberg model [106] since we have to specifically
model the leaders taking into account the response (reaction) of the followers to his
strategyx. One way to accomplish this is via a “two stage” or hierarchical strategy
which is achieved as follows.

In the first stage, for each individualk vector of the leader’s decision variables
xk, we solve ProgramL i.e. Eq. 1b to obtainy by using deterministic methods such
as linear programming or sequential quadratic programming[9, 70, 85]. Withy so
obtained, we are then able to carry out the second stage whichinvolves computing
the value of the upper level objectiveU , corresponding to each individual vector of
the leader’s decision variables input in the first stage.

It is worth highlighting that this procedure isdifferent from the IOA described
earlier in Section 2 as DEBLP obviates any iteration betweenthe two levels. Instead,
entirely consistent with the “leader-follower” paradigm,the leader’s vectorxk being

4 The term “fitness” used in such evolutionary meta-heuristics is borrowed from its analogy with
evolution where Darwin’s concept of survival of the fittest is aconerstone. In minimization prob-
lems, when comparing two individuals, the fitter individual is the one that evaluates to alower
upper level objective.
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manipulated by DE is offered as an exogenous input to the lower level program
to be solved in the first stage. One obvious drawback of doing this is the resulting
increase in computational burden which has been significantly reduced by advances
in computing power.

3.1.3 Mutation and Crossover

The objective of mutation and crossover is to produce a childvectorwk from the
parent. This is accomplished by stochastically adding to the parent vector the fac-
tored difference of two other randomly chosen vectors from the population as shown
in Eq. 5.

wk,i =

{

xs1,i +λ (xs2,i −xs3,i)
xk,i

if rand(0,1)< χ or i = intr(1,n1)
otherwise

(5)

In Eq. 5, s1,s2 ands3 ∈ {1,2, . . . ,π} are randomly chosen population indices
distinct from each other and also distinct from the current population member in-
dexk. rand(0,1) is a pseudo random real number between 0 and 1 andintr(1,n1)
is a pseudo random integer between 1 andn1. The mutation factorλ ∈ (0,2) is a
parameter which controls the magnitude of the perturbationandχ ∈ [0,1] is a prob-
ability that controls the ratio of new components in the offspring. The or condition
in Eq. 5 ensures that the child vectorwk will differ from its parentxk in at least one
dimension.

We stress that the mutation and crossover strategy shown in Eq. 5 is not the only
possible strategy available though this is the one used in this work. Other strategies
are found in [94, 95, 108]. Nevertheless all the strategies of DE reflect a common
theme: the creation of the child vectorwk via the arithmetic recombination of ran-
domly chosen vectors along with addition of difference vector(s) typified in Eq. 5.

3.1.4 Enforce Bound Constraints

Mutation and crossover can however produce child vectors that lie outside the
bounds of the original problem specification. There are several ways to ensure satis-
faction of these constraints. One could set the parameter equal to the limit exceeded
or regenerate it within the bounds. Alternatively, following [94], we reset out of
bound values in each dimensioni half way between its pre-mutation value and the
bound violated as shown in Eq. 6.

wk,i =











xk,i+xl
i

2 if wk,i < xl
i

xk,i+xu
i

2 if wk,i > xu
i

wk,i otherwise

(6)
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3.1.5 Selection

Once the hierarchical evaluation process is carried out on the child vectorwk pro-
duced, we can compare the fitness obtained with that of its parent xk. This means
that comparison is against the samek parent vector5 on the basis of whichever of
the two gives a lower value for ProgramU . Assuming minimization the one that
produces a lower value survives to become a parent in the following generation as
shown in Eq. 7.

xit+1
k =

{

wit
k

xit
k

if U(wit
k ,L(•))≤U(xt

k,L(•))
otherwise

(7)

These steps are repeated until some user specified termination criteria is met, and
this is usually when it reaches the maximum number of iterations, although other
criteria are possible [95].

3.2 Control Parameters of DE

Unless otherwise stated, for all experiments reported throughout this chapter we
used a Mutation Factor,λ , of 0.9 and a Probability of Crossover,χ , of 0.9. The
population size,π, and the maximum number of iterations allowed varied for each
of the BLPPs we investigated and these will be clearly statedin the relevant sections.
Because DEBLP is a stochastic meta-heuristic, we always carry out 30 independent
runs with different random seeds. All numerical experiments were conducted using
MATLAB TM 7.8 running on a 32 bit WindowsTM XP machine with 4 GB of RAM.

3.3 Implicit Assumptions of DEBLP

Through the rest of this paper we will demonstrate in examples from various dis-
ciplines that DEBLP is a powerful and robust solution methodology for handling a
variety of problems formulated as BLPPs. However we are cognizant at the outset
two key limitations of our approach:

1. DEBLP is a heuristic: with its strength arising from it avoiding reliance on the ob-
jective functions being differentiable and/or satisfyingconvexity properties and
hence able to handle a large class of intrinsically non smooth problems. How-
ever it should recognised that for this very reason, it is notgenerally possible to
establish convergence of the algorithm to even a local optimum.

2. DEBLP implicitly assumes that the ProgramL is convex for fixedx and can be
solved to global optimality by deterministic methods and that failure to solve the

5 This is sometimes referred to as “one to one” comparison in [94, 95,108].
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lower level problem to global optimality does not affect thesolution of Program
U .

This section has focused on defining the motivation for, and outlining, the DE-
BLP meta-heuristic which sought to synergise the exploratory power of DE with
robust deterministic algorithms focused on solving the lower level problem. Rec-
ognizing its limitations, in the next section, we apply DEBLP to control problems
arising from Transportation Systems Management formulated as BLPPs where the
lower level program is shown to be convex for a given tuple of the leader’s variables.

4 Applications to Transportation Systems Management

In this section, we study two problems in transportation systems management. In
applications, the leader in ProgramU could be thought of as a regulatory authority
applying control strategies (policy) that influence the travel choices of the followers
who are the highway users on the road network. It will be shownunder certain
assumptions, the followers problem can be established as a VI thus the problems
under consideration are MPECs.

4.1 The Lower Level Program in Transportation

In the transportation systems management literature, Program L has an interpre-
tation in that it is the mathematical formulation representing the follower’s (road
user’s) route choice [15] on a highway network. This is oftenreferred to as the Traf-
fic Assignment Problem (TAP). Traffic assignment aims to determine the number of
vehicles and the travel time on different road sections of a traffic network, given the
travel demand between different pairs of origins and destinations [60].

Definition 1 [115] The journey times on all the routes actually used are equal, and
not greater than those which would be experienced by a singlevehicle on any unused
route.

