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ABSTRACT 

 

Extending the literature on competition in the presence of road tolls, this paper explores the 

implications of competition between two cities.  We assume that the two city authorities wish 

to maximise the welfare of their own residents whilst taking advantage of tax export 

mechanisms available to them by charging traffic from the competing city.  The problem is 

first posed as an Equilibrium Problem with Equilibrium Constraints (EPEC) which is a 

special form of a Nash game with a hierarchical structure. Due to the inherent non-convexity 

of EPECs, it is possible that only local solutions are found. Hence we introduce the concept 

of local Nash Equilibrium. Using a simple network and grid search to explore the response 

surfaces and to determine the Nash Equilibrium toll levels, we conduct two numerical 

examples with a simple test network but with different trip demand assumptions. Our 

numerical examples indicate the possibility that there may exist multiple local Nash solutions 

and that competition may lead to a sub-optimal outcome for one or both authorities 

depending on whether there exists a stronger player. We also consider the impact of elasticity 

of demand and other parameter assumptions on the potential number of Nash solutions. We 

then introduce the notion of collusion whereby cities share out some of the revenues 

collected and demonstrate that as collusion levels are increased then the Nash solutions tend 

to converge towards the global regulator solution when cities are assumed identical and both 

cities are incentivised to collude.  However with asymmetric demand then the weaker city’s 

residents remain worse off than in the no toll case and the stronger city has no incentive to 

collude.  

 

Key words: Networks, pricing, competition, Nash Equilibrium, Tolls 

 

 

1. INTRODUCTION 

 

There has been a strong focus in recent years on road user charging, with economic theory 

suggesting benefits will accrue to a city from a combination of congestion relief and 

recycling of revenues within the city (Walters, 1961). Beyond the theoretical benchmark of 

full marginal cost pricing the design of practical charging schemes, such as those adopted by 

UK local authorities in recent Transport Innovation Funds (Department for Transport, 2005; 

Transport Select Committee, 2006) bids, have generally focused on pricing cordons around 

single, mono-centric cities (Shepherd et al, 2008). It is possible in such cases to design the 

location and level of charges for a cordon so as to systematically maximise the potential 

welfare gain to the city (Shepherd and Sumalee, 2004; Sumalee et al, 2005), yet there is an 

implicit premise here that the city acts in isolation.  

 

In this paper we consider the implications of competition between cities when each considers 

the introduction of fiscal demand management measures by setting road tolls. In the context 
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of toll roads, several authors have studied the welfare implications of competition between a 

public and private operator (e.g.  Verhoef et al, 1996; De Palma and Lindsey, 2000; Yang 

and Woo, 2004; Zhang and Levinson, 2005; Yang et al, 2009). The focus in these studies is 

on the impacts of alternative ownership regimes, and of public versus private control in the 

form of either monopoly pricing or competitive Nash equilibria. Xiao et al, (2007) extended 

these works by bounding the inefficiency of private toll road competition for a network with 

parallel links. 

 

In addition to the often discussed issue of competition among profit motivated organizations, 

there also exist competitive issues between public sector organisations. Proost and Sen 

(2006), used the TRENEN (Proost and Van Dender 2001) strategic model to investigate the 

outcome of a Nash Game between a local authority in control of parking charges and 

regional government in charge of a toll cordon.  They found that the city was incentivised to 

over-charge for parking. Tax exporting behaviour is a concept from the public economics 

literature (e.g. Stiglitz, 2000). In the context of using tolls as fiscal instruments, the argument 

is that local governments wish to score political points with their residents and do so by 

laying the burden of paying the toll onto “foreign” (i.e. non-resident) users in the local area. 

This tax exporting behaviour is a theme which has continued to recur in the literature e.g. De 

Borger et al (2007), Ubbels and Verhoef (2008), Guhenmann et al (2011).   

 

One limitation of the study by Proost and Sen (2006), which the authors recognized, was that 

the TRENEN strategic model does not embody a network and is thus unable to take the route 

choice considerations of users expliclity into account. The modelling framework in 

Gühnemann et al (2011) was a tolling game between two authorities, one controlling a 

cordon surrounding the city of Sheffield in the UK which was plagued by air quality 

problems and another surrounding the Peak district which had the problem of serious through 

traffic. One key conclusion of this study was that the Peak district tended to act as a net tax 

exporter because traffic had no alternative but to travel through the Peak district as 

alternative routes were even more costly in terms of travel time and distances. In addition, it 

was found that the Nash game tended to result in the transfer of environmental problems 

from one jurisdiction to affect other areas and this lent support to the argument that some 

form of global regulation was necessary since left to their own devices, authorities might be 

tempted to play “beggar thy neighbour” policies which would have a detrimental impact on 

global welfare. De Borger et al (2007) and Ubbels and Verhoef (2008) examined the issues 

of competition between countries/regions setting tolls and capacities, investigating the 

implications of players adopting two-stage games but using networks where route choice was 

also absent. In this paper we explicitly take into account route choice. 

 

We build on our previous work on representing multi-actor systems through game-theoretic 

representations where the problem of toll competition between operators in a network was 

considered. Represented through a Nash network game, in Koh and Shepherd (2010) 

conditions were established under which the equilibria of such non-cooperative decision-

making differed markedly from the solution that could arise from a more collusive game 

between operators. It was also shown that this latter, collusive solution could be determined 

based on the ‘particle swarm optimisation’ method (Koh, 2008). This work also 

demonstrated the potential for multiple Nash Equilibria to occur in games where players face 

an equilibrium constraint which parallels the results discussed in the context of bidding 

strategies of generators in deregulated transmission constrained electricity markets (Hu and 

Ralph, 2007;Son and Baldick, 2004). 
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The paper is structured as follows. Following this introduction, Section 2 sets up the problem 

of competition between two cities and provides the mathematical background. Using a small 

network, two scenarios for a single test network are studied in Section 3 utilising simple grid 

search (an exhaustive search over the parameter space) to identify potential Nash Equilibria.  

These two scenarios differ only with respect to the individual components of the trip matrix, 

the first representing identical cities and then the second where one city is more attractive 

than the other as a destination thus introducing the notion of strong and weak player. We also 

investigate the impacts of changes in the elasticity of demand on the existence of multiple 

Nash Equilibria in the network. Section 4 considers the situation when cities are able to share 

a proportion of the revenues collected from road pricing even though they continue to be in 

competition with each other. Section 5 wraps up the paper with some conclusions and 

directions for further research. 

 

2. METHODOLOGY 

 

 

A highway network is represented as a graph comprising links indexed by the set 

 1,2,...,| |L L . We assume that there are two regulatory authorities (labelled A and B), 

each authority having their own pre-defined subset of network links over which they may 

charge a toll: authority i being able to set a toll on links in set iL L  (for {A,B}i ), 

with A BL L o    . Although not necessary, for simplicity we make the restriction in this 

paper that each authority i has a single
1
 toll level 0i  that they may determine and levy on 

all links in their link sub-set iL .  Together, then, the two tolls to be determined can be 

collected in the vector  
#

A B τ
 
 with # denoting the transpose. In practice, in addition to 

non-negativity constraints, we may wish to impose additional simple bounds on the tolls (e.g. 

upper bounds that are believed reasonable), and thus for each }B,A{i , we suppose that 

there is a pre-defined set  2 & 0iT x x    that defines the permissible tolls, so that we 

must have A BT T τ . The travellers in the network are all supposed to perceive these tolls in 

the same way, regardless of which authority levied the toll and regardless of their own socio-

economic status. Aside from the tolls, travellers perceive other attributes that motivate their 

travel (e.g. travel time), and for each link these are collected together in a single generalized 

cost of travel, excluding tolls. This toll-excluding generalized cost typically will depend, 

through congestion, on the flow on the link, and so for each link 1,2,...,| |l L  we represent 

it as a monotonically increasing, continuous function ( )l lc v  of the flow lv  on link l. Taking 

the tolls together with the toll-excluding generalized cost gives us the complete generalized 

cost function, given any link flow or toll levels as: 

 

 

A A

B B

( ) if 

( , ) ( ) if ( 1,2,...,| |, 0, )

( ) otherwise

l l

l l l l l A B

l l

c v l L

g v c v l L l L v T T

c v





 


      



τ τ  (1) 

                                                 
1 The assumption of a single toll level is not restrictive. Firstly, cordon schemes currently in operation such as in 

Bergen (Norway), Milan (Italy) and Stockholm (Sweden) have a uniform charge levels over a given modelled 

period, at all points entering the cordon area. Secondly, we do not wish to allow the city to charge a different 

amount to non-residents as this would be seen as less acceptable. 
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Clearly, should we wish to represent it that way, ( ) ( ,0)l lc g   for all l L . The functions 

(1) may be collected together into a vector mapping ( , )g v τ  with l
th

 element 

( , ) ( 1,2,...,| |)l lg v l Lτ . 

