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ABSTRACT

An algorithm for the identification of non-linear systems which
can be described by a Hammerstein model consisting of a single—valugd
F non—-linearity followed by a linear syétem is presented. Cross-
correlation techniques are employed to decouple the identification
of the linear dynamics from the characterization of the non-linear
element. These results are extended to include the identification
of the component subsystems of a feedforward process consisting of a

-

Hammerstein model in parallel with another linear system.




1.  INTRODUCTION

The Hammerstein model, illustrated in Fig.l, consists of a zero
memory non-linear element followed by linear dynamics. The model
represents a realization of the Hammerstein operator

HEx(t)] = fh(t,T)F[T,X(T)]dT

and was originally proposed by Narendra and Gallman (1966), and later
studied by Hsia and Bailey (1968), Chang and Luus (1971).
The present study represents an extension of previous results by
Billings and Fakhouri (1977 and 1978) to non-linear systems which can
be described by a Hammerstein model, It is shown that an estimate of |
the linear system impulse response can be obtained directly from the
input-output cross-correlation function when the input has the properties ‘
of a white Gaussian process. The coefficients associated with the
polynomial representation of the non—linear element can then be
estimated using a least squares routine.
The algorithm is extended to include the identification of the
component subsystems in a feedforward process which was originally
considered by Brown (1969) and later studied by Simpson and Power
(1970a & b). The system consists of a Hammerstein model in parallel
with another linear system. The results of a simulation study are

included to illustrate the validity of the algorithms.

23 IDENTIFICATION OF THE HAMMERSTEIN MODEL

Consider the Hammerstein model illustrated in Fig.1l, where the
linear time invariant system has an impulse response h(t) and the
continuous single-valued non-linear element can be represented by a

finite polynomial of the form
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The measured system output z(t) can then be expressed as

0

i h(z)F[x(t-T)]dT+n(t)

1]

z(t)

1]

-0

k o0 .
z ¥ 5 f h(T)XJ(t—T)dT+n(t) (2)
=1

If the input signal x(t) is the practical realization of a zero

mean white Gaussian process, then its n'th dimensional autocorrelation

function is given by

0 for n odd

E[x(tl)x(tz)...x(tn)]

P
n Il
1 § ( z Z )
= m..S.S
aPpy 98408,m =88 L0y gmy 1B 2 K
. _ﬁL_ Jm, pom gy ocem )
2°P! "1 "2 2 PP

for n even

where the summation is over all sets of indices (il,kl...ip,kp) such

that only one of the indices is unity, only one is two etc. P = n/2 and
m = BleCedx(e)] = o (5 -ty)

which approximates to a delta function of area u centred on L. = tk'
When the input signal comprises the summation of a white Gaussian
signal, with the properties of equation (3), and a mean level b the

measured system output z(t) is given by

k
z(t) = )} w.(t)+m(t) (4)
= @
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where wj(t) = ¥ | h(T){X(t—T)+b}de (5)

=00

Defining
z'(t) = z(t) - z(t)

w. () = w. () = w, (L)
i i i

the first order cross-correlation function is given by

b0 (@) = E[2" (£)x(t-0)]
= wl'(t)x(t—d) + mz'(t)x(t—c)
‘ +wk'(t)x(t-d) + n(t)x(t-o) (6)
where —— indicates time average.

Evaluating the first term on the rhs of equation (6)

ml'(t)x(t—c) {wl(t)~w1(t5}x(t—0)

]

ml(t)x(t—c)

oo

Yy [ n(r){x(t-1) +b}x(t-0) dt

=00

(o]

iy [m h() ¢, (t-0)dt (7)

wl‘(t)x(t—c)

Providing the signal x(t) has the properties of a white Gaussian process,
then ¢XX(T—G) approximates to a delta function at T = ¢ and equation (7)

reduces to

wl'(t)X(t*G) = Yluh(d) (8)
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Considering the second term on the rhs of equation (6)

n

mz'(t)x(t—d) €m2(t)-w2(t)}x(t—c)

wz(t)x(t—o)

00

Y, | B {x(t-1) +b} x(t-o)dr

—00

(o]

Y, | h(o){2bp_ (1-0) }dr

=00

wz'(t)X(t-c) 2b72uh(0) (9)

Similarly, for the third term on the rhs of eqn (6)

0, (OR(E0) = v, {m h(T){3¢XX(O)¢XX(T-O)+3b2¢XX(T—U)}dT

= 3Y3Uh(0){¢xx(0)+b2} (10)

Although, theoretically ¢__(0) would be infinite, in practice x(t) can
T Pex

; . . 2 .
only approximate to a white noise process and ¢Xx(0) = g , the variance

of x(t) which is finite. Equation (10) can therefore be written as

ay (Ox(E0) = 3Y3uh(0){€2+b2} (11)

Higher order terms are evaluated in an analogous manner.