The TAP is founded on the behavioral premise of Wardrop’s User Equilibrium as
given in Definition 1. In effect this states that user equilibrium is attained when no
user can decrease his travel costs by unilaterally changingroutes. The TAP provides
the link flow vector (v) when user equilibrium is attained.

To facilitate exposition of ProgramL, consider a transportation network repre-
sented as a graph withN nodes andA links/arcs, and let:

P: the set of all paths/routes in the network,
H: the set of all Origin Destination (OD) pairs in the network,
Ph: the set of paths connecting an OD pairh,h∈ H,
Fp: the flow on route/pathp,p∈ P,
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va: the link flow on linkav = [va],a∈ A,
ca(va) : the travel cost of utilising the linka, as a function of link flowva on that

link only, c(v) = [ca(va)],a∈ A
cp: the travel cost of pathp,p∈ P,
δap : a dummy variable that is 1 if the pathp,p∈P uses linka ,a∈A, 0 otherwise

and
Ω : the set of feasible flows and demands.
On the demand side, we assume that there is an amount of demanddh,h ∈ H

(dh ≥ 0) wishing to travel between OD pairh andµh is the minimum travel cost that
OD pairh,h∈ H.

4.1.1 TAP as a Variational Inequality

Lemma 1. Wardrop’s Equilibrium Condition of route choice implies that at equilib-
rium the following conditions are simultaneously satisfied:

Fp∈Ph ≥ 0⇔ cp∈Ph = µh ∀h∈ H,∀p∈ P;
Fp∈Ph = 0⇔ cp∈Ph ≥ µh ∀h∈ H,∀p∈ P;
dh = ∑

p∈Ph

Fp ∀h∈ H,∀p∈ P;

Lemma 1 states that pathp connecting OD pairh will be used by the travellers
if and only if the cost of travelling on this route is the minimum travel cost between
that OD pair. The Variational Inequality (VI) in Eq. 8 restates Wardrop’s Equilib-
rium Condition.

Find v∗ ∈ Ω such thatc(v∗)⊺(v−v∗)≥ 0,∀v ∈ Ω (8)

Proposition 1. The solution of the Variational Inequality defined in Eq. 8 results
in a vector of link flows demands(v∗ ∈ Ω) that satisfies Wardrop’s Equilibrium
Condition of route choice given by Lemma 1.

Proof. For a proof of Proposition 1, see [28, 105].⊓⊔

4.1.2 Convex Optimisation Reformulation

In the particular instance (and in the cases considered in this chapter) when the travel
cost of using a link is dependent only on its own flow6, there exists an equivalent
convex optimisation program for the VI (Eq. 8) as shown in Eq.9.

min
v

L = ∑
∀a

va
∫

0

ca(z)dz (9a)

6 This is known as the separability assumption.
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Subject to:

∑
p∈Ph

Fp = dh ,h∈ H (9b)

va = ∑
p∈P

Fpδap ,a∈ A (9c)

Fp ≥ 0, p∈ P. (9d)

The objective of the program in Eq. 9 is a mathematical construct, with no be-
havioral interpretation, employed to solve for the equilibrium link flows that satisfies
Wardrop’s Equilibrium Condition [103]. In this program, the first constraint states
that the flow on each route used by each OD pair is equal to the total demand for
that OD pair. The second constraint is a definitional constraint which stipulates that
the flow on a link comprises flow on all routes that use that link. The last constraint
restricts the equilibrium flows and demands to be non negative. These linear con-
straints defineΩ . SinceΩ is closed and convex, the equilibrium link flowsv∗ ∈ Ω
are unique [15]. In practice, it is usually the case that traffic assignment algorithms
(see examples in texts such as [89, 103]) are used to solve ProgramL.

4.2 Continuous Optimal Toll Pricing Problem (COTP)

The continuous optimal toll pricing problem involves selecting an optimal toll level
for each predefined tolled link in the network [11]. With a view to controlling con-
gestion, there has been renewed interests by transportation authorities globally to
study this “road pricing ” problem (e.g. Singapore, London,Stockholm).

4.2.1 Model Formulation

In addition to the notation defined at the start of this section, we introduce the fol-
lowing notation to describe the COTP. Let:

ta(va) : the travel time on linka, as a function of link flowva on that link only,
T: the set of links that are tolledT ⊆ A
τ: the vector of tolls,τ = [τa], a∈ T
τmax

a ,τmin
a : the upper and lower bounds of toll charge on linka, a∈ T

Total travel cost, conventionally measured as the sum product of the travel times
and traffic flows on all links in the network, may be interpreted as the social cost of
the transport sector and acts as a proxy for the resource costto the economy of the
highway system. The objective of the upper level decision maker in the COTP is to
minimise this by encouraging more efficient routing of traffic by levying tolls on the
road users in the network. The upper level program is the system in Eq. 10.
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min
τ

U = ∑
a∈A

va ta(va) (10a)

Subject to:
τmin

a ≤ τa ≤ τmax
a , a∈ T

τa = 0, a /∈ T
(10b)

Note however thatv can only be obtained by solving ProgramL in Eq. 9. Thus
in terms of Figure 1, the policy variablesx is the toll vectorτ and the follower’s
response is the traffic routing that manifests in the vector of link flows on the road
networkv that in turns affect the leader’s objective.

Recall that in defining the lower level program in Eq. 9, the road user was as-
sumed to consider the travel cost of utilising an arca, a∈ A. Eq. 11 maps the travel
time ta(va) on an arca, into the equivalent travel costsca(va).

ca(va) =

{

ta(va)+ τa

ta(va)
if a∈ T

otherwise
(11)

4.2.2 Previous Work on the COTP

Various solution algorithms have been proposed for the COTP. Yang and Lam pro-
posed a linearisation based method that uses derivative information to form approx-
imations to the upper level objective [118] known as a sensitivity based analysis
algorithm (SAB). However it has been pointed out [122] the global optimality of
the SAB algorithm is not assured and that obtaining a local optimum is indeed pos-
sible. Another derivative-based method was derived from constraint accumulation
[66]. A review of algorithms for the COTP is found in [111].