 

Our network also comprises Origin-Destination (OD) movements indexed by the set 

{1,2,...,| |}K K , with ( )kd k K  denoting the travel demand for OD movement k. We 

suppose that in advance, we neither know the OD travel demand vector d nor the link flow 

vector v, but that they are contained in the demand-feasible set D given by: 

 

 ( ) ( ) ( ) ( )( , ) : where , 0, 0k k k k

k k

k K

D d d k K


 
       
 

v d v x Ax E x  (2) 

where ( )k
x is the vector of link flows for OD movement k, where A is the node-link incidence 

matrix for the network, and where k
E  is a vector that defines the origin and destination nodes 

for OD movement k (for more details the reader is referred to Lawphongpanich and Hearn, 

2004). 

 

We further suppose that for each origin-destination movement k, there exists a separable, 

bounded, continuous, monotonically increasing demand function that expresses the origin-

destination demand level for that movement as a function of the generalized OD travel cost 

for that movement. In fact, we shall refer not to the function itself but to its inverse (which 

exists under the stated assumptions), namely the OD generalized cost ( )k kw d  that would 

need to exist in order to generate a given level of OD travel demand kd , for each k K . 

These functions are assumed to be continuous, bounded, and monotonically decreasing.  

 

Given any particular toll vector τ , it is supposed that the resulting perceptions of generalized 

cost determine the OD travel demand and routing patterns through an elastic demand 

Wardrop equilibrium. Now, if the toll vector τ was to be decided by a single regulatory 

authority, then we could define a Global Regulatory Problem in the form of a Mathematical 

Program with Equilibrium Constraints (MPEC), which (following Lawphongpanich and 

Hearn, 2004) is given by: 

 A B ,( , )
0

# #

Maximise  ( ) ( )

s.t. ( , ) ( ) ( ) ( ) 0 ( , )

kd

k l l l
T T D

k K l L

w z dz v c v

D

  
 



     

 τ v d

g v τ u v w d d e u e

 (3) 

Note that the toll vector itself does not appear in the upper level (social welfare) objective 

function of (3), its role instead is in shaping behaviour as represented in the lower level 

constraint. In fact, since under the stated assumptions on the cost and demand functions, 

there is a unique solution in (v,d) for any given toll vector, then the variational inequality 

constraint determines a unique such demand/flow allocation given any toll vector. Then we 

may simplify (3) so that only the toll vector appears as the maximization variable (since for 

any given toll vector, a unique demand and flow vector is uniquely generated by the VI 

constraint): 
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 A B
0

# #

Maximise  ( ) ( )

s.t. ( , ) ( ) ( ) ( ) 0 ( , )

kd

k l l l
T T

k K l L

w z dz v c v

D

 
 



     

 τ

g v τ u v w d d e u e

 (4) 

Problem (4) represents a situation in which a single regulator sets all the toll levels so as to 

maximize the benefit to the whole network. However, we shall also be specifically interested 

in the toll levels that arise if the two authorities compete. In this case, we assume that each 

authority has jurisdiction over setting tolls on its own set of links, but that its responsibility is 

only to trips that originate in its area. Thus, we partition the origin-destination movements 

into two mutually exclusive and exhaustive sets, such that iK
 

is the index set of OD 

movements originating in authority i (for {A,B}i ), with A BK K K   and A BK K o   . 

In parallel, we also partition the link flow variable, such that liv  denotes the flow on link l of 

demand originating from Authority i, clearly with A B ( 1,2,...,| |)l l lv v v l L   .  In vector 

notation, if the authority link flows are collected in a | | 2L   matrix V , then they are related 

to the aggregate link flow vector by v V1 , where  1 1
T

1  . 

 

Let us first consider Authority A. Authority A is assumed to maximise social welfare of its 

own residents by adjusting the toll level of links over which it has control, anticipating the 

impact of the toll on travellers’ route and demand decisions, but reacting to the toll level 

levied by Authority B. That is to say, Authority A does not anticipate the effect that their 

own choice of toll will have on Authority B’s response, but they simply react to the toll set 

by Authority B. Let us assume for the moment that Authority B has already decided its toll 

level B B BT   , and that this is known to Authority A. Authority A is then supposed to 

determine its own toll level A  by solving an MPEC that is a variant of (3): 

 

 

A
A B A

A A

A A B B A A B
        ( , , )

0        such that
,( , )

#

1 #

2

Maximise  ( ) ( )

s.t.         , ( ) ( ) ( ) 0 ( , )

kd

k l l l l l l

k K l L l L l L

T D

w z dz v c v v v v

D





   





   

 

   

  
       

  

   V d

V1 d

g V1 u V1 w d d e u e

 (5) 

The first term in the objective function of (5)  is the Marshallian measure of the trips made 

from origins located within Authority A’s jurisdiction. The second term represents the 

generalized cost of travel (excluding tolls) for traffic with origins in Authority A. The third 

term represents the toll revenue spent by residents from Authority A on links controlled by 

Authority B, i.e. those with origins in Authority A and travelling on tolled links in Authority 

B. This is a transfer payment and it increases the coffers of Authority B at the expense of 

Authority A. The fourth term represents the toll revenue spent by residents from Authority B 

within Authority A, this being a transfer payment that increases the coffers of Authority A at 

the expense of Authority B. The parameter  is a scalar tax exporting parameter, for which 

we shall assume a common value for both authorities (0 1)  . Our main numerical 

examples in Section 3 focus on taking the value of 1 and we consider varying alpha values 

in Section 4.   
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While problem (5) has a similar mathematical structure to problem (3) a key difference is 

that our problem is now defined in terms of link flows disaggregated by authority (the 

‘authority link flows’). In general networks, for any given toll vector, we cannot guarantee 

uniqueness of the authority link flows, even though our assumptions guarantee uniqueness of 

the total link flows. Therefore, if applied in a general network, (5) maximizes social welfare 

in two ways: partly through the toll, but additionally by assuming that we can control the 

authority link flows over-and-above the toll effect. Another way to view this is that while we 

assume user equilibrium for the total link flows, we assume system optimization for the 

authority link flow splits, wherever there is ambiguity in these splits to exploit (the so-called 

‘weak’ formulation of MPEC; see Červinka, 2008). However, at present our proposal is to 

restrict attention to applying (5) in special network structures in which the uniqueness of the 

total link flows automatically guarantees uniqueness of the authority link flows. 

 

We later consider such a network example. Assuming then, that our network structure 

ensures uniqueness of the authority link flows, problem (5) may be simplified to: 

 

 
A A

A

A
  

B

#

A #

B

Maximise  , ,

s.t.         , ( ) ( ) ( ) 0 ( , )

T
S

D













  
  
  

  
       

  

V d

g V1 u V1 w d d e u e

 (6) 

 

Where 

 
A B A

A A A B B A A B

0

( , , ) ( ) ( )
kd

k l l l l l l

k K l L l L l L

S w z dz v c v v v v   
   

       τ V d  (7) 

As in our earlier problem (4), in problem (6) the flow variables ( , )V d  are uniquely 

determined by the variational inequality constraint at any given toll vector τ , under the 

restrictive assumptions we have made. In order to reflect this, introduce the following 

implicit functions: 

 

For given A B T T τ ,   
* *( ( ), ( ))V τ d τ denotes the unique solution in ( , )V d to 

  
#

#, ( ) ( ) ( ) 0 ( , ) ( , )   .D D      g V1 τ u V1 w d d e u e V1 d  (8) 

Thus  (6) may then be equivalently written in succinct form: 

 
A A

A A A* *

A
  

B B B

Maximise  , ,
T

S


  

  

      
      
      

V d  (9) 

Now, in an analogous way to the behaviour of Authority A, Authority B determines its toll 

level B conditional on the toll level of Authority A by considering its own counterpart to 

objective function  (7)  namely: 

 
B A B

B B A B A B B A

0

( , , ) ( ) ( )
kd

k l l l l l l

k K l L l L l L

S w z dz v c v v v v   
   

       τ V d  (10) 
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The inter-play of the two authorities in each aiming to maximize its own welfare by setting a 

toll, conditional on the other authority’s toll, while anticipating the impact on the travellers, 

leads us to an example of a so-called Equilibrium Problem with Equilibrium Constraints 

(EPEC) (Mordukhovich, 2005). This overall problem we may write, based on the functions 

defined in (7),(8) and (10), as follows: 

 

 Find  A B A B

T
T T     such that simultaneously: 

 

A A A A A A* * * *

A A A A

B B B B B B

A A A A A A* * * *

B B B B

B B B B B B

, , , ,

, , , ,

h h h
S S h T

S S h T
h h h

  

     

     

  

              
                

              

              
                

              

V d V d

V d V d

 (11) 

Problem  (11) assumes that the authorities can only determine their own toll conditional on 

the other authority, but places no further restriction on the admissible tolls. That is to say, the 

conditions require that, as far as one authority is concerned, their toll gives (marginally, i.e. 

based only optimizing their own toll) a global optimum solution to their individual MPEC, 

conditional on the other authority’s toll setting.  