Collecting terms

0,1 (0) = h(U)u{Y1+2bYZ+3Y3(sz+b2)+...}+n(t)x(t~o) (12)

Providing the signal x(t) and the noise process n(t) are statistically
independent equation (12) becomes directly proportional to the impulse

response of the linear system

¢, 1(0) = ab(o) (13)
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Thus computing the cross—correlation function ¢xz'(0) provides an
estimate of the impulse response of the linear subsystem and this
effectively decouples the identification of the linear and non-linear
components in the Hammerstein model.

A Gaussian signal with a non-zero mean level is used as the input
gignal to ensure that all the terms in equation (6) contribute to the

cross—correlation function.

If the identification is performed with the aid of a digital computer,

the cross—correlation function equation (13) will be in sampled data
form and estimates of the coefficients in the pulse transfer function

representation of the linear system
B(z 1)
A(z_l)

Zz{oh(o)} = (14)

can be obtained using a least squares algorithm Isermann et al (1974).
Once an estimate of oh(o) is available from equation (13), the

parameters in the polynomial representation of the non-linear element

can be estimated. Consider the schematic diagram of the identification

procedure illustrated in Fig.2. The error e(i) between the sampled

process output z(i) and the output of the Hammerstein model can be

defined as

ell) = 2@y - v
. L . .
where v(i) = § {oh(§) }y(i-j)
§=0
LA 2 %
= Z {ah(j)}{Yl'u(i-j)+Y2'u (i—j)+---+Yk'u (i-3) }
j=0

(15)

and Y, = oy Yo =L, 200k
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1f (N+2) measurements of the sampled process input and output

are available the matrix equation

,

.

) L . L . L
Z(%+1) Y {oh(i) bu(l+e-3), } {uh(j)}u2(1+£—j)... ) {ah(5) FECiwi~])
j=0 i=0 i=0
L - 2 % 2 2 n K
Z(%+2) z {ah(j) Ju(2+2-3), E {ah(j) Ju" (2+2-7) ... 2 {ah(j) Ju (2+2-7)
_ |3=0 j=0 3=0 ‘
P : ., Lo
7 (2+N) Y {ah(3) Yu(+e-3), } {ab(3)}u” (+2-3)... Y {ah(§) Ju (N+2-7)
| ) \i=o 18 j=0 J
rqu re(ﬂ+1)1
s (2+2)
Yz N e
;k'J LE(Q;N)J
or Z = Y8 + E (16)

can be formulated.

The least squares estimate of the coefficients Yj',

j = 1,2...k can be readily computed as

§ = {wTw}_lez

and the identification is complete.

(17)




- B

3. IDENTIFICATION OF A FEEDFORWARD SYSTEM

The algorithm derived in Section 2 for the Hammerstein model can
be readily extended to include the identification of a feedforward
system consisting of a Hammerstein model in parallel with another linear
system. The identification of this system was originally studied by
Brown (1968) who used a four level test signal to identify the linear
channel. Simpson and Power (1970a and b) modified Bfown's scheme such

that the impulse responses of both linear systems could be identified

from two cross-correlation experiments, and later extended this technique
to include memory-type non-linearities, Simpson and Power (1973).
However both these schemes assumed that the non-linear element was
known a priori. In general this will not be the case and it is shown
that the result of the previous section can be extended to include the
identification of all the elements in this system.