4.2.3 Example

We illustrate the use of DEBLP to solve the COTP with an example from [118].
Fig. 2 shows the network which has 6 nodes and 7 links. Link numbers are written
above the links and node numbers are indicated accordingly.There are two OD pairs
between nodes 1 and 3 and between 2 and 4 of 30 trips each. The rest of the nodes
represent junction/intersections of the road network and travel is in the direction
indicated by the arrows. The link travel timesta(va) take the explicit function forms
as given in Eq. 12.

ta(va) = t0
a(1+0.15(

va

Capa
)4) (12)

In Eq. 12,t0
a is the free flow travel time of the linka andCapa is the capacity of

link a. The parameter details for the network and the upper bound ontolls τmax
a are

found in [118] and given in Table 1. Note thatτmin
a = 0,∀a∈ T.
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For this example, we use a population size,π, of 20 and allowed a maximum
of 50 iterations in each of 30 runs. Table 2 compares the results of DEBLP with
that of two deterministic algorithms (direct from [118] andour implementation of
the algorithm of [66] together with a GA based method from [122]. UPO refers to
the value of (Upper level) Objective in Eq. 10. It can be seen from Table 2 that the
four different algorithms provided different tolls underlying the multimodal nature
of this problem. However the upper level objective functionvalues are the same in
all cases. This bears testimony to the multimodal nature of the COTP where many
different toll vector tuples could potentially result in attaining the same upper level
objective function value.

Table 1 Network Parameters for COTP Example

Link a t0a Capa τmax
a

1 8 20 5
2 9 20 5
3 2 20 2
4 6 40 2
5 3 20 2
6 3 25 2
7 4 25 2

Table 2 Comparison of existing against DEBLP
results for COTP Example

Method Deterministic Stochastic
Tolls [118] Method of [66] [122] DEBLP

Link 1 3.82 2.667 4.324 3.824
Link 2 4.265 3.548 4.976 3.92
Link 3 0.472 0.038 0.035 0.564
Link 4 0.476 0.154 1.759 0.462
Link 5 0.294 0.116 0.016 0.145
Link 6 0.472 0.038 0.127 0.396
Link 7 0.294 0.116 0.013 0.111
UPO 628.6 628.6 628.6 628.6

Fig. 2 Network for COTP Example [118] Fig. 3 Network for CNDP Example 1 [27]

4.3 Continuous Network Design Problem

The continuous network design problem (CNDP) aims to determine the optimal
capacity enhancements of existing facilities of a traffic network [43]. Care has to be
taken when solving the CNDP because additional capacity cancounter productively
increase the total network travel time and this is a phenomenon is known as Braess’s
paradox [17]. Braess’s paradox has been known to occur in transportation [17] and
telecommunication networks [63].
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4.3.1 Model Formulation

To proceed with this example, we introduce additional notation as follows (others
as previously defined):

κ : the set of links that have their individual capacities enhanced,κ ⊆ A.
β : the vector of capacity enhancements,β = [βa], a∈ κ
β max

a ,β min
a : the upper and lower bounds of capacity enhancements,a∈ κ .

da: the monetary cost of capacity increments per unit of enhancement,a∈ κ .
Cap0

a: existing capacity of linka, a∈ A.
θ : conversion factor from monetary investment costs to travel cost units.
In the CNDP, the regulator aims to minimise the sum of the total travel times and

investment costs with constraints on the amount of capacityadditions while Program
L determines the user’s route choice, for a givenβ , once again based on Wardrop’s
principle of route choice as mentioned previously. Hence the CNDP seeks a|κ |
dimension vector of capacity enhancements optimal to the following BLPP in Eq.
13:

min
τ

U = ∑
a∈A

va ta(va)+ ∑
∀a∈K

θda βa (13a)

subject to:
β min

a ≤ βa ≤ β max
a a∈ κ ;

βa = 0 a /∈ κ (13b)

wherev is the solution of a lower level TAP (ProgramL) Eq. 9, parameterised in
the vector of capacity enhancements for the fixed demand case. We map the travel
times to the travel costs by means of Eq. 14.

ca(va) =

{

t0
a(1+0.15( va

Cap0
a+βa

)4)

t0
a(1+0.15( va

Cap0
a
)4)

if a∈ κ
if a /∈ κ (14)

4.3.2 Previous Work on CNDP

The CNDP has been investigated by many researchers and various solution algo-
rithms have so far been proposed. Meng et al transformed the CNDP into a single
level continuously differentiable problem using a marginal function and solved the
resulting formulation with the Augmented Lagragian method[75]. Chiou investi-
gated several variants of the descent based Karush-Khun-Tucker (KKT) approaches
[24]. Stochastic meta-heuristics have also been used; GAs were applied in [27] and
the use of SA has been reported in [43].
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4.3.3 Example 1: Hypothetical Network

The network for the first example is taken from [27] and reproduced in Fig. 3. This
network has 6 nodes and 2 OD pairs; the first between nodes 1 and6 of 10 trips
and the second, between nodes 6 and 1 of 20 trips. Please referto [27] for the link
parameter details. Note thatβ min

a = 0 andβ max
a = 20,∀a∈ κ ,κ ⊆ A as in [27]. We

assumed a population size,π, of 20 and allowed a maximum of 150 iterations. Table
3 summarises the results that have been reported previouslyand compares it with
the results reported in our paper. UPO refers to the value of (upper level) objective
in Eq. 13. NFE is the number of function evaluations. Note that the number of lower
level programs solved equal to population size multiplied by the maximum number
of iterations allowed. SD is the standard deviation over 30 runs. Our results are
based on the mean of these 30 runs. Though the SD of the GA method is much
lower, [27] also reported using local search method to aid the search process which
accounts for the higher NFE as well.

4.3.4 Example 2: Sioux Falls Network

The second example is the CNDP for the Sioux Falls (South Dakota,USA) network
with 24 nodes, 76 links and 552 OD pairs. The network parameters and OD details
are found in [75]. Only 10 links out of the 76 are subject to improvements.

While this network is clearly larger and arguably more realistic, the problem
dimension (i.e. leader’s variables simultaneously optimised) is smaller than in Ex-
ample 1, since 10 links are subject to improvement rather than the 16 links in the
former. This offers an explanation as to why the number of function evaluations
(NFE) reported in all studies compared is less than for the first example. The re-
sults are compared in Table 4. Our results show the mean of 30 runs with different
random seeds.

It can be deduced from Table 4 that DEBLP is able to locate the global optimum;
again with a lesser number of iterations than the SA method in[43]. More inter-
estingly, DEBLP required less iterations than the deterministic method of [75]. The
standard deviation is also very low which suggests that thisheuristic is reasonably
robust as well.