 

Taking the conditions for both authorities together, equation  (11)  defines a problem that we 

will henceforth simply refer to as a Nash Equilibrium (NE) (Nash,1950). However, we shall 

also be interested in Nash games that are variants of (11), Specifically if, rather than each 

authority determining a global optimum toll conditional on the other authority's toll choice, 

we consider the possibility that each authority only determines a local optimum to their 

individual MPEC. In this case we require conditions (11) only to hold within a local 

neighbourhood of the given toll vector. Following Son and Baldick (2004), we shall refer to 

an equilibrium of such a Nash game as a Local Nash Equilibrium (LNE). Thus for an LNE, 

each authority only needs establish optimality within a neighbourhood of the given solution 

(see Ye and Zhu, 2003, for such an example). 

 

Since the LNE conditions are weaker, the solution set to the NE problem is contained within 

the solution set to the LNE. It is our proposal that both kinds of solution are relevant for 

investigation, since it is not clear which is a more realistic representation of the behaviour of 

authorities in setting their tolls. This is an issue we return to in the case studies.  

 

 

3. CASE STUDIES 

 

 

All our case studies use the same topological network as shown in Figure 1. The travel cost 

on all links in the network adopt the standard BPR functional form as given in (12).  The free 

flow travel time parameter (
0

t ) is 450 seconds for all links except 2,5,8 and 11 which is 1000 

seconds. The capacity parameter (
l

 ) is 1500 pcus/hr for all links except for 2,5,8 and 11 

which is 3000 pcus/hr. The links (2,5,8 and 11) therefore represent a high capacity bypass 

that avoids travel through the town centre. 

 4

0
( ) (1 0.15( ))l

l l

l

v
c v t


   (12) 
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<<INSERT FIGURE 1 APPROXIMATELY HERE >> 

 

 
 
Figure 1:Network for Numerical Examples

2
 

 

On the demand side there are 12 Origin-Destination pairs. All nodes excluding Node 3 are 

origin or destination zones. There are two Central Business Districts (CBD) (zone 2 and zone 

4) located within Authority A and B respectively. 

 

The dotted line through Node 3 on Figure 1 demarcates the boundary of jurisdiction between 

the two authorities. The base demand represents a typical morning peak with dominant flows 

to the CBDs from the suburb of each local authority (zones 1 and 5).  However we also 

introduce demand to/from other zones which represent interaction between the authorities 

with associated problems of through traffic. We assume elastic demand and the demand 

function, which gives the trips as a function of the generalised costs of travel,   adopts the 

power law specification: 

 
,0

,0

( ) ,pk

k k

k

b
d d k K

b
   (13) 

In (13), 
,0k

d ,
,0k

b ,
k

b refer to the base trips, base costs and costs for origin destination pair 

k and p is the power parameter with the restriction that 0p  . We assume that p  does not 

vary by OD pair. Equation (13) implies an inverse demand function of the form (14) 

 

1

,0

,0

( ) ( ) ,pk
k k k

k

d
w d b k K

d
   (14) 

We assume that Authority A sets a uniform common toll on Links 1 and 6 to simulate a 

cordon into its CBD zone 2 while Authority B sets a uniform common toll on Links 7 and 12 

to simulate a cordon for travel into its CBD zone 4.  In this way we represent a situation 

which may arise in reality, namely that of cities who both wish to set up a cordon charge 

around their CBD with the idea of maximizing the welfare of their residents (as set out in 

(7)). 

 

                                                 
2
 The numbers indicated are link numbers referred to in the text and direction of travel is indicated by the 

arrows. The dotted line down node 3 demarcates the limits of jurisdiction of each authority. 
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As noted in section 2, a key property required of our formulation (in moving from (5) to (6)) 

is uniqueness of link flows disaggregated by authority, at any given toll vector. This is 

established for the particular network under consideration in Appendix A, requiring some 

mild additional assumptions that are readily verifiable during our numerical analysis, and 

indeed they have been verified to hold. Considering Authority A’s network (by symmetry, 

analogous implications can be drawn for Authority B’s network), uniqueness is established 

by a combination of (a) identifying routes that would never be efficient under Wardrop 

conditions; (b) applying conservation-of-flow at the authority level; and (c) noting where 

authority flows do and do not mix. In the case of Authority A’s network (analogous 

properties hold for Authority B’s network, by symmetry), we end up with mixing of the 

flows between authorities on links 1, 3 and 6 only, whereas links 2 and 4 only carry 

Authority A flow and link 5 only carries Authority B flow.  

 

In our numerical experiments, we consider two different cases.  In both cases the network 

remains as defined above and there is symmetry between the network within Authority A and 

that within Authority B.  The only difference between the two cases concerns the individual 

trips within the trip matrix. In case study 1 (hereinafter ‘case 1’) the base demand in the no 

toll case is also symmetric which represents a case where cities are equal in terms of 

production and attraction and in terms of network supply.  For case study 2 (hereinafter ‘case 

2’) the same network is used but we adjusted the base demand so that the city in Authority A 

is seen as stronger in terms of its ability to attract users.  Details of the matrix used in each 

case study are given in the relevant sections.  

 

To solve the global regulator problem for each case study, we applied the Cutting Constraint 

algorithm of Hearn and Lawphongpanich (2004). We set out details of the CCA in Appendix 

B.  In other cases, we carried out a grid search of the welfare obtained by each authority with 

tolls between 0 and 1000 in units of 10. In some cases we refined the grid search between 

units of 1 to “zoom in” on the potential solutions. For ease of exposition, we use the notation 

{ , }A B   to indicate a particular combined toll strategy tuple denoting the tolls set by 

Authority A and B respectively.  

 

3.1 Case 1: Symmetric Demand 

 

Table 1 shows the details of the matrix that is used for Case 1.  

 

<<INSERT TABLE 1 APPROXIMATELY HERE >> 
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Table 1: Base Trips (
,0k

d ) and (Base Costs, 
,0k

b ) for Case 1. 

 

Authority in 

Charge 

 

From    To 

       

 

1 

(Residential 

Zone in 

Authority A) 

2 

(CBD of 

Authority A) 

4 

(Residential 

Zone in 

Authority B) 

5 

(CBD of 

Authority B) 

A 1 0 1000 

(488.08) 

200 

(1389.75) 

100 

(1839.86) 

A 2 100 

(450.11) 

0 100 

(901.67) 

100 

(1351.77) 

B 4 100 

(1351.77) 

100 

(901.67) 

0 100 

(450.11) 

B 5 100 

(1839.86) 

200 

(1389.75) 

1000 

(488.08) 

0 

 

 

3.1.1 Case 1: Global Regulator Benchmark 

 

As a benchmark, let us assume that a global regulator is in place to determine the uniform toll 

on both Links 1 and 6 and another uniform toll on Links 7 and 12. As mentioned, this 

problem is a standard Continuous Toll Pricing Problem and can be solved with the Cutting 

Constraint Algorithm. In this case the objective function for the “Global Regulator” is given 

by (4).  

 

The welfare surface of the Global Regulator’s problem for Case 1 is shown in Figure 2 with a 

contour plot on the right.  Notice that for the global regulator we found in this problem that 

there exists only one optimum around a toll combination of (80,80).  Beyond toll levels of 

around 90 seconds from either authority then there is a sudden drop off in benefits which 

continues to be the case as toll levels are increased to 1000 seconds (not shown). 