Consider the feedforward system illustrated in Fig.3. When the
input signal comprises the summation of a zero mean white Gaussian
process and a non-zero mean level b the measured system output z(t)

can be expressed as

[e2]

z(t) = {m hl('rl){x(t-'rl)+b}d‘r1

o I h, (1) {x(t=1,) b H dr +n(0) (18).

e
Il 1%

i

The first order cross-correlation function is given by

¢xz.(o) (z(t)-z(t) ) x(t=0)

Lee]

i by (r) {x(e=1 ) +bIx(t-0) d,

=00




le {m hz(Tz){x(t—12)+b}jx(t—0)dT2 + n(t)x(t-0)
(19)

+
I~

Applying the results derived in the previous section for the Hammerstein

model gives

¢XZ,(0) = uhl(c) + th(c) = h3(c) (20)

where B = u{w1+2bw2+3m3(82+b2)+...} is a constant. The first order
cross—correlation function is therefore directly proportional to the sum
of the impulse responses of the two linear elements.

In order to completely characterise the feedforward system, an
estimate of the individual linear subsystem impulse responses is required.
This can be achieved by computing the second order cross-correlation
function which provides an estimate of Ahz(t) and permits the two linear
systems in equation (20) to be separated.

Define the second order cross—-correlation function as

6 (@) = 2 ()% (t-0) = {z(£)-2(D) }x° (t=0)

XXZ

2 % 2 2
= 5S'"()x (t-g) + Z Sj'(t)x (t-0) + n(t)x (t-o) (21)
j=1

oo

where ss(t) = [ h (v ) {x(t-t )+b}dr,

=00

8§S'(t) = SS(t)-5s(t)

5,(6) = w, {m hz(rz){x(t—rz)+b}id12

Si' (t) = Si(t)—Si(t)
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Evaluating the first term on the rhs of eqn 2D

58! ()2 (t-0) = {88 (t)-88(D) x> (t0)

@

f hl('rl){x(t-11)+b}x2(t—o)d'r1

-0

U

fes]

- ¢xx(o)b | hl(Tl)d'cl =0V%o

=00

Evaluating the second term on the rhs of eqn (2D

5," (0% (t-0) (sl<t>4§;(57)x2<t-o>

fee]

o, J hz(Tz){X(t—T2)+b}X2(t—G)dT2

=00

- w1¢xx(0)b {m hz(Tz)drz

0*%‘0

Considering the third term on the rhs of eqn (21)

5," (0% (t-0) = (s, (-5, (D)% (t-0)

where

[e+]

2
5,(8) = 0y, (0) {m hy (7)) dry+u, b h, (1)) dry

Thus

[o0]

82'(t)x2(t—0) = u {m hz(Tz){x(t—T2)+b}2x2(t—c)dT2

. 2
.-‘m2¢xx(0)fh2(T2)dT2{¢xx(0)+b }

(22)

(23)

(24)
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(o]

=, Im hz(rz){xz(t-'rz)xz(t—u)}d'r2

2
= m2¢xx (O)Ihz('cz)d'r2

) {m hZ(TZ){¢xx2(0)+2¢xx2(T2“0)}dTZ

2 (==}
- m2¢xx (0) {m h2(T2)d12

82'(t)X2(t-0) 2m2 {m hz(T2)¢XX2(T2—U)dT2 (25)

If x(t) is the practical realisation of a zero mean white Gaussian
process, ¢XX2(T2-U) can be considered as an impulse centred at T; = o
with area

w

X = f ¢2XX(T)dT

=Cco

Equation (25), therefore reduces to

5," (D% (t-0) = 2u,2h, (0) (26)

Similarly, for the fourth term on the rhs of equation (21)

53'(t)x2(t-c) = 6bu,Ah, (o) 27)

Finally, it can readily be proved that if the input signal and noise
process are statistically independent, n(t)x(t-o) = OVB, then

n(t)xz(t—c) = o¥s. Thus collecting terms

2+6bxm3 + ...}

1]

b, (o)

h, (o) {2)w
XXZ 2

Khz(d) (28)
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where k¥ is a constant. The second order cross—correlation function is
therefore directly proportional to the impulse response of the linear
system in the non—linear path.

The first and second order cross—correlation function estimates,
equations (20) and (28) respectively, can now be used to estimate the
coefficients w, 5 i = 1,2...k in the polynomial representation of the
non-linear element.