Table 3 Comparison of existing against DEBLP
results for CNDP Example 1

Method: Deterministic Stochastic
Source [24] [75] [43] [27] DEBLP
UPO 534 532.71 528.49 519.03 522.71
NFE 29 4,000 24,300 10,000 3,000
SD –Not Reported– 0.403 1.34

Table 4 Comparison of existing against DEBLP
results for CNDP Example 2

Method: Deterministic Stochastic
Source [24] [75] [43] DEBLP
UPO 82.57 81.75 80.87 80.74
NFE 10 2,000 3,900 1,600
SD —-Not Reported—- 0.002
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5 Applications to Parameter Estimation Problems

In this section we derive the Error-In-Variables model and show that it can be for-
mulated as a BLPP and apply it to 2 examples from [49]. Parameter estimation is
an important step in the verification and utilization of mathematical models in many
fields of science and engineering [37, 49, 59]. In the classical least-squares approach
to parameter estimation, it is implicitly assumed that the set of independent variables
is not subject to measurement errors [46]. On the other hand,the error-in-variables
(EIV) approach assumes that there are measurement errors inall variables [16, 98].

5.1 Formulation of EIV Model

We consider models of the implicit form as in Eq. 15.

f (x,y) = 0 (15)

In Eq. 15,x is the vector ofn1 unknown parameters,y is the vector ofn2 measure-
ment variables andf is the system of algebraic functions. The measured variables
are the sum of the true valuesζm which are unknown and the additive error termεm

at the data pointm as shown in Eq. 16.

ym = ζm+ εm (16)

We assume that the error is normally distributed with zero mean and possessing
a known covariance matrix. The vector of unknown parametersx can be estimated
from the solution of the constrained optimisation problem in Eq. 17.

min
x̂,ŷ

M
∑

m=1
(ŷm−ym)

⊺Λ−1(ŷm−ym)

subject to
f (ŷm, x̂) = 0, m= 1, . . . ,M

(17)

As mentioned, we do not know the true values ofζm. However they are approxi-
mated from the optimisation as the fitted variablesŷm. Assuming that the covariance
matrixΛ is the same in each experiment and diagonal, we write Eq. 17 asEq. 18.

min
x̂,ŷ

M
∑

m=1

n2

∑
i=1

(ŷm,i−ym,i)
2

σ2
i

subject to
f (ŷm, x̂) = 0, m= 1, . . . ,M

(18)

In Eq. 18,σi is the standard deviation of variablei in all the experiments. Fol-
lowing [49], we can write the EIV model as a BLPP of the form of Eq. 19.
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ProgramU

{

min
x̂

M
∑

m=1

n2

∑
i=1

(ŷm,i−ym,i)
2

σ2
i

(19a)

where for givenx, y is the solution to the lower level program (ProgramL):

ProgramL















min
x̂,ŷ

M
∑

m=1

n2

∑
i=1

(ŷm,i−ym,i)

σ2
i

subject to
f(ŷm,i , x̂) = 0, m= 1, . . . ,M, i = 1, . . . ,n2

(19b)

For a survey of the alternative optimisation based formulations of the EIV model,
the reader is referred to [59].

5.2 Examples

We present 2 examples of the EIV model that were solved using deterministic meth-
ods in the cited references. Note that we consider only a single common variance
term for all variables and we can eliminate it from further consideration. In all our
experiments of DEBLP we assumed a population size,π, of 20 and allowed a max-
imum of 100 iterations.

5.2.1 Example 1: “Kowalik Problem”

Consider the model due to Moore et al in [76] known as the “Kowalik Problem”
where we estimate the equation of the form in Eq. 20.

ŷm,1 =
x1y2

m,2
+x1x2ym,2

y2
m,2

+ym,2x3+x4
(20)

We have 11 data points for this model (see [49] for the data set). It is assumed
thatym,1 contains errors, andym,2 is error-free. The resulting BLPP is shown in Eq.
21. Notice that the lower level equality constraint in Eq. 21is the model formulation
hypothesised in Eq. 20.

min
x̂

11
∑

m=1
(ŷm,1−ym,1)

2

subject to

min
y

11
∑

m=1
(ŷm,1−ym,1)

2

ŷm,1(y2
m,2

+ym,2x3+x4)−x1y2
m,2

−x1x2ym,2 = 0

(21)

30 runs of DEBLP were performed for this problem with a maximum of 100 iter-
ations allowed per run and a population size,π of 20. Following [49], the parameter
bounds are assumed to be between -0.2892 and 0.2893 for each of the 4 upper level
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variablesx1,x2,x3 andx4. Table 5 shows the results which clearly agrees with that
reported in [49]. In this table UPO refers to the objective ofthe upper level in Eq.
21. Note that the standard deviation of the UPO over the 30 independent DEBLP
runs conducted was less than 1×10−5.

5.2.2 Example 2: “Linear Fit”

The model we intend to estimate is a linear equation of the form in Eq. 22. The 10
data points are from [49]. Compared to Example 1, here we assume that measure-
ment errors are present inboth ym,1 andym,2, m= {1, . . . ,10}.

ŷm,2 = x1+x2ŷm,1 (22)

Assuming a common variance for each data tuple{ym,1,ym,2}, we can estimate
the vector of unknownx parameters via the BLPP in Eq. 23.

min
x̂

10
∑

m=1

2
∑

i=1
(ŷm,i −ym,i)

2

subject to

min
y

10
∑

m=1

2
∑

i=1
(ŷm,i −ym,i)

2

ŷm,2−x1−x2ŷm,1 = 0

(23)

The results of 30 runs of DEBLP (with a maximum of 100 iterations allowed per
run and a population sizeπ of 20) for this problem are shown in Table 6. Again the
standard deviation over the 30 runs was less than 1×10−5. As with Example 1, the
results obtained by DEBLP agrees with those reported in [49].

Table 5 Parameter Estimation Example 1
(“Kowalik Problem”)

Variable DEBLP [49]
x1 0.1928 0.1928
x2 0.1909 0.1909
x3 0.1231 0.1231
x4 0.1358 0.1358

UPO 0.000307 0.000307

Table 6 Parameter Estimation Example 2 (“Lin-
ear Fit”)

Variable DEBLP [49]
x1 5.7840 5.784
x2 -0.544556 -0.54556

UPO 0.61857 0.61857

6 Handling Upper Level Constraints

The keen reader would notice that up to this point our discussions and our numeri-
cal examples have neglected mention of constraints in the upper level problems (cf.
Eqn. 1a). We have in fact thus far only assumed the presence ofbound constraints
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and described a technique to ensure that the population remains within the search
domain which was sufficient for the problem examples investigated. Before pro-
ceeding to our next application area for BLPPs, we outline inthis section, necessary
modifications to DEBLP to enable it to handle them effectively.

6.1 Overview of Constraint Handling Techniques with
Meta-Heuristics

In their most basic form, meta-heuristics do not have the capability to handle gen-
eral constraints aside from bound constraints. However since real world problems
generally have linear and nonlinear constraints, a large amount of research effort
has been expended on the topic of constraint handling with such algorithms. In the
past few years many techniques have been proposed. Among others these include
penalty methods [121], adaptive techniques [104], techniques based on multiobjec-
tive optimisation [25, 65] etc.