 

<<INSERT FIGURE 2 APPROXIMATELY HERE >> 

 

 
Figure 2: (Left Pane) Surface Plot of Global Welfare for Case 1 around region of the optimum; 

(Right Pane) Contour Plot of Global Welfare for Case 1 around region of the optimum. 

 

Table 2 shows the solution and as expected due to symmetry both authorities’ welfare 

increases by the same amount and tolls are set to the same value in both authorities. 
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<<INSERT TABLE 2 APPROXIMATELY HERE >> 

 
Table 2: Results of the Global Regulator Problem for Case 1 

 (all units in seconds)  

Scenario Global 

Regulator 

Authority A 

Toll on: Link 1 and Link 6 
80 

Authority B 

Toll on: Link 7 and Link 12 
80 

Welfare Gain (vs Do Nothing) 20,292 

Welfare of Authority A 10,146 

Welfare of Authority B 10,146 

 

 

3.1.2 Case 1: Nash Game  

 

First to explore the potential solutions we evaluated the welfare for each authority for a given 

toll pair with tolls ranging between 0-1000 seconds.  Given that we have only two uniform 

tolls in our example then it is possible to visualize the welfare surfaces and to numerically 

estimate the gradients with respect to the authority’s own toll at each point.  Using a finite 

difference approach (Morton and Mayers, 2005) we were able to estimate these gradients and 

produce contour plots showing where the gradients are equal to zero.  This is equivalent to 

finding where the “response surfaces” of the Nash game intersect, such intersections show 

where condition (11) could potentially be satisfied.  Figure 3 shows the contour plots and 

points of intersection of the zero contours. In the figure the vertical lines show where the 

gradient of welfare for Authority B is zero and the horizontal lines show where the gradient 

of welfare for Authority A is zero as tolls set by B and A are varied respectively. 

 

<<INSERT FIGURE 3 APPROXIMATELY HERE >> 

 

 

 
Figure 3: Contour Plot for Case 1 (α=1) 

 

Each intersection point is therefore a potential LNE. However we can immediately disregard 

several solutions because for an LNE, the additional requirement is that they must intersect 
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where both authorities’ objectives are simultaneously maximized. We can identify 4 such 

solutions (marked on Figure 3) where both welfare surfaces are passing through a maximum 

by inspection of the welfare surfaces and by recognizing that there is a particular pattern to 

the welfare surfaces as tolls are increased which is maintained across the full range of tolls 

investigated. Figure 4 shows how welfare for Authority A varies with its own toll, for given 

values of tolls set by Authority B (85 or 505).  Notice that there is a local maximum around a 

toll of 85 seconds followed by a minimum at a toll of 105 followed by a maximum around a 

toll of 505. It is worth noting here that the optimal toll for player A of 505 seconds does not 

appear to be affected by the toll played by player B.  This suggests that there is little or no 

interaction between the players in the high toll regime.  We come back to explore this and the 

number of potential LNE solutions later. This pattern is repeated for the other player due to 

symmetry, and we can then infer that the intersections between the first and third contours for 

each player in Figure 3 are where the simultaneous maxima resulting in an LNE may exist.   

  

 

 
Figure 4: (Left Pane) Welfare Plot for Authority A Showing Optimum at around 505 when 

Authority B levies a toll of 85; (Right Pane) Welfare Plot for Authority A Showing Optimum at 

around 505 when Authority B levies a toll of 505. 

 

<< INSERT FIGURE 4 APPROXIMATELY HERE >> 

 

Using the welfare surfaces provided by the grid search we were able to confirm that four 

LNE  exists as shown in Table 3 which all satisfied the condition in (11). 

  

<<INSERT TABLE 3 APPROXIMATELY HERE >> 

 
Table 3: Local Nash Equilibria for Case 1 (all units are seconds and α = 1) 

 

Solution  

Number  

Toll Set by 

Authority A 

Toll Set by 

Authority B 

Welfare of 

Authority A 

Welfare of 

Authority B 

Total 

Welfare 
1 85 85 9,096 (2) 9,096 (2) 18,192 

2 505 85 24,076 (1) -101,839 (4) -77,763 

3 505 505 -86,872 (3) -86,872 (3) -173,744 

4 85 505 -101,839 (4) 24,076 (1) -77,763 
Figures in parentheses show the preference ranking for each authority pertaining to a particular outcome 

 

To explore the solutions further we calculated the vector field plot of the reaction functions at 

each point on the grid. The arrows in the vector force field plots in Figure 5 show the finite 

differenced approximations to the gradients of the welfare surfaces for each player with 

respect to their own toll and the direction a player should move when selecting their toll 
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levels given the current tolls. The left hand pane of the figure shows the vector force field 

centred on the Nash Equilibrium labelled solution 1, while the right hand pane shows the 

vector force field centred on the Nash Equilibrium labelled solution 3. From inspection of the 

Vector Field Plots we can confirm that these are LNE. It is evident from the vector plots that 

the basin of attraction is far smaller around the first of these solutions and as a toll set by the 

other player moves beyond 100 seconds the players may well be attracted to solution 3.  
 

 
Figure 5: (Left Pane) Vector Field Plot of Reaction Functions around Toll Vector of 85,85 for 

Case 1 (α=1); (Right Pane) Vector Force Plot of Reaction Functions around Toll Vector of 

505,505 for Case  1  (α=1) 

 

<< INSERT FIGURE 5 APPROXIMATELY HERE >> 

 

Similar plots show that the basin of attraction around solutions 2 and 4 are also relatively 

small and that solution 3 is the only solution which satisfies (11) in the global sense.  

Solutions 1, 2 and 4 are therefore only Nash solutions in a local neighbourhood i.e. LNE.  

 

An alternative way to look at the outcome of the authorities’ decision making and whether or 

not they act in a local neighbourhood or not when setting tolls is to use a simplified pay-off 

table as was done in Son and Baldick (2004).  

 

Table 4 shows the pay-off matrix in terms of welfare changes for authorities A and B given 

the tolls can only be set at values of 0, 85 or 505 (taken from our knowledge of where the 

possible LNE occur). 

 

<<INSERT TABLE 4 APPROXIMATELY HERE >> 

 
Table 4:  Case 1: Pay-off matrix (thousand seconds) near each LNE solution (Welfare A, 

Welfare B)       

Toll A/B 0 85 505 

0 (0,0) (-40.4, 50.7) (-150, 66.8) 

85 (50.7, -40.4) (9.1, 9.1) ( -103.0, 24.1) 

505 (66.8, -150) (24.1, -103.0) (-88,-88) 

 

 

The arrows in the table show the direction in which each authority would move in terms of 

toll set given the current tolls. Firstly we notice that both players have an incentive to move 

away from the no toll situation assuming that the other player does not charge.  That is both 

have a first mover incentive.  Then if we consider player A to move first, then player A has 

an incentive to move through to toll=85 and then to a toll of 505.  Player B would then 
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respond accordingly and with these limited decisions available to the players the outcome is 

always the NE solution which satisfies condition (11) i.e. it confirms the fact that solution 3 

is in fact the NE rather than simply an LNE. 

 

Next we widen the grid to include some more local decisions around the solution at {85,85} 

as shown in Table 5. Now we see that when the authority considers local moves only around 

tolls of 85 seconds then it is possible to remain in solutions 1,2 and 4 i.e. the {85,85} solution 

or one of the other {85,505} solutions.  This can be seen for example by examining the local 

decision around the {85,85} pay-off cell.  From this cell there is no benefit for either player 

to increase or decrease the toll and so this is an LNE.   However we can also notice that as 

soon as one authority charges above 90 seconds then they are incentivised to move towards 

solution 3 the NE solution.  The question of how authorities will set tolls in reality is 

obviously linked to the scale of the tolls and whether these are considered to be acceptable to 

the public.  Whilst we have not defined how strategies are set in this paper (as we have 

simply explored the response surfaces to find solutions to the problem), our future research 

will investigate the dynamics of the toll setting strategies and how this may result in an LNE 

solution. 