Converting to .discrete time and considering N measurements of the

sampled process input and output permits the formulation of the matrix

equation
r W ‘ 0 R 2' . R, R k { 3
z(1) L hy(Du(-3), J {khy(3)Iu(=j) ... I khy (DI (1-9) | |p
j=0 j=0 j=0
L . 2 ~ £ ~ Kk
2(2) ] hy(Du-i), ] feh,(DIu@=3) ... ] by (Dh@D| o’
3=0 j=0 j=0
16 | i )
Z(N) ha (D=3 Y 0 cov e ok :
L ) 550 3 j=O{Kh2(J}u(N Y ass j=0{Kh2(J)}u (N-7) J Lmk J
+ n(1)
niN)
or Z = ¢6 +E (29)

Since all the elements of the matrices Z and ¢ can either be measured

or estimated, an unbiased least squares estimate of the coefficients

p = 1/u, mi' (i 1,2...k) can be readily computed




w = kw ! t=2,...k (3D

Combining the results of equations (20) and (28) the linear

components of the feedforward system can be estimated as
~ A~ ~ ' -~
0 h3(o) + wy {Khz(c)}
= hl(c) + mlhz(o) (32)

and the identification is complete.

Thus from equations (20), (28), (29) and (31) the identified system

illustrated in Fig.4 can be synthesised. Although the identification
of hz(o) and the coefficients associated with the non—-linear element can
be decoupled, the linear sy;tem component h1(0)+m1h2(0) can only be

decomposed if w, = 0. This corresponds to the situation that would

1

arise if the system was linear w, = 0, t =2,...k.

To summarise the identification algorithm for the feedforward system

consists of the following steps
7 = +

1) Compute ¢Xz,(0) h3(0) Uhl(G) th(ﬁ)

¢xxz'(o) = Khz(U)

2) Apply least squareé to fit pulse transfer functions to
¢XZ,(G) and ¢xxz,(c) and use these to generate smoothed
estimates of Khz(d) and h3(c).

3) Insert the smoothed estimates into equation (29) and estimate
p and wi', (i =1,2,...k).

4) Estimate the linear component using the results of steps (2)

and (3)




e Tl v

b hy(o)+u, ' {kh, (o) }

= h1(0)+m1h2(0)

and fit a pulse transfer function model if required.

4, SIMULATION RESULTS

The identification procedure outlined above was used to identify

the parameters in a feedforward system consisting of a linear element

with pulse transfer function

=] 8.0z ! e
I -1 =z ~ = e
1-1.69z "+0.77z 1+d1z +d2z

Hl(

in parallel with the Hammerstein model comprising a non-linear element

q(t) = 0.2u5(t) + 0.3u>(t) + 0.1u*(®) (34)
in cascade with the linear system
-1
Hy(z 1) = 0.1 —; (35)
1-1.58z "+0.63z

The model was simulated on an ICL 1906S digital computer and

10,000 data points were generated by recording the response to a Gaussian

white input sequence N{2.0,4.0}. The first and second order cross-

correlation functions were computed and the component subsystems estimated

using the algorithm described in the previous section. Because

Wy = 0 in this example the two linear systems can be decomposed using

the results of equations (28) and (32). A comparison of the estimated

impulse response and the theoretical weighting sequences of the linear

subsystems are illustrated in Figs. 5 and 6 respectively.

.

Least squares
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estimates of the parameters in the pulse transfer function models and

the polynomial representation of the non-linear element are summarised

in Table 1.

5.  CONCLUSIONS |

A procedure for the identification of systems having the structure

of a Hammerstein model has been presented. Providing the non-linear :

system can be excited by a white Gaussian system with non-zero mean the

first order cross—correlation function provides an estimate of the

impulse response of the linear element. This effectively decouples

the identification procedure into two distinct subproblems; parameter—

ization of the linear impulse response and estimation of the coefficients

in the polynomial series representation of the non-linear characteristic.
The algorithm has been extended to include the identification of

a feedforward system. It has been shown that computation of the first

and second order cross-correlation functions permits the linear sub-

systems to be identified independéptly of the non-linear element thus

simplifying considerably the identification of this class of non-linear

systems.
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Fig 4
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Fig 6

FIGURE CAPTIONS

The Hammerstein Model

Schematic Diagram of the Identification Procedure

for the Hammerstein Model

A Feedforward System

A Schematic Diagram of the Identification Procedure

for the Feedforward System

A Comparison of Impulse Responses for hl(t)

- — - Experimental values

* % * Theoretical values

A Comparison of Impulse Responses for hz(t)
- = = Experimental values
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