The penalty method transforms the constrained problem intoan unconstrained
one. However one of the drawbacks of this method when appliedwith meta-
heuristics is that the solution quality is sensitive to the penalty parameter used. The
penalty parameter itself is problem dependent [99]. This method also encounters
difficulties when solutions lie at the boundary of the feasible and infeasible space.

Recall the selection criteria of the DEBLP in Algorithm 1. Inthe presence of
constraints, when we are deciding whether to accept or reject the child,wk, it is no
longer a case of comparing the values of objectiveU attained. The key consideration
is how one would say, decide between a infeasible individualwith low U and a
feasible individual but higherU .

Intuitively one could conclude that a feasible individual is better than the infea-
sible individual because the aim is to ultimately seek solutions that minimise the
objective function and satisfy all the constraints. This viewpoint however ignores
the fact that the meta-heuristics are generally stochasticby design. There exists the
possibility that the infeasible individuals could in fact be better than the feasible one
at some iterations during the algorithm [124]. The questionthen is how to strike the
right balance between objective and constraints.

6.2 Stochastic Ranking

Runarsson and Yao [99, 100] proposed an alternative constraint handling method
known as stochastic ranking (SR)7 to aid in answering this question. To use SR, the
first step is to obtain a measure of the constraint violation,v(xk), of vectorxk using

7 The source code of SR is available athttp://notendur.hi.is/tpr/index.php?
page=software/sres/sres, accessed Oct 2011.
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Eqn. 24. The first term on the RHS of Eq. 24 sums the maximum of either 0 or the
value of the inequality constraintG j(xk), j ∈ {1, . . . ,q1}

8. The second term sums
the absolute value of each of the equality constraintsE j(xk), j ∈ {1, . . . , r1}.

v(xk) =
q1

∑
j=1

max{0,G j(xk)}+
r1

∑
j=1

∣

∣E j(xk)
∣

∣ (24)

The key operation of SR involves counting how many comparisons of adjacent
pairs of solutions are dominated by the objective function and constraint violations.
This is accomplished in SR through a stochastic bubble sort like procedure that is
used to rank9 the population. This comparison is illustrated in Algorithm 2 where
rand(0,1) is a pseudo random real number between 0 and 1. The method requires a
probability factorη which should be less than 0.5 to create a bias against infeasible
solutions [99].

Suppose we have two individualsxk1 and xk2,k1 6= k2. If both do not violate
constraintsor if a pseudo random real number is less than or equal toη , we swap
their rank order based on the objective function obtained, with the lower one be-
ing assigned a higher rank. Otherwise we swap their ranks based on the constraint
violations, again with the lower constraint violation being assigned a higher rank.
Working our way through the population to be ranked, we continue comparing ad-
jacent members according to Algorithm 2 and swapping ranks.When no change in
rank order occurs, SR terminates.

Algorithm 2 Stochastic Ranking
if v(xk1) = 0 andv(xk2) = 0 or rand(0,1)≤ η then

rank based on objective function value only
else

rank based on constraint violation only
end if

6.3 Revised DEBLP with Stochastic Ranking

DEBLP-SR, as presented in Algorithm 3, is the result of incorporating SR in DE-
BLP. Italics highlight the changes between DEBLP in Algorithm 1 and DEBLP-SR
in Algorithm 3. These are summarised as follows:

1. Evaluation of both the upper level objective and constraint violation for each
member of the parent and child population.

8 In Eq. 1a, all the upper level inequality constraints are in the form “≤ 0”.
9 With π population members, ranking results in the best ranked 1 (highest rank) and the worst
rankedπ (lowest rank).
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2. Instead of the one to one selection criteria discussed in Section 3, we propose
to pool the parent and child population (along with the corresponding objective
values and constraint violations) together as an input intoSR.

3. Combining parents and children will lead to a population size of 2π. Hence the
selection process will only retain the topπ ranked individuals output by SR to
constitute the population at the next iteration. The remainder are discarded.

Algorithm 3 DEBLP with Stochastic Ranking (DEBLP-SR)
1. Randomly generate parent populationP of π individuals.
2. EvaluateP and obtain constraint violations using Eq. 24
set iteration counterit = 1
3. While stopping criterion not met, do:

For each individual inP it, do:
a) Apply Mutation and Crossover to create a single child from individual.
b) Evaluate childand obtain constraint violations using Eq. 24

End For
4. Combine parents and children violations and objectives.
5. Apply stochastic ranking
6. Selection:retain the topπ ranked individuals to form new populationP it+1

it = it +1
End While

In the next section, we apply DEBLP-SR to a examples of BLPPs that are in
fact characterised by the presence of upper level constraints. It will be shown that
DEBLP-SR continues to be a robust meta-heuristic in such applications.

7 Applications to Generalised Nash Equilibrium Problems

Game theory [116] is a branch of social science that providesmethodologies to study
behaviour when rational agents seek to maximise personal gains in the presence of
others symmetrically doing the same simultaneously. The solution concept of such
games was devised by Nash in [83, 84]. The game attains a Nash Equilibrium (NE)
if no one player can unilaterally improve her payoff given the strategic decisions of
all other players. While establishing that an outcome is not aNE (by establishing
that a player can profitably deviate) is usually not difficult, locating the NE itself is
more challenging. In this section we show how the process of determining NE in
some games can be formulated as a BLPP and illustrate the performance of DEBLP
on some example problems from the literature.
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7.1 The Generalised Nash Equilibrium Problem

We are concerned with a specific Nash Game known as the Generalised Nash Equi-
librium Problem (GNEP). In the GNEP, the players’ payoffs and their strategies are
continuous (and subsets of the real line) but most critically the GNEP embodies
the distinctive feature that players face constraints depending on the strategies their
opponents choose. This distinctive feature is in contrast to a standard Nash Equi-
librium Problem (NEP) where the utility/payoff/reward theplayers obtain depend
solely on the decisions they make and their actions are not restricted as a result of
the strategies chosen by others. The ensuing constrained action space in GNEPs
makes them more difficult to resolve than standard NEPs discussed in monographs
such as [116]. As will be demonstrated in this section, the technique here can nev-
ertheless be applied to standard NEPs.

The GNEP under consideration is a single shot10 game with a setΓ of players
indexed byi ∈ {1,2, ...,ρ} and each player can play a strategyxi ∈ Xi which all
players are assumed to announce simultaneously.X is the collective action space

for all players. In a standard NEP,X =
ρ
∏
i=1

Xi , i.e.X is the Cartesian product.