 

<<INSERT TABLE 5 APPROXIMATELY HERE >> 
Table 5:  Case 1: Pay-off matrix (thousand seconds) with local toll moves around (85, 85)  

Toll A/B 0 80 85 90 505 

0 (0,0) (-38.0, 49.4) (-40.4, 50.7) (-42.7, 49.5) (-150, 66.8) 

80 (49.4, -38.0) (10.1, 10.1) (7.7, 11.5)  (5.4, 10.2)  (-104.4, 26.5)  

85 (50.7, -40.4) (11.5, 7.7) (9.1, 9.1) (6.7, 7.8) ( -103.0, 24.1) 

90 (49.5, -42.7) (10.2, 5.4) (7.8, 6.7) 

 

(5.4, 5.4)  (-104.4 , 21.7) 

505 (66.8, -150) (26.5, -104.4) (24.1, -103.0) (21.7, -104.4) (-88,-88) 

 

 

 

3.1.3 Case 1: Policy implications  

 

Firstly we note from the welfare surfaces (not shown) that both players would have an 

incentive to begin charging given that the other player does not charge.  Once both players 

begin to toll then, as shown in Table 3, Authority A would clearly prefer Solution 2 while 

Authority B would prefer the diametrically opposed solution in terms of tolls, solution 4.   If 

we assume that the authorities then have full information about the expected change in 

welfare over the full range of tolls then for a given toll played by their opponent, they would 

move towards a toll of around 505 seconds.  In response the second mover would also set a 

toll of around 505 seconds (as can be inferred by Figure 4 above) and the authorities would 

end up at solution 3 which is a classic Prisoner’s dilemma whereby both authorities are worse 

off than in the no toll case. 

 

It is also interesting from a policy point of view that solution 1 with tolls set at {85,85} is in 

the vicinity of the global regulator solution with both authorities receiving an increase in 

welfare.  It could be argued that such a solution may be found if the upper bounds of the toll 

sets considered were somehow restricted to within the range 0-90 seconds.  As this is only a 

toy network example we cannot say anything about the scale issue here but we can recognise 

that in reality there may well exist an upper bound on the toll set by some public 

acceptability limits.  Otherwise as solutions 1, 2 and 4 are only NE in a local neighbourhood 

then these are unlikely to be obtained in a game with full information.  Later we discuss the 
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case where the authorities are assumed to collude by reducing the value of α, but next we 

examine the potential for multiple LNE. 

 

 

 

3.1.4 Case 1: Exploring the potential for multiple LNE 

 

As noted earlier when discussing Figures 3 and 4 the optimal toll for authority A does not 

appear to be affected by the toll set by authority B in the high toll regime.  This section first 

of all explains how this comes about by focussing on flow regimes and then explores which 

other factors can influence whether or not multiple LNE may exist. 

 
 
Figure 6: Flow regimes under alternative toll assumptions 

 

Figure 6 shows where the flows on the network can be decomposed into 4 “regimes” 

depending on the toll tuple and that these flow regimes correspond to the contours from 

figure 3. We can draw the following insights regarding traffic flows in these 4 regimes.  

  

1. When there are no tolls, the bypass links are not used at all. Hence all traffic 

regardless of destination utilise links through the town centre. This is due to the 

difference in free-flow costs for using the bypass compared with the town centre 

route. Within regime 1, as the tolls are increased then eventually some users begin to 

use the bypass links 2 and 11 and we hence obtain a “mixed traffic regime” i.e. flows 

on both the town centre route and flows on the bypass. Regime 1 is characterized by 

the set of tolls below 100 seconds.  

2. In flow regime 2, once the tolls set by Authority B (on links 7 and 12) increase 

beyond 100 seconds, all through traffic in authority B’s area uses the bypass links.  

That is a toll greater than 100 seconds invokes the use of links 8 and 11 (the bypass 

routes in Authority B) but not links 2 or 5 which is still a function of tolls set by 

Authority A.  The only traffic using the tolled links 7+12 are effectively captive (as in 

equilibrium they have no competitive alternative route across the range of feasible toll 

levels) to those links and we have a separated regime in B’s part of the network. By 

this we mean that sub-networks such as link 8 versus links 7+10 do not have the same 
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cost at equilibrium and this is obtained by segregation of OD demands. Note that by 

symmetry, flow regime 3 is similar to flow regime 2 but responds to tolls on links 1 

and 6. 

3. In Regime 4 all bypass links are used and the traffic using the tolled routes is only 

“effectively captive traffic” (traffic that have destinations within the tolled area i.e. 

zone 2 or zone 4 which do not have any competitive alternative route across the range 

of feasible toll levels). All other traffic uses the bypass links.  Each sub-network is in 

equilibrium but with higher costs for through traffic.  

These regimes all come about because of the extremely low delays experienced on the bypass 

links relative to those on the through links.  With our base demands it seems that the delays 

which result on the bypass links are negligible compared to the free flow cost of 1000 

seconds and that the assignment becomes an all-or-nothing assignment in regimes 2-4.  

 

Understanding these regimes helps us explain why the optimal toll set by A does not appear 

to be affected by the toll set by B in the high toll regime.  Solution 4 lies in the separated 

flow regime so that the toll is in effect only affecting captive users and no more re-routing in 

response to a toll is possible.  This separated regime implies that the optimal toll for player A 

is dependent only on the demand towards the central zone (node 2) and that the welfare 

function can only be increased by affecting the consumer surplus of own residents heading 

towards node 2 and the congestion experienced on link 1 plus the amount of revenue 

collected on link 6 from those non-residents travelling to node 2.  All other flows and link 

costs are fixed once the tolls exceed 100 seconds.  This sub-problem faced by player A is not 

influenced by the toll set by player B as all those who enter A’s network from authority B 

have not been charged a toll in B’s network by definition.  They have either come from zone 

4 via link 9 without charge or have come from zone 5 via the bypass link 11 again with no 

charge.  This explains why there is no interaction effect between players once we are in this 

separated regime.  Next we investigate whether the number of LNE solutions varies with 

increased elasticity. 

 

3.1.5 Case 1: Number of Potential LNE with changes in Elasticity of Demand 

 

The power law demand function implies a constant elasticity demand assumption and this is 

reflected in the parameter p in (13). Specifically p represents the (absolute) percentage 

change in demand as a result of a percentage increase in generalized costs (inclusive of tolls).  

Thus with everything else (base demands and network link parameters) held constant, we can 

vary the parameter p to assess the impact of an (absolute) increase in elasticity on the 

number of potential LNE in the network. 
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Figure 1a (Left Pane) Contours of Case 1 (α=1) with Elasticity = -0.75  (Right Pane) Contours of 

Case 1 (α=1) with Elasticity = -1 

 

 

 
Figure 7b: (Left Pane) Contours of Case 1 (α=1) with Elasticity = -1.25  (Right Pane) Contours 

of Case 1 (α=1) with Elasticity = -1.5 

 

 
Figure 7c: (Left Pane) Contours of Case 1 (α=1) with Elasticity = -1.75  (Right Pane) Contours 

of Case 1 (α=1) with Elasticity = -2 
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<<INSERT TABLE 6 APPROXIMATELY HERE >> 
Table 6:  Case 1:Number of possible LNE as Elasticity Increases 

 
p (Elasticity 

Parameter) 
Number of 

Intersections 

Number of LNE Toll Level at Nash Equilibrium 

(seconds) 

0.58 

(Base Case) 

9 4 {505,505} 

0.75 9 4 {320,320} 

1 9 4 {85,85} 

1.25 9 4 {85,85} 

1.5 9 4 {85,85} 

1.75 4 4 {85,85} 

2.0 1 1 {85,85} 

 

 

Figures 7a to 7c show the contour plots and hence number of intersections as elasticity is 

increased from 0.58 to 2.0. As mentioned earlier, some intersections of the contours are 

eliminated from potential consideration as LNE because although the numerically estimated 

gradients are equal to 0, at least one of the Authority’s objective functions attains a minimum 

at that point. This contradicts the requirements that for an LNE both objectives must be 

simultaneously maximized. Hence by process of inspection, we can eliminate some 

intersections from consideration. However as shown in Figures 7a-7c and in Table 6, it is still 

clear that with elasticities up to -1.75, there are 4 LNE. Somewhere between a value of -1.75 

and -2.0 the number of LNE is reduced to one, as with an elasticity of -2, multiple NE are 

eliminated from this network. The one remaining solution is in the mixed flow regime.  This 

demonstrates that there can exist networks which exhibit only one NE solution and that in 

this case there would not be a prisoner’s dilemma. 

 

Table 6 also shows that as elasticity increases, the NE solution tends towards the low toll 

regime rather than the high toll regime.  The left pane of Figure 8 shows the graph of welfare 

for Authority A as the toll it sets varies (Authority B’s toll held fixed) in the case when the 

parameter p is kept at the base value of 0.58. We note that the global optimum of welfare in 

this case occurs to the right of the local optimum and this is in the high toll regime. In 

contrast, the right pane of Figure 8 shows the same graph with absolute elasticity increased 

to 1.25p  . In this case, we note that the global optimum occurs to the left of the local 

optimum in the low toll regime. This demonstrates why, as elasticity is increased we see the 

NE solution move from a high toll regime to a low toll one.  This has important policy 

implications in that if elasticity is higher then the authorities are less likely to end up in a 

Prisoner’s dilemma, the users will face lower tolls and all residents will see an increase in 

total welfare.  