In contrast, in a GNEP, the feasible strategies for playeri, i ∈ Γ depend on the
strategies of all other players [4, 39, 53, 112]. We denote the feasible strategy space
of each player by the point to set mapping:C i : X−i → Xi , i ∈Γ that emphasises the
ability of other players to influence the strategies available to playeri [39, 51, 112].
The distinction between a conventional Nash game and a GNEP can be viewed as
analogous to the distinction between unconstrained and constrained optimisation.

To give stress to the variables chosen by playeri, we sometimes writex=(xi ,x−i)
wherex−i is the combined strategies of all players in the gameexcludingthat of
playeri i.e. x−i = (x1, ...,x(i−1)

,x
(i+1)

, ...,xρ). Note that the notation(xi ,x−i) does not
mean that the components ofx are somehow reordered such thatxv becomes the
first block. In addition, letφi(x) be the payoff/reward to playeri, i ∈Γ if x is played.

Definition 2 [112] A combined strategy profilex∗ = (x∗
1
,x∗

2
, ...,x∗ρ) ∈ X is a Gener-

alised Nash Equilibrium for the game if:

φi(x
∗
i ,x

∗
−i)≥ φi(xi ,x

∗
−i),

∀xi ∈ C (x∗−i) , i ∈ Γ
(25)

At a Nash Equilibrium no player can benefit (increase individual payoffs) by uni-
laterally deviating from her current chosen strategy. Players are also assumed not to
cooperate and in this situation each is doing the best she cangiven what her com-
petitors are doing [45, 62, 116]. For a GNEP, the strategy profile x∗ is a Generalised
Nash Equilibrium (GNE) if it isbothfeasible with respect to the mappingC i and if
it is a maximizer of each player’s utility over the constrained feasible set [51].

10 It is one-off and not played repeatedly in a dynamic sense.
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7.2 Nikaido Isoda Function

The Nikaido Isoda (NI) function in Eq. 26 is an important construct much used in
the study of Nash Equilibrium problems [39, 52, 53]. Its interpretation is that each
summand shows the increase in payoff a player will receive byunilaterally deviating
and playing a strategyyi ∈ C (x−i) while all other players play according tox.

Ψ(x,y) =
ρ

∑
1
[φi(yi ,x−i)−φi(xi ,x−i)] (26)

The NI function is always non-negative for any combination of x andy. Further-
more, this function is everywhere non-positive when eitherx or y is a NE by virtue
of Definition 2 since at a NE no one player should be able to increase their payoff
by unilaterally deviating. This result is summarised in Definition 3.

Definition 3 [53] A vectorx∗ ∈ X is called a Generalised Nash Equilibrium (GNE)
if Ψ(x,y) = 0.

7.3 Solution of the GNEP

Proposition 2 establishes the key result that the GNEP can beformulated as a BLPP.

Proposition 2. The Generalised Nash Equilibrium is the solution to the BLPPin
Eq. 27.

min
(x,y)

f (x,y) = (y−x)T(y−x) (27a)

subject toxi ∈ C
i(x−i) ,∀i ∈ Γ . (27b)

wherey solves

max
(x,y)

(φ1(y
1,x−1)+ . . .+φρ(y

ρ ,x−ρ)) =

max
(x,y)

n

∑
i=1

[φi(yi ,x−i)−φi(xi ,x−i)]
(28a)

subject toyi ∈ C
i(x−i) ,∀i ∈ Γ . (28b)

Proof. For a proof of Proposition 2, see [112].⊓⊔

The upper level problem (Eq. 27a) is a norm minimization problem subject to
strategic variable constraints (Eq. 27b). The objective function of the lower level
problem (Eq. 28) is exactly the Nikado Isoda function (Eq. 26).
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Proposition 3. The optimal value of the upper level objective in Eq. 27a, f(x,y), is
0 at the Generalised Nash Equilibrium.

Proof. For a proof of Proposition 3, see [14, 112].⊓⊔

Proposition 3 serves the critical role of being the termination criteria of the DE-
BLP. Although DEBLP and DEBLP-SR are heuristic in nature, Proposition 3 en-
ables us to detect that we have found the solution to the GNEP.

7.4 Examples

In this section, we present four numerical examples of GNEPssourced from the
literature. The first case study is in fact a standard NEP and it serves to demonstrate
that the BLPP formulation proposed here can also be applied in this situation. We
then impose a constraint which transforms the standard NEP into a GNEP which
serves as the second example. The third example has origins in pollution abatement
modeling while the last example is an internet switching model from [58].

7.4.1 Example 1

Example 1 is a non-linear Cournot-Nash Game with 5 players from [81]. As men-
tioned, this is a standard NEP i.e. where the feasible strategies of each player is un-
constrained. The profit function for playeri,i ∈ {1, ...,5}, comprising the difference

between revenues and production costs, is given by:φi(x)= (5000
1

1.1 (
5
∑

i=1
xi)

−( 1
1.1 ))xi−

ωixi +( αi
αi+1)γi

−1
α j xi

αi+1
αi . The player dependent parameters (ωi , γi andαi) are found

in [81, 87].
The feasible space for this problem is the positive axis since production cannot be

negative. The solution of the NEP isx∗= [36.9318,41.8175,43.7060,42.6588,39.1786]⊺

[50, 81].

7.4.2 Example 2

Using the same parameters as in Example 1, and introducing a production constraint
on total output of all players11 as in [87], Example 1 is transformed into a GNEP.

The feasible space for the resulting GNEP is defined by [87]:

X = {x ∈ R
5|xi ≥ 0 ∀i ∈ {1, ...,5},

5

∑
i=1

xi ≤ 100}

11 One can think of this as simulating a cartel limiting productionto keep prices high.
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x∗ is [14.050,17.798,20.907,23.111,24.133]⊺ [54].

7.4.3 Example 3

This problem describes an Environmental Pollution ControlProblem known as the
“River Basin Pollution Game” studied by Krawczyk and co-workers [52, 64]. There
are 3 players with a single decision variable each. Each player i, i ∈{1,2,3} attempts
to maximise his profits, while others are doing the same simultaneously. Playeri’s

payoff function is given asφi(x) = (3−0.01(
3
∑

i=1
xi))xi − (c1i +c2i)xi . The first term

in the payoff function is the revenues from the sale of the product. The second
term is the production costs. The cost valuesc1i andc2i are given in [52, 64]. The
feasible space reflecting mandatory limits on allowed effluent discharges into a river
is defined according to:

3.25x1+1.25x2+4.125x3 ≤ 100
2.2915x1+1.5625x2+2.8125x3 ≤ 100

xi ≥ 0, i ∈ {1,2,3}

The last constraint reflects the fact that production cannotbe negative. The GNE is
x∗1 = 21.14,x∗2 = 16.03,x∗3 = 2.927 [52, 64, 54].