 

It is also noticeable that the low toll Nash solution does not change as elasticity increases.  

This is again down to the specific parameters in our network and in particular it is related to 

the very small impact on delay on the bypass links as a small proportion of the flow is 

diverted from link 1 to link 2 for example.  With low levels of through traffic, the congestion 

impact on the bypass links is only a fraction of a second so that the optimal toll is always in 

the same integer range.  This is network specific and is not expected to be generalised. 
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Figure 8. (Left Pane) Global optimum of own authority welfare  is in the high toll regime and to 

the right of the local optimum at elasticity of -0.58 as own authority toll varies ; (Right Pane) 

Global optimum of own authority welfare is in the low toll regime and to the left of the local 

optimum at elasticity of -1.25 as own authority toll varies. 

 

We did also investigate other changes to the network parameters and found that if we 

increase both the through demand and adapt the congestion function on the links – to 

increase the delays on the bypass links then this can also result in there being only one NE 

solution.  Whilst we have therefore demonstrated that multiple NE may exist under certain 

conditions and that under other conditions only one NE solution may exist, we are not in a 

position to say whether for any general network there will be one or multiple NE solutions.  

This is something that should be investigated in further research. 

 

3.2 Case 2: Asymmetric Demand 

 

In Case 2, we modified the Demand Matrix used in Case 1 from that shown in Table to that 

as shown in Table 7.  However the network remains exactly the same in both cases.  

 

Table 7: Base Trips (
,0k

d ) and (Base Costs, 
,0k

b ) for Case 2. 

Authority in 

Charge 

 

From    To 

       

 

1 

(Residential 

Zone in 

Authority A) 

2 

(CBD of 

Authority A) 

4 

(Residential 

Zone in 

Authority B) 

5 

(CBD of 

Authority B) 

A 1 0 1300 

(488.08) 

0 0 

A 2 100 

(450.34) 

0 100 

(900.04) 

100 

(1350.06) 

B 4 100 

(1361.26) 

100 

(910.92) 

0 100 

(450.02) 

B 5 200 

(1849.35) 

400 

(1399.00) 

700 

(488.08) 

0 

 

 

 

In constructing the asymmetric case we have maintained the number of trips originating from 

each zone, but have re-distributed them so that the CBD in Authority A is now more 

attractive relative to the CBD in authority B.  Note that the total number of trips from A to B 

is reduced from 500 to 200 while the number from B to A increases from 500 to 800. 
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3.2.1 Case 2: Global Regulator Benchmark 

 

The welfare surface of the Global Regulator’s problem for Case 2 is shown in Figure 9 with a 

contour plot on the right.  In addition, our search over the entire surface confirms that similar 

to Case 1,  there exists only one optimum around a toll set of {90,80}.  The results are 

summarised in Table 8. 

 

 

 

 

 
Figure 9: (Left Pane) Surface Plot of Global Welfare for Case 2 around region of the optimum; 

(Right Pane) Contour Plot of Global Welfare for Case 2 around region of the optimum. 

 

Table 1: Results of the Global Regulator Problem for Case 2 

 (all units in seconds)  

Scenario Global 

Regulator 

Authority A 

Toll on: Link 1 and Link 6 
90 

Authority B 

Toll on: Link 7 and Link 12 
80 

Welfare Gain (vs Do Nothing) 21418 

Welfare of Authority A 62012  

Welfare of Authority B -40593 

 

 

It is interesting that Authority B suffers from negative welfare even in the global regulator 

problem.  

 

 

 

3.2.2 Case 2: Nash Game 

 

For the case when α = 1, i.e., full tax exporting between the authorities, we again used a finite 

grid search and contours of the gradients to explore the response surfaces for each authority 

to identify where potential local NE that may exist. Figure 10 shows the contour plots and 

points of intersection of the zero contours.  
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Figure 10: Contour Plot for Case 2 (α=1) 

 

 

Once again we can identify 4 potential solutions where both welfare surfaces are passing 

through a maximum by inspection of the welfare surfaces and by recognizing that there is a 

particular pattern to the welfare surfaces as tolls are increased which is maintained across the 

full range of tolls investigated.  

 

Using the welfare surfaces provided by the grid search we were able to confirm that once 

again there are four LNE solutions as shown in Table  which all satisfied the condition in (11)

. 

 
Table 9: Local Nash Equilibria for Case 2 (all units are seconds and α = 1) 

Solution  

Number  

Toll Set by 

Authority A 

Toll Set by 

Authority B 

Welfare of 

Authority A 

Welfare of 

Authority B 

Total 

Welfare 

1 85 81 58025 (3) -36666 (1) 21359 

2 955 81 150671 (1) -392798 (3) -242127 

3 955 150 142737 (2) -422454 (4) -279717 

4 85 150 49777 (4) -65860 (2) -16083 
Figures in parentheses show the preference ranking for each authority pertaining to a particular outcome. 

 

It is the case that in all 4 LNE, the impact on B’s welfare is adverse, recall that B suffers 

from negative welfare even under the global regulator benchmark. Compared to case 1, it 

seems that the outcome will favour the stronger player. Solution 2 and Solution 3 are both 

highly favoured outcomes for Player A with the same toll level of 955 set by player A which 

demonstrates the power of Authority A. Comparing the preference ranking in Case 2 with 

that from Case 1 and with reference to Table 9, now Authority A gives Solution 1 {85,81} 

nearer to the global regulator outcome {90,80} (cf. Table 8) a lower ranking while Authority 

B actually prefers this. Note that similar to Case 1, we found that as the absolute elasticity 

increased, we move towards a low toll solution and only one NE. 
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Incentives to Compete 

 

 

 
Figure 11: (Left Pane) Welfare Plot for Authority A Showing Optimum at around 980 when 

Authority B does not levy any toll ; (Right Pane) Welfare Plot for Authority B Showing 

Optimum at around 80 when Authority A does not levy any toll.  

 

If B is always worse off why do they toll? The left pane of Figure 11 Figure illustrates the 

welfare of Authority A as it varies its toll when Authority B does not levy any toll. The right 

pane does the same for Authority B on the assumption that Authority A does not levy any 

toll. These show that both authorities have an incentive to enter the game since their 

individual welfares are higher compared to doing nothing. It is also evident that Authority A 

has a much larger incentive than Authority B.   

 

When the game begins, and we have shown that there is indeed such an incentive for one 

authority to begin the game, Authority B always ends up in the equivalent of a prisoners’ 

dilemma situation because it is always worse off under all the 4 LNE of Figure  than if it had 

not done anything. Similarly A is always better off (cf. Table 9). This is in stark contrast to 

case 1 where both authorities ended up being worse off.  

 

It is however possible to show that solution 2 is the NE as if A moves first then they set a toll 

of 955 and B responds with full information with a toll of 81 and vice versa. 

 

3.2.3 Policy Implications 

 

Our analysis offers a potential explanation for why large cities such as London can start the 

game and gain a first mover advantage while smaller authorities (when including set up and 

operating costs) decide that in fact the benefits of going alone are not even there – so this 

explains why there is a no-move case for the smaller towns – especially if they think that the 

other larger town will retaliate and they may end up being even worse off.  

 

In addition, our findings also lend support to the findings of an econometric study by 

Levinson (2001). Levinson found that that the more non-resident workers a state (in the 

United States) has, the greater the likelihood of tolling. By way of analogy to this case study, 

Authority A has a larger number of non-resident workers (compared to Authority B since 

more commute to work in its jurisdiction compared to Case 1) and therefore has a stronger 

incentive to apply tolls.  
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4. CONSIDERING COLLUSION 

 

 

Thus far we have assumed that α=1, i.e. there is full tax exporting behaviour. In the 

Edinburgh congestion charging proposals, authorities surrounding the city of Edinburgh were 

invited to share the revenues from the scheme so that they would lend support to the 

proposals (Saunders, 2005).  This form of revenue sharing can be modelled with the 

parameter α. When α=0 then we have full recycling of revenues back to those who paid the 

tolls.  For values in between there is some sharing of revenues collected i.e. some proportion 

of revenues are returned to the relevant authority.   