7.4.4 Example 4

This problem describes an internet switching model with 10 players originally pro-
posed in [58] and also studied in [54]. The cost function for player i, i ∈ {1, . . . ,10}

is given byφi(x) =−( xi
(x1+···+x10)

)(1− (x1+...+x10)
1 ). The feasible space isX = {x ∈

R
10|xi ≥ 0.01, i ∈ {1, . . . ,10},

10
∑

i=1
xi ≤ 1}. The NNE isx∗i = 0.09, i = {1, ...,10} [53].

7.5 Discussion

As highlighted earlier, Proposition 3 states that when the upper level objective
(UPO) (cf. Eqn. 27a) ,f (x,y), in ProgramU reaches 0, we have successfully solved
the GNEP. Hence this allows us to provide a termination criteria of the DEBLP-SR
algorithm. In all other examples, we have always stopped theDEBLP after a user
specified number of maximum iterations. In practice, we terminate each run when
the UPO attains the value of 1×10−8 or less, which we judge to be sufficiently close
to 0.

In all these examples, we used DEBLP-SR i.e. Algorithm 3 witha population
size,π = 50 and allowed a maximum of 250 iterations. Following [99, 100], the
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probability factor,η used in SR was set to 0.45. Table 7 reports the mean,median
and standard deviations (SD) of the number of function evaluations (NFE) over
the 30 independent runs of DEBLP-SR to meet the convergence criteria (i.e. UPO
attains the value of at least 1×10−8).

Table 7 Summary of Performance of DEBLP-SR on GNEP Examples

Example 1 2 3 4
mean NFE 3993 7378 2825 10098

median NFE 4075 7325 2850 10025
SD 410 2758 273 1659

Constraint Violation NA 0 0 0

While it is clear that all the examples are easily solved usingDEBLP-SR, three
observations are pertinent from Table 7. Firstly, comparing Problem 3 and 4 for
example, we can see that as the dimensions increase, the NFE required to meet
the convergence criteria also increase significantly. Thisis a manifestation of the
so called “curse of dimensionality” [10] which plagues optimisation algorithms in
general and meta-heuristics in particular. Secondly the mean and median NFE re-
quired to solve the GNEP (Example 2) is almost twice that required to solve the NEP
(Example 1). This should not come as a surprise because constrained problems are
known [121] to be harder to solve than unconstrained ones. Finally, the constraint
violation of all examples at termination is 0 as shown in the last row of Table 7.
Thus we can conclude that the SR method for handling constraints is effective for
the examples given.

8 Summary and Conclusions

8.1 Summary

In this chapter, we have outlined a meta-heuristic algorithm DEBLP to solve bi-
level programming problems. These hierarchical optimisation problems are typi-
cally characterised by non convexity and non smoothness. DEBLP is designed to
synergise the well-documented global search capability ofDifferential Evolution
with the application of robust deterministic optimisationtechniques to the lower
level problem. Most importantly, DEBLP is fully consistentwith the Stackleberg
framework upon which the BLPP is founded where the leader takes into account the
follower’s decision variables when optimizing his objective and where the follower
treats the leader’s variables as exogenous when solving hisproblem.

DEBLP was subsequently demonstrated on a number of BLPPs arising from sev-
eral disciplines. These include control problems in Transportation Systems where
we studied the Continuous Optimal Toll Pricing and the Continuous Network De-
sign Problem. In these situations we postulated that the leader/upper level player
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was the regulatory agency and the followers were users of thehighway network.
The BLPPs from this field were shown to be MPECs as the lower level problem
arises naturally as a Variational Inequality. We also examined examples from Pa-
rameter Estimation Problems, a key step in the development of models in science
and engineering applications, which could also be formulated as BLPPs. In order
to enable DEBLP to solve BLPPs where the upper level problem was also subject
to general constraints, we integrated the stochastic ranking algorithm from [99] into
DEBLP to produce DEBLP-SR. Stochastic ranking is a constraint handling tech-
nique that seeks to balance the dominance of the objective and constraint violations
in the search process of meta-heuristic algorithms. We demonstrated the operation
of DEBLP-SR on a series of Generalised Nash Equilibrium Problems which could
be formulated as BLPPs characterised by upper level constraints. Developments in
the literature of GNEPs also enabled us to even specify a specific termination crite-
ria for the proposed BLPP and hence provides additional justification for the use of
a meta-heuristic for these problems.

Due to space constraints, we could not illustrate BLPPs where the leader’s deci-
sion variables and/or the follower’s variables were restricted to be discrete or binary.
However there exists a large body of literature of DE being used for such problems,
albeit single level ones [91, 92]. Thus we conjecture the techniques proposed therein
could be integrated into DEBLP to solve such problems as well. Additionally dis-
crete and mixed integer lower level problems can already be solved using established
techniques available in the deterministic optimisation literature [9, 70, 85].

8.2 Further Research

In this chapter, we have demonstrated that DEBLP is an effective meta-heuristic for
a variety of BLPPs. Nevertheless there are several topics that still require additional
research before robust methodologies can be developed. Thestudy of some of these
problems is still in its infancy but we argue that meta-heuristic paradigms such as
Differential Evolution can provide a viable alternative solution framework for these.

8.2.1 Multiple Optimisation Problems at Lower Level

The BLPP we have formulated assumes the existence of a singleoptimisation prob-
lem at the lower level. Both DEBLP and DEBLP-SR are unable to handle the sit-
uation ofmultiple followersi.e. presence of multiple optimisation problems at the
lower level. See e.g. [69, 114] for examples of these. However we have neglected
consideration of such problems in this paper but should be the subject of further
research.
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8.2.2 Bi-Level Multiobjective Problems

Recall that in our formulation of the BLPP in Eq. 1 we assumed the function map-
pings:U,L : Rn1 ×R

n2 → R
1. In other words, the objectives in both the upper and

lower levels are restricted to be scalar. However there are also problems where
the objectives are vectors. Such problems are known as multiobjective (MO) prob-
lems i.e. where the decision maker has multiple, usually conflicting, objectives. In
such problems the Pareto Optimality criteria is used to identify optimum solutions
[30, 90]. One of the major advantages of using population based meta-heuristic al-
gorithms for MO Problems is that because of their populationbased structure, they
are able to identify multiple Pareto Optimal solutions in a single run [29].