 

To find toll levels for each Authority that satisfy (11), we carried out a grid search of 

welfares for each authority varying the toll levels between 0 and 1000 second and carried out 

the contour plots of based on finite difference to approximate the gradients. As we have 

found from results in Section 3, there may be more than 1 NE that will satisfy (11) even 

within the range of tolls considered. Hence we also carried out a Gauss Jacobi 

diagonalization type algorithm (see Appendix C for details) for the purposes of locating the 

Nash Equilibrium toll solution within the locality of the grid search solution. 

 

   

4.1 Collusion – Case 1 

 

For Case 1, Table 10 shows the results of the Gauss Jacobi Algorithm for values of α 

between 0 and 1 inclusive.  We also carried out a grid search of the welfare surfaces similar 

to the previous case studies mentioned above.  

 

 
Table 10: Results of Gauss Jacobi Algorithm for Case 1 for different α (all units are seconds) 

α Toll on Links 

1 and 6 Set by 

Authority A 

Toll on Links 7 

and 12 Set by 

Authority B 

Welfare of 

Authority A 

Welfare of 

Authority B 

Global 

Welfare 

0 80.00 80.00 10146 10146 20292 

0.2 81.30 81.40 10057 10067 20125 

0.4 159.27 159.32 -19791 -19785 -39575 

0.6 240.24 242.72 -32099 -31680 -63779 

0.8 356.08 356.08 -54030 -54030 -108059 

1 504.70 504.70 -88006 -88005 -176011 

 

 

Table 10 shows that as α is reduced i.e. increasing the revenue recycling back to those who 

paid, then there is a tendency for the solution to move towards the lower toll regime.  In fact 

in the extreme case when =0 we obtain the exact same solution as under the global 

regulator problem for Case 1.  In this case there is an incentive for both authorities to collude 

which also brings greater benefits to society. However, this is no longer true when the 

demand is asymmetric as will be shown later. 

 

 

4.2.2 Collusion – Case 2 
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For Case 2, Table 11 shows the results of the Gauss Jacobi Algorithm with different starting 

points for selected values of α between 0 and 1.   

 

 
Table 11: Results of Gauss Jacobi Algorithm for Case 2 for different α (all units are seconds) 

α Toll on Links 

1 and 6 Set by 

Authority A 

Toll on Links 7 

and 12 Set by 

Authority B 

Welfare of 

Authority A 

Welfare of 

Authority B 

Global 

Welfare 

0 102.73 80.00 9064 -13286 -4222 

0.2 171.61 80.60 18584 -27629 -9045 

0.4 263.59 81.20 34843 -58788 -23945 

0.6 395.04 81.78 59781 -115609 -55828 

0.8 609.77 82.03 96634 -218552 -121918 

1 953.17 83.05 150585 -392325 -241740 

 

The result for the Global Regulator Problem for Case 2 was presented in Table 8. A single 

regulator would set a toll 90 and 80 on links (1 and 6) and links (7 and 12) respectively to 

maximise welfare. However the result with =0 is not in fact the same as the global regulator 

problem. It seems that in this case the stronger authority is still able to charge more (102 

compared to 90 in the GRP).  So in this case while Authority B would prefer to collude, 

Authority A would obviously gain more by not colluding and with tax exporting behaviour 

society would be worse off as a whole.  The implication when comparing the asymmetric 

case to the symmetric case is that there may be a greater need for regulation when there 

exists a stronger player (as is the case in other sectors).  For society to be better off as a 

whole in case 2 there needs to be a regulator in place which could also offset any disbenefits 

to those residents from Authority B by re-distribution of the revenues collected. 

 

 

5. SUMMARY AND CONCLUSIONS 

 

In this paper we have explored the implications of competition between cities when setting 

toll charges.  First we have set up the problem as an Equilibrium Problem with Equilibrium 

Constraints (EPEC) which is a special form of a Nash game with a hierarchical structure. 

Using a simple network we then applied simple grid search methods to determine the Nash 

Equilibrium toll levels, finding both local (LNE) and global NE solutions. We then 

investigated the policy implications for a symmetric and asymmetric case with and without 

collusion. 

 

In our first case study using a symmetric trip matrix, it is interesting that either authority 

should in principle wish to move first, but that once a move is made then the Nash game 

takes them both to a sub-optimal position due to the larger basin of attraction. They both end 

up worse off in a prisoner’s dilemma. For the asymmetric case, we find that the outcome of 

the game tended to be in favour of the stronger player with the weaker player being worse off 

than in the no toll case despite there being an initial incentive for the weaker player to set a 

toll. 

 

In our example we can see that if cities were to set tolls using a simple game or pay-off 

approach with limited step size (to represent a cautious decision maker), then it would be 

feasible for them to arrive at welfare improving LNE Solutions in the symmetric case.  

Whilst we have not defined how strategies are set in this paper (as we have simply explored 

the response surfaces to find solutions to the problem), our future research will investigate 
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the dynamics of the toll setting strategies and how this may result in an LNE solution. We  

will investigate how cities compete, which indicators can be used for decision-making and 

which kind of update strategies are likely. 

 

We also investigated which factors affected whether there exists only one or multiple NE 

solutions.  We found that for the network studied here, increasing elasticity not only results 

in a shift from multiple NE to one NE solution but that the global NE solution also moved 

towards the low toll regime where both cities’ residents are better off.   

 

We also reported that changing the amount of through demand and the congestion function 

used also results in only one NE solution. Whilst we demonstrated that multiple NE may 

exist under certain conditions and that under other conditions only one NE solution may 

exist, we are not in a position to say whether for any general network there will be one or 

multiple NE solutions.  Further research should consider more general networks, where 

mixed flow regimes are more likely, and the number of Nash Equilibria that may arise in 

such general networks.  

 

Finally, we also demonstrated that some signalling or collusion as may be expected in reality 

could in this case work to benefit all residents should cities act to maximise welfare under the 

symmetric case, which is in contrast to our previous work on toll competition between 

private operators where profit maximising behaviour coupled with collusion led to a decrease 

in welfare for residents (though increased profits for the operators).  However we also 

showed that with the asymmetric case the opposite is true and where there exists a player 

with market power then there could in fact be a stronger case for regulation. In modelling the 

collusion between authorities, we introduced a collusion parameter, α and assume that the 

parameter was common to both authorities. Further research could possibly investigate the 

impact of different values of this collusion parameter and how it would ultimately impact the 

conclusions presented in this paper. 
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APPENDIX A: Uniqueness of Equilibrium Link Flows Disaggregated by Authority 

 

We establish uniqueness of the equilibrium link flows disaggregated by authority, at any 

given toll vector, for the network shown in Figure 1 and assumptions specified in section 4. 

In order to do so, we shall make some mild additional assumptions. Let 
*

lg  denote the 

equilibrium generalized cost on link l corresponding to a given solution to (11). Formally, for 

any given toll vector solution τ to (11) these are given uniquely by the elements of vector 
*

g :  

  * *( ) ,g g V τ 1 τ  (15) 

Specifically we make the assumptions: 

 
* * *

3 2 4g g g   (16) 
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* * *

4 5 3g g g   (17) 

 
* * *

10 11 9g g g   (18) 

 
* * *

10 11 9g g g   (19) 

 
* * *

9 8 10g g g   (20) 

With these assumptions, then we are able to establish uniqueness of authority flows through 

the following steps: 

 

 

i. Our assumptions on the cost functions and demand functions (stated in section 2) are 

well-known to be sufficient to guarantee uniqueness of the equilibrium total link flows 

and OD demands, so our question can be equivalently posed: in the given network 

structure, is this uniqueness sufficient to also guarantee uniqueness of the link flows 

disaggregated by authority? 

 

ii. At equilibrium, intra-authority OD movements will never use the links of the other 

authority. For example, one possible route form node 1 to node 2 is to follow the route 

given by the link sequence {2,7,10,11,6}, but since link costs are strictly positive it 

follows that such a route will always have higher cost than the route following links 

{2,6}, and so this earlier route can never appear in an equilibrium solution at any toll 

vector. An analogous argument may be made for all intra-authority OD movements, so 

for such movements we need only consider the routes that use links strictly within that 

authority’s jurisdiction. 

 

iii. The network structure is entirely equivalent to one in which an additional bi-directional, 

dummy link is added by dividing node 3 in two and inserting the link between the two 

nodes resulting from the divided node 3. The only flow on the left-pointing direction of 

this link will be (all of) that demand travelling from Authority B (node 4 or 5) to 

Authority A (node 1 or 2), there will be no intra-authority demand using it given the 

remarks in point ii. above. Returning now to the original network definition, we may 

thus (if we are thinking just from the viewpoint of Authority A’s network) represent the 

demand from Authority B as if it were from an origin at node 3 with OD flow to nodes 

1 and 2 equal to the relevant OD flows from the sum of nodes 4 and 5 (noting that such 

sums are unique since the individual demands are unique by remark i.). By symmetry, 

the same argument may be made regarding demand from Authority A to B, if we are 

thinking from the perspective of Authority B’s network. 

 

iv. Considering Authority A’s network, links 2 and 4 take traffic into node 3. In view of the 

comments in remark ii., such links could never be part of an equilibrium route for traffic 

from Authority B. Therefore links 2 and 4 only carry Authority A’s demand, and these 

flows are unique since the total link flows are unique by remark i. 

 

v. Assumption  (17) above means that for demand travelling from node 2 to nodes 4 or 5, 

it is  more costly (at equilibrium) to travel on the indirect route to node 3 (via links 3 

and 2) than via the direct route via link 4, and so such demand will never use the 

indirect route. This implies that the only Authority A flow on link 2 is that demand from 

node 1 (destined for nodes 2, 4 or 5). All the remaining demand from node 1 to these 
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other nodes must use link 1. Since at equilibrium we uniquely determine the total 

demand from node 1 (as the sum of demands to nodes 2, 4 and 5), and since in step iv. 

we have uniquely determined the Authority A flow on link 2, and since by the argument 

just made this flow on link 2 can only be from node 1, then by subtracting the (unique) 

link 2 flow from the (unique) total demand from node 1, then we have uniquely 

determined the flow on link 1 that is due to demand from node 1. Now we can note that 

no demand from node 2 would ever use link 1, so that the only Authority A demand on 

link 1 is that from node 1, and this is something we have just uniquely determined. Thus 

the Authority A flow on link 1 is unique, and by subtraction from the total link 1 flow 

(which is unique by remark i.) then the Authority B flow on link 1 is also unique. 

  

vi. Assumption (17)implies that it is never efficient for demand from node 2 to travel to 

node 1 via the indirect route of links 4 and 5, in preference to the direct route via link 3. 

In particular, it means that link 5 is not used by demand from node 2; neither is this link 

on a route from node 1. Therefore no Authority A flow uses link 5, only Authority B 

flow and so this must equal the total flow on link 5, which is unique by remark i. 

 

vii. Since by remark iii., the total Authority B demand arriving at node 3 (and destined for 

nodes 1 and 2) is uniquely determined, and since links 5 and 6 are the only exit nodes 

from node 3, and since by remark vi. the Authority B flow on link 5 is unique, then it 

follows that the Authority B flow on link 6 can be uniquely determined by conservation 

of Authority B flow at node 3. By subtraction from the total link 6 flow, the Authority 

A flow on link 6 is then also unique. 

 

viii. Consider node 2. By remarks iv., v. and vii., the Authority B flow on links 1, 4 and 6 is 

uniquely determined. By remark i., the total Authority B OD flow that is destined for 

node 2 is uniquely determined, and by definition there is no Authority B OD flow 

originating at node 2. Therefore, applying conservation-of-flow at node 2 to the 

Authority B flow, then the Authority B flow on link 3 may be uniquely determined, as it 

is then the only unknown in the conservation equation. By subtraction from the total 

link 3 flow, the Authority A flow on link 3 is then also unique. 

 

ix. Remarks iv.–viii. establish uniqueness of the authority flows on links 1–6, i.e. those 

under Authority A’s jurisdiction. By symmetry, equivalent arguments can be made 

about links 7–12 (under Authority B’s jurisdiction), exploiting assumptions (18)and 

(19) in place of (16) and (17) . 
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APPENDIX B: Cutting Constraint Algorithm 

 

As mentioned in the main text, the global regulator sets the tolls to optimize the welfare for 

the entire network (irregardless of authority jurisdiction). This is effectively a Mathematical 

Program with Equilirium Constraints (MPEC). The economic paradigm for a generic MPEC 

is based on the setting of a Stackleberg game where the leader sets his strategic decision 

variables and the road users on the network take the leader’s decision variables as given and 

optimize their route choice according to Wardrop’s Equilibrium Condition. A large amount 

of development has occurred in this branch of mathematical optimisation (Luo et al 1996) 

which has applications in e.g. mechanics, robotics and transportation analysis. The primary 

difficulty with the MPEC is that they fail to satisfy certain technical conditions (known as 

constraint qualifications) at any feasible point (Chen and Florian, 1995; Scheel and Scholtes, 

1995). In recent research, Koh et al (2009) investigated the use of the cutting constraint 

algorithm (CCA) (Lawphongpanich and Hearn, 2004) to solve an MPEC in the context of 

second best congestion pricing and capacity optimisation. 

 

Reinterpretation of Variational Inequality Condition  

 

Let us define the additional variable 

 : a pre-specified upper bound on tolls, [ ]i   

 

As we have defined in the main paper (see equation (2)), the feasible region of flow vectors 

or “demand-feasible set” D , is a linear equation system of flow conservation constraints. 

From convex set theory, e.g. (Bazaraa et al 2008, Theorem 2.1.6 p.43),  , Dv d  can be 

defined as a convex combination of a set of extreme points.  Hence we can write Wardrop’s  

equilibrium condition of route choice as follows: 

 
# #( , ) ( ) ( ) ( ) 0 ( , )e e D     g v τ u v w d q e u e  

 

Where ( , )e e
u q is the vector of extreme link flow and demand flow indexed by the 

superscript e, and E is the set of all extreme points of the demand-feasible set D 

 

A Cutting Constraint Algorithm for the MPEC 

 

The Cutting Constraint Algorithm redefines the variational inequality using the extreme 

points. Together with the initial extreme point, generated by an initial shortest path problem, 

and the constraints defining feasible flows, the master problem is solved to find the optimal 

tolls and capacities at each iteration. Subsequently new extreme points (“cuts”) are found by 

solving a sub problem using the results for the current iteration. 

The CCA Algorithm is as follows:  

Step 0:  Initialise the problem by finding the shortest paths for each O-D pair; 

set l (iteration counter) = 0; define the aggregated link flow and demand 

flow ( , )l l
u q ; and include ( , )l l

u q  into E . 

Step 1: Set 1l l   Solve the Master Problem with all extreme points in E and 

obtain the solution vector  , ,v d ;then set  , ,l l lv d . 
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Step 2: Solve the Sub Problem with  , ,l l lv d and obtain the new extreme point 

(u
l
,q

l
); 

Step 3: Convergence Check:  

If # #( , ) ( ) ( ) ( ) 0l l l l l l l    g v u v w d q d , terminate and  , ,l l lv d  is the 

solution, otherwise include ( , )l l
u q  into E  and return to Step 1. 

 

The Master Problem in Step 1 is defined as follows:  

 
 

 

1
, , ,

# #

min , , ,

. .

0                                           

,

( , ) ( ) ( ) ( ) 0

i i

e e

s t

D

e E

 
  

  



     

v d
v d

v d

g v τ u v w d q e

 

 

The sub problem of Step 2 is a shortest path problem which is formulated as follows:  

 
    

 

1

,
min , ,

. .

,

TT

s t

D

   



u q
c v u D d q

u q

  

 

Further details of our implementation of the algorithm can be found in Koh et al (2009).  

 

 

APPENDIX C: Gauss Jacobi Diagonalization Algorithm 

 

The Gauss Jacobi/Diagonalization Algorithm (Harker, 1984) which was used find the toll 

tuple when the collusion parameter α was varied, as discussed in Section 4, operates as 

follows:  

 

Gauss Jacobi/Diagonalisation Algorithm:  

Step 0: 

 

Set iteration counter 0k  . Select a convergence tolerance parameter, 

(>0). Choose a toll level for each authority. Let the initial toll set be 

 
#

k k k

A B τ . Set 1k k  and go to Step 1, 

 

Step 1: 

 

Utilise the Cutting Constraint Algorithm (see Appendix B) of Hearn and 

Lawphongpanich (1984) to solve each authority’s individual welfare 

optimization problem i.e. the equivalent of  (5) , assuming that the 

opponent’s toll is held fixed.   

 

Step 2: 

 
If 1k k

A A    and 1k k

B B   are both less than terminate, else set 1k k   

and return to Step 1 where   refers to the Euclidean Norm. 
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