Two categories of these problems have been discussed in the literature. Firstly
there is the case where only the upper level objective is vector based or secondly
whereboth the upper and lower level objectives are vector based. For problems
occurring in the first category, advances in meta-heuristics to solve MO problems
(e.g. [30]) could be easily integrated into DEBLP to transform it into an algorithm
able of handle MO-BLPPs of the type described in e.g. [44, 110, 123]. Problems of
the second category are relatively novel in the literature and have only recently been
investigated [31]. Further research should introduce new methodologies to enable
DEBLP to solve problems in this latter category.

8.2.3 Multiple Leader Follower Games

In Section 4 we provided an example of the COTP which models a highway reg-
ulatory agency optimising the total travel time on the highway system by levying
toll charges. With the trend in recent years towards privatization together with con-
strained governmental budgets, it is quite possible that instead of a welfare maxi-
mizing authority setting the tolls in future, this task could potentially be consigned
to private profit maximising entities. The latter obtain concessions to collect tolls
from users on these private toll roads [36, 119] in return forproviding the capital
layout of investments in new road infrastructure. When setting such tolls, these pri-
vate firms could also be in competition with others doing the same on other roads in
the network.

The problem just described is in fact an example of a class of Equilibrium prob-
lems with Equilibrium Constraints (EPEC). In EPECs, the decision variables of
the private firms are constrained by a variational inequality describing equilibrium
in some parametric system [62]. For example in the case of competition between
the private toll road operators just highlighted, the equilibrium constraint is just
Wardrop’s User Equilibrium condition. The study of EPECs has recently been given
greater emphasis by researchers in many disciplines [55, 68, 77, 80, 119, 125].
Though it is still in a period of infancy it has emerged as major area of research
[22, 35, 109] in applied mathematics.

Formally an EPEC is a mathematical program to find an equilibrium point that
simultaneously solves a set of MPECs where each MPEC is parameterised by de-
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cision variables of other MPECs [125]. Compared to the MPEC,the focus in the
EPEC is shifted away from finding minimum points to findingequilibrium points
[78, 79]. Figure 4 gives a multi-leader generalization of the BLPP that constitutes a
Multi-leader-follower game [68] where there are nowρ ,ρ > 1 leaders instead.

In this multi-leader generalization of the Stackelberg game researchers have con-
jectured that there could be two possible behaviours of the leaders at the upper level
[78, 88]. At one end, leaders could cooperate which results in a multiobjective prob-
lem subject to an equilibrium constraint at the lower level [120]. At the other end,
the leaders could act non-cooperatively and play a Nash gameamongst themselves
resulting in a Non Cooperative EPEC (NCEPEC). EPECs are extremely difficult
to solve and the current emphasis has been on the use of nonsmooth methods and
nondifferentiable optimisation techniques [78, 79]. We believe that meta-heuristic
algorithms offer a powerful alternative solution methodology for EPECs in both
cases. In the case when leaders are assumed to cooperate, we have pointed out that
because they operate with populations, population based meta-heuristics are able to
identify multiple Pareto Optimal solutions in a single simulation run. This is key
to solving multiobjective problems. For the NCEPECs, a DE based algorithm ex-
ploiting a concept from [71] was proposed and demonstrated on a range of EPECs
occurring in transportation and electricity markets in [62].

Most importantly, whatever solution algorithms are proposed in future, when
searching for an equilibrium amongst the players at the upper level they must con-
tinue to take the reaction of the followers at the lower levelinto account. This serves
to ensure that proposals are entirely consistent with the Stackleberg paradigm which
remains applicable in EPECs.

Fig. 4 Pictoral Representation of an EPEC

Acknowledgements The research reported here is funded by the Engineering and Physical Sci-
ences Research Council of the UK under Grant EP/H021345/1 (July 2010 to July 2013).



A Meta-heuristic Framework for Bi-Level Programming Problems 31

References

1. Aarts E, Korst J (1988) Simulated Annealing and Boltzmann Machines. John Wi-
ley,Chichester

2. Aiyoshi, E, Shimizu K (1981) Hierarchical decentralized systems and its new solution by a
barrier method. IEEE Transactions on Systems, Man, and Cybernetics 11(6):444-449

3. Allsop RE (1974) Some possibilities for using traffic control toinfluence trip distribution and
route choice. In: Buckley DJ (ed) Transportation and Traffic Theory: Proceedings of the Sixth
International Symposium on Transportation and Traffic Theory.Elsevier,New York:345–375

4. Aussel D, Dutta J (2008) Generalized Nash equilibrium problem, variational inequality and
quasiconvexity. Operations Research Letters 36(4):461-464

5. Bard JF (1983) An efficient point algorithm for a linear two-stage optimization problem.
Operations Research 31(4):670–684

6. Bard, JF(1988) Convex two-level optimization. Mathematical Programming 40(1):15-27
7. Bard JF (1998) Practical Bilevel Optimisation: Algorithms and Applications.

Kluwer,Dordrecht
8. Bard JF, Plummer J, Sourie JC (2000) A bilevel programming approach to determining tax

credits for biofuel production. European Journal of Operational Research 120(1):30–46
9. Bazaraa MS, Sherali HD, Shetty, CM (2006) Nonlinear Programming: Theory and Algo-

rithms (3rd Edition) Wiley,Hoboken,New Jersey
10. Bellman RE (1961) Adaptive control processes: a guided tour.Princeton University

Press,Princeton New Jersey
11. Ben-Ayed O, Blair CE (1990) Computational difficulties ofbilevel linear programming. Op-

erations Research 38(3):556–560
12. Ben-Ayed O (1993) Bilevel linear programming. Computers & Operations Research

20(5):485–501
13. Bialas WF, Karwan MH (1984) Two-Level Linear Programming.Management Science

30(8):1004–1020
14. Bouza Allende GB (2008) On the calculation of Nash Equilibrium points with the aid of the

smoothing approach. Revista Investigación Operacional 29(1):71–76
15. Beckmann M, McGuire C, Winsten C (1956) Studies in the Economics of Transportation.

Yale University Press,New Haven,Connecticut
16. Britt H, Luecke R (1973) The Estimation of Parameters in Nonlinear Implicit Models. Tech-

nometrics 15(2): 233–247
17. Braess D (1968)̈Uber ein paradoxon aus der verkehrsplanung. Unternehmenforschung

12:258–268
18. Bracken J, McGill J (1973) Mathematical programs with optimization problems in the con-

straints. Operations Research 21(1):37-44
19. Bracken J, McGill J (1978) Defense applications of mathematical programs with optimization

problems in the constraints. Operations Research 22(5):1086–1096
20. Candler W, Norton R (1977) Multi-level programming. Technical Report DRD-20, World

Bank, January
21. Candler W, Townsley R (1982) A linear two-level programmingproblem. Computers & Op-

erations Research 9(1):59-76